rtl8192eu-linux-driver/hal/rtl8192e/rtl8192e_hal_init.c
Magnus Bergmark 1387cf623d
The official RTL8192EU linux driver from D-Link Australia
Version information: 20140812_rtl8192EU_linux_v4.3.1.1_11320
  2014-08-12
  version 4.3.1.1_11320
Source:
  ftp://files.dlink.com.au/products/DWA-131/REV_E/Drivers/DWA-131_Linux_driver_v4.3.1.1.zip

This version does not currently work on newer kernels, but it does
contain USB ID 2001:3319, which a lot of other repos in GitHub does not.
2015-08-18 21:03:11 +02:00

5454 lines
148 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _RTL8192E_HAL_INIT_C_
//#include <drv_types.h>
#include <rtl8192e_hal.h>
#if defined(CONFIG_IOL)
static void iol_mode_enable(PADAPTER padapter, u8 enable)
{
u8 reg_0xf0 = 0;
if(enable)
{
//Enable initial offload
reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG);
//DBG_871X("%s reg_0xf0:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0xf0, reg_0xf0|SW_OFFLOAD_EN);
rtw_write8(padapter, REG_SYS_CFG, reg_0xf0|SW_OFFLOAD_EN);
if(padapter->bFWReady == _FALSE)
{
printk("bFWReady == _FALSE call reset 8051...\n");
_8051Reset8192E(padapter);
}
}
else
{
//disable initial offload
reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG);
//DBG_871X("%s reg_0xf0:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0xf0, reg_0xf0& ~SW_OFFLOAD_EN);
rtw_write8(padapter, REG_SYS_CFG, reg_0xf0 & ~SW_OFFLOAD_EN);
}
}
static s32 iol_execute(PADAPTER padapter, u8 control)
{
s32 status = _FAIL;
u8 reg_0x88 = 0,reg_1c7=0;
u32 start = 0, passing_time = 0;
u32 t1,t2;
control = control&0x0f;
reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0);
//DBG_871X("%s reg_0x88:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0x88, reg_0x88|control);
rtw_write8(padapter, REG_HMEBOX_E0, reg_0x88|control);
t1 = start = rtw_get_current_time();
while(
//(reg_1c7 = rtw_read8(padapter, 0x1c7) >1) &&
(reg_0x88=rtw_read8(padapter, REG_HMEBOX_E0)) & control
&& (passing_time=rtw_get_passing_time_ms(start))<1000
) {
//DBG_871X("%s polling reg_0x88:0x%02x,reg_0x1c7:0x%02x\n", __FUNCTION__, reg_0x88,rtw_read8(padapter, 0x1c7) );
//rtw_udelay_os(100);
}
reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0);
status = (reg_0x88 & control)?_FAIL:_SUCCESS;
if(reg_0x88 & control<<4)
status = _FAIL;
t2= rtw_get_current_time();
//printk("==> step iol_execute : %5u reg-0x1c0= 0x%02x\n",rtw_get_time_interval_ms(t1,t2),rtw_read8(padapter, 0x1c0));
//DBG_871X("%s in %u ms, reg_0x88:0x%02x\n", __FUNCTION__, passing_time, reg_0x88);
return status;
}
static s32 iol_InitLLTTable(
PADAPTER padapter,
u8 txpktbuf_bndy
)
{
s32 rst = _SUCCESS;
iol_mode_enable(padapter, 1);
//DBG_871X("%s txpktbuf_bndy:%u\n", __FUNCTION__, txpktbuf_bndy);
rtw_write8(padapter, REG_DWBCN0_CTRL_8192E+1, txpktbuf_bndy);
rst = iol_execute(padapter, CMD_INIT_LLT);
iol_mode_enable(padapter, 0);
return rst;
}
static VOID
efuse_phymap_to_logical(u8 * phymap, u16 _offset, u16 _size_byte, u8 *pbuf)
{
u8 *efuseTbl = NULL;
u8 rtemp8;
u16 eFuse_Addr = 0;
u8 offset, wren;
u16 i, j;
u16 **eFuseWord = NULL;
u16 efuse_utilized = 0;
u8 efuse_usage = 0;
u8 u1temp = 0;
efuseTbl = (u8*)rtw_zmalloc(EFUSE_MAP_LEN_88E);
if(efuseTbl == NULL)
{
DBG_871X("%s: alloc efuseTbl fail!\n", __FUNCTION__);
goto exit;
}
eFuseWord= (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
if(eFuseWord == NULL)
{
DBG_871X("%s: alloc eFuseWord fail!\n", __FUNCTION__);
goto exit;
}
// 0. Refresh efuse init map as all oxFF.
for (i = 0; i < EFUSE_MAX_SECTION_88E; i++)
for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
eFuseWord[i][j] = 0xFFFF;
//
// 1. Read the first byte to check if efuse is empty!!!
//
//
rtemp8 = *(phymap+eFuse_Addr);
if(rtemp8 != 0xFF)
{
efuse_utilized++;
//printk("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8);
eFuse_Addr++;
}
else
{
DBG_871X("EFUSE is empty efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, rtemp8);
goto exit;
}
//
// 2. Read real efuse content. Filter PG header and every section data.
//
while((rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
{
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr-1, *rtemp8));
// Check PG header for section num.
if((rtemp8 & 0x1F ) == 0x0F) //extended header
{
u1temp =( (rtemp8 & 0xE0) >> 5);
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x *rtemp&0xE0 0x%x\n", u1temp, *rtemp8 & 0xE0));
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x \n", u1temp));
rtemp8 = *(phymap+eFuse_Addr);
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8));
if((rtemp8 & 0x0F) == 0x0F)
{
eFuse_Addr++;
rtemp8 = *(phymap+eFuse_Addr);
if(rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
{
eFuse_Addr++;
}
continue;
}
else
{
offset = ((rtemp8 & 0xF0) >> 1) | u1temp;
wren = (rtemp8 & 0x0F);
eFuse_Addr++;
}
}
else
{
offset = ((rtemp8 >> 4) & 0x0f);
wren = (rtemp8 & 0x0f);
}
if(offset < EFUSE_MAX_SECTION_88E)
{
// Get word enable value from PG header
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Offset-%d Worden=%x\n", offset, wren));
for(i=0; i<EFUSE_MAX_WORD_UNIT; i++)
{
// Check word enable condition in the section
if(!(wren & 0x01))
{
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d \n", eFuse_Addr));
rtemp8 = *(phymap+eFuse_Addr);
eFuse_Addr++;
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8));
efuse_utilized++;
eFuseWord[offset][i] = (rtemp8 & 0xff);
if(eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
break;
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d", eFuse_Addr));
rtemp8 = *(phymap+eFuse_Addr);
eFuse_Addr++;
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8));
efuse_utilized++;
eFuseWord[offset][i] |= (((u2Byte)rtemp8 << 8) & 0xff00);
if(eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
break;
}
wren >>= 1;
}
}
// Read next PG header
rtemp8 = *(phymap+eFuse_Addr);
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d rtemp 0x%x\n", eFuse_Addr, *rtemp8));
if(rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
{
efuse_utilized++;
eFuse_Addr++;
}
}
//
// 3. Collect 16 sections and 4 word unit into Efuse map.
//
for(i=0; i<EFUSE_MAX_SECTION_88E; i++)
{
for(j=0; j<EFUSE_MAX_WORD_UNIT; j++)
{
efuseTbl[(i*8)+(j*2)]=(eFuseWord[i][j] & 0xff);
efuseTbl[(i*8)+((j*2)+1)]=((eFuseWord[i][j] >> 8) & 0xff);
}
}
//
// 4. Copy from Efuse map to output pointer memory!!!
//
for(i=0; i<_size_byte; i++)
{
pbuf[i] = efuseTbl[_offset+i];
}
//
// 5. Calculate Efuse utilization.
//
efuse_usage = (u1Byte)((efuse_utilized*100)/EFUSE_REAL_CONTENT_LEN_88E);
//Adapter->HalFunc.SetHwRegHandler(Adapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_utilized);
exit:
if(efuseTbl)
rtw_mfree(efuseTbl, EFUSE_MAP_LEN_88E);
if(eFuseWord)
rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
}
void efuse_read_phymap_from_txpktbuf(
ADAPTER *adapter,
int bcnhead, //beacon head, where FW store len(2-byte) and efuse physical map.
u8 *content, //buffer to store efuse physical map
u16 *size //for efuse content: the max byte to read. will update to byte read
)
{
u16 dbg_addr = 0;
u32 start = 0, passing_time = 0;
u8 reg_0x143 = 0;
u8 reg_0x106 = 0;
u32 lo32 = 0, hi32 = 0;
u16 len = 0, count = 0;
int i = 0;
u16 limit = *size;
u8 *pos = content;
if(bcnhead<0) //if not valid
bcnhead = rtw_read8(adapter, REG_DWBCN0_CTRL_8192E+1);
DBG_871X("%s bcnhead:%d\n", __FUNCTION__, bcnhead);
//reg_0x106 = rtw_read8(adapter, REG_PKT_BUFF_ACCESS_CTRL);
//DBG_871X("%s reg_0x106:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0x106, 0x69);
rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
//DBG_871X("%s reg_0x106:0x%02x\n", __FUNCTION__, rtw_read8(adapter, 0x106));
dbg_addr = bcnhead*128/8; //8-bytes addressing
while(1)
{
//DBG_871X("%s dbg_addr:0x%x\n", __FUNCTION__, dbg_addr+i);
rtw_write16(adapter, REG_PKTBUF_DBG_ADDR, dbg_addr+i);
//DBG_871X("%s write reg_0x143:0x00\n", __FUNCTION__);
rtw_write8(adapter, REG_TXPKTBUF_DBG, 0);
start = rtw_get_current_time();
while(!(reg_0x143=rtw_read8(adapter, REG_TXPKTBUF_DBG))//dbg
//while(rtw_read8(adapter, REG_TXPKTBUF_DBG) & BIT0
&& (passing_time=rtw_get_passing_time_ms(start))<1000
) {
DBG_871X("%s polling reg_0x143:0x%02x, reg_0x106:0x%02x\n", __FUNCTION__, reg_0x143, rtw_read8(adapter, 0x106));
rtw_usleep_os(100);
}
lo32 = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_L);
hi32 = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_H);
#if 0
DBG_871X("%s lo32:0x%08x, %02x %02x %02x %02x\n", __FUNCTION__, lo32
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L)
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L+1)
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L+2)
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L+3)
);
DBG_871X("%s hi32:0x%08x, %02x %02x %02x %02x\n", __FUNCTION__, hi32
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_H)
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_H+1)
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_H+2)
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_H+3)
);
#endif
if(i==0)
{
#if 1 //for debug
u8 lenc[2];
u16 lenbak, aaabak;
u16 aaa;
lenc[0] = rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L);
lenc[1] = rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L+1);
aaabak = le16_to_cpup((u16*)lenc);
lenbak = le16_to_cpu(*((u16*)lenc));
aaa = le16_to_cpup((u16*)&lo32);
#endif
len = le16_to_cpu(*((u16*)&lo32));
limit = (len-2<limit)?len-2:limit;
DBG_871X("%s len:%u, lenbak:%u, aaa:%u, aaabak:%u\n", __FUNCTION__, len, lenbak, aaa, aaabak);
_rtw_memcpy(pos, ((u8*)&lo32)+2, (limit>=count+2)?2:limit-count);
count+= (limit>=count+2)?2:limit-count;
pos=content+count;
}
else
{
_rtw_memcpy(pos, ((u8*)&lo32), (limit>=count+4)?4:limit-count);
count+=(limit>=count+4)?4:limit-count;
pos=content+count;
}
if(limit>count && len-2>count) {
_rtw_memcpy(pos, (u8*)&hi32, (limit>=count+4)?4:limit-count);
count+=(limit>=count+4)?4:limit-count;
pos=content+count;
}
if(limit<=count || len-2<=count)
break;
i++;
}
rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, DISABLE_TRXPKT_BUF_ACCESS);
DBG_871X("%s read count:%u\n", __FUNCTION__, count);
*size = count;
}
static s32 iol_read_efuse(
PADAPTER padapter,
u8 txpktbuf_bndy,
u16 offset,
u16 size_byte,
u8 *logical_map
)
{
s32 status = _FAIL;
u8 reg_0x106 = 0;
u8 physical_map[512];
u16 size = 512;
int i;
rtw_write8(padapter, REG_DWBCN0_CTRL_8192E+1, txpktbuf_bndy);
_rtw_memset(physical_map, 0xFF, 512);
///reg_0x106 = rtw_read8(padapter, REG_PKT_BUFF_ACCESS_CTRL);
//DBG_871X("%s reg_0x106:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0x106, 0x69);
rtw_write8(padapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
//DBG_871X("%s reg_0x106:0x%02x\n", __FUNCTION__, rtw_read8(padapter, 0x106));
status = iol_execute(padapter, CMD_READ_EFUSE_MAP);
if(status == _SUCCESS)
efuse_read_phymap_from_txpktbuf(padapter, txpktbuf_bndy, physical_map, &size);
#if 0
DBG_871X("%s physical map\n", __FUNCTION__);
for(i=0;i<size;i++)
{
DBG_871X("%02x ", physical_map[i]);
if(i%16==15)
DBG_871X("\n");
}
DBG_871X("\n");
#endif
efuse_phymap_to_logical(physical_map, offset, size_byte, logical_map);
return status;
}
s32 rtl8192e_iol_efuse_patch(PADAPTER padapter)
{
s32 result = _SUCCESS;
printk("==> %s \n",__FUNCTION__);
if(rtw_IOL_applied(padapter)){
iol_mode_enable(padapter, 1);
result = iol_execute(padapter, CMD_READ_EFUSE_MAP);
if(result == _SUCCESS)
result = iol_execute(padapter, CMD_EFUSE_PATCH);
iol_mode_enable(padapter, 0);
}
return result;
}
static s32 iol_ioconfig(
PADAPTER padapter,
u8 iocfg_bndy
)
{
s32 rst = _SUCCESS;
//DBG_871X("%s iocfg_bndy:%u\n", __FUNCTION__, iocfg_bndy);
rtw_write8(padapter, REG_DWBCN0_CTRL_8192E+1, iocfg_bndy);
rst = iol_execute(padapter, CMD_IOCONFIG);
return rst;
}
int rtl8192e_IOL_exec_cmds_sync(ADAPTER *adapter, struct xmit_frame *xmit_frame, u32 max_wating_ms,u32 bndy_cnt)
{
u32 start_time = rtw_get_current_time();
u32 passing_time_ms;
u8 polling_ret,i;
int ret = _FAIL;
u32 t1,t2;
//printk("===> %s ,bndy_cnt = %d \n",__FUNCTION__,bndy_cnt);
if (rtw_IOL_append_END_cmd(xmit_frame) != _SUCCESS)
goto exit;
#ifdef CONFIG_USB_HCI
{
struct pkt_attrib *pattrib = &xmit_frame->attrib;
if(rtw_usb_bulk_size_boundary(adapter,TXDESC_SIZE+pattrib->last_txcmdsz))
{
if (rtw_IOL_append_END_cmd(xmit_frame) != _SUCCESS)
goto exit;
}
}
#endif //CONFIG_USB_HCI
//rtw_IOL_cmd_buf_dump(adapter,xmit_frame->attrib.pktlen+TXDESC_OFFSET,xmit_frame->buf_addr);
//rtw_hal_mgnt_xmit(adapter, xmit_frame);
//rtw_dump_xframe_sync(adapter, xmit_frame);
dump_mgntframe_and_wait(adapter, xmit_frame, max_wating_ms);
t1= rtw_get_current_time();
iol_mode_enable(adapter, 1);
for(i=0;i<bndy_cnt;i++){
u8 page_no = 0;
page_no = i*2 ;
//printk(" i = %d, page_no = %d \n",i,page_no);
if( (ret = iol_ioconfig(adapter, page_no)) != _SUCCESS)
{
break;
}
}
iol_mode_enable(adapter, 0);
t2 = rtw_get_current_time();
//printk("==> %s : %5u\n",__FUNCTION__,rtw_get_time_interval_ms(t1,t2));
exit:
//restore BCN_HEAD
rtw_write8(adapter, REG_DWBCN0_CTRL_8192E+1, 0);
return ret;
}
void rtw_IOL_cmd_tx_pkt_buf_dump(ADAPTER *Adapter,int data_len)
{
u32 fifo_data,reg_140;
u32 addr,rstatus,loop=0;
u16 data_cnts = (data_len/8)+1;
u8 *pbuf =rtw_zvmalloc(data_len+10);
printk("###### %s ######\n",__FUNCTION__);
rtw_write8(Adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
if(pbuf){
for(addr=0;addr< data_cnts;addr++){
//printk("==> addr:0x%02x\n",addr);
rtw_write32(Adapter,0x140,addr);
rtw_usleep_os(2);
loop=0;
do{
rstatus=(reg_140=rtw_read32(Adapter,REG_PKTBUF_DBG_CTRL)&BIT24);
//printk("rstatus = %02x, reg_140:0x%08x\n",rstatus,reg_140);
if(rstatus){
fifo_data = rtw_read32(Adapter,REG_PKTBUF_DBG_DATA_L);
//printk("fifo_data_144:0x%08x\n",fifo_data);
_rtw_memcpy(pbuf+(addr*8),&fifo_data , 4);
fifo_data = rtw_read32(Adapter,REG_PKTBUF_DBG_DATA_H);
//printk("fifo_data_148:0x%08x\n",fifo_data);
_rtw_memcpy(pbuf+(addr*8+4), &fifo_data, 4);
}
rtw_usleep_os(2);
}while( !rstatus && (loop++ <10));
}
rtw_IOL_cmd_buf_dump(Adapter,data_len,pbuf);
rtw_vmfree(pbuf, data_len+10);
}
printk("###### %s ######\n",__FUNCTION__);
}
#endif /* defined(CONFIG_IOL) */
//-------------------------------------------------------------------------
//
// LLT R/W/Init function
//
//-------------------------------------------------------------------------
static s32 _LLTWrite(PADAPTER padapter, u32 address, u32 data)
{
s32 status = _SUCCESS;
s8 count = POLLING_LLT_THRESHOLD;
u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
rtw_write32(padapter, REG_LLT_INIT, value);
//polling
do {
value = rtw_read32(padapter, REG_LLT_INIT);
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) {
break;
}
} while (--count);
if (count <=0 ) {
DBG_871X("Failed to polling write LLT done at address %d!\n", address);
status = _FAIL;
}
return status;
}
u8 _LLTRead(PADAPTER padapter, u32 address)
{
s32 count = 0;
u32 value = _LLT_INIT_ADDR(address) | _LLT_OP(_LLT_READ_ACCESS);
u16 LLTReg = REG_LLT_INIT;
rtw_write32(padapter, LLTReg, value);
//polling and get value
do {
value = rtw_read32(padapter, LLTReg);
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) {
return (u8)value;
}
if (count > POLLING_LLT_THRESHOLD) {
RT_TRACE(_module_hal_init_c_, _drv_err_, ("Failed to polling read LLT done at address %d!\n", address));
break;
}
} while (count++);
return 0xFF;
}
s32 InitLLTTable8192E(PADAPTER padapter, u8 txpktbuf_bndy)
{
s32 status = _FAIL;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u32 value32;
u32 start = 0, passing_time = 0;
#if 1
value32 = rtw_read32(padapter,REG_AUTO_LLT);
rtw_write32( padapter,REG_AUTO_LLT,value32 |BIT_AUTO_INIT_LLT);
start = rtw_get_current_time();
while( ((value32 = rtw_read32(padapter,REG_AUTO_LLT))&BIT_AUTO_INIT_LLT )
&& ((passing_time=rtw_get_passing_time_ms(start))<1000)
){
rtw_usleep_os(2);
}
if(value32 & BIT_AUTO_INIT_LLT){
DBG_8192C("Auto %s(%08x) failed\n",__FUNCTION__,value32);
status = _FAIL;
}
else{
DBG_8192C("Auto %s success \n",__FUNCTION__);
status = _SUCCESS;
}
#else
#if defined(CONFIG_IOL_LLT)
if(rtw_IOL_applied(padapter))
{
status = iol_InitLLTTable(padapter, txpktbuf_bndy);
}
else
#endif
{
for (i = 0; i < (txpktbuf_bndy - 1); i++) {
status = _LLTWrite(padapter, i, i + 1);
if (_SUCCESS != status) {
return status;
}
}
// end of list
status = _LLTWrite(padapter, (txpktbuf_bndy - 1), 0xFF);
if (_SUCCESS != status) {
return status;
}
// Make the other pages as ring buffer
// This ring buffer is used as beacon buffer if we config this MAC as two MAC transfer.
// Otherwise used as local loopback buffer.
for (i = txpktbuf_bndy; i < Last_Entry_Of_TxPktBuf; i++) {
status = _LLTWrite(padapter, i, (i + 1));
if (_SUCCESS != status) {
return status;
}
}
// Let last entry point to the start entry of ring buffer
status = _LLTWrite(padapter, Last_Entry_Of_TxPktBuf, txpktbuf_bndy);
if (_SUCCESS != status) {
return status;
}
}
#endif
return status;
}
BOOLEAN HalDetectPwrDownMode8192E(PADAPTER Adapter)
{
u8 tmpvalue = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct pwrctrl_priv *pwrctrlpriv = adapter_to_pwrctl(Adapter);
EFUSE_ShadowRead(Adapter, 1, EEPROM_RF_OPT3_92C, (u32 *)&tmpvalue);
// 2010/08/25 MH INF priority > PDN Efuse value.
if(tmpvalue & BIT(4) && pwrctrlpriv->reg_pdnmode)
{
pHalData->pwrdown = _TRUE;
}
else
{
pHalData->pwrdown = _FALSE;
}
DBG_8192C("HalDetectPwrDownMode(): PDN=%d\n", pHalData->pwrdown);
return pHalData->pwrdown;
} // HalDetectPwrDownMode
#ifdef CONFIG_WOWLAN
void Hal_DetectWoWMode(PADAPTER pAdapter)
{
adapter_to_pwrctl(pAdapter)->bSupportRemoteWakeup = _TRUE;
DBG_871X("%s\n", __func__);
}
#endif
//====================================================================================
//
// 20100209 Joseph:
// This function is used only for 92C to set REG_BCN_CTRL(0x550) register.
// We just reserve the value of the register in variable pHalData->RegBcnCtrlVal and then operate
// the value of the register via atomic operation.
// This prevents from race condition when setting this register.
// The value of pHalData->RegBcnCtrlVal is initialized in HwConfigureRTL8192CE() function.
//
void SetBcnCtrlReg(
PADAPTER padapter,
u8 SetBits,
u8 ClearBits)
{
PHAL_DATA_TYPE pHalData;
u32 bcn_ctrl_reg;
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->iface_type == IFACE_PORT1)
bcn_ctrl_reg = REG_BCN_CTRL_1;
else
#endif
bcn_ctrl_reg = REG_BCN_CTRL;
pHalData = GET_HAL_DATA(padapter);
pHalData->RegBcnCtrlVal |= SetBits;
pHalData->RegBcnCtrlVal &= ~ClearBits;
#if 0
//#ifdef CONFIG_SDIO_HCI
if (pHalData->sdio_himr & (SDIO_HIMR_TXBCNOK_MSK | SDIO_HIMR_TXBCNERR_MSK))
pHalData->RegBcnCtrlVal |= EN_TXBCN_RPT;
#endif
rtw_write8(padapter, bcn_ctrl_reg, (u8)pHalData->RegBcnCtrlVal);
}
static VOID
_FWDownloadEnable_8192E(
IN PADAPTER padapter,
IN BOOLEAN enable
)
{
u8 tmp;
if(enable)
{
// MCU firmware download enable.
tmp = rtw_read8(padapter, REG_MCUFWDL);
rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
// 8051 reset
tmp = rtw_read8(padapter, REG_MCUFWDL+2);
rtw_write8(padapter, REG_MCUFWDL+2, tmp&0xf7);
}
else
{
// MCU firmware download disable.
tmp = rtw_read8(padapter, REG_MCUFWDL);
rtw_write8(padapter, REG_MCUFWDL, tmp&0xfe);
}
}
#define MAX_REG_BOLCK_SIZE 254
static int
_BlockWrite_8192E(
IN PADAPTER padapter,
IN PVOID buffer,
IN u32 buffSize
)
{
int ret = _SUCCESS;
u32 blockSize_p1 = 4; // (Default) Phase #1 : PCI muse use 4-byte write to download FW
u32 blockSize_p2 = 8; // Phase #2 : Use 8-byte, if Phase#1 use big size to write FW.
u32 blockSize_p3 = 1; // Phase #3 : Use 1-byte, the remnant of FW image.
u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
u32 remainSize_p1 = 0, remainSize_p2 = 0;
u8 *bufferPtr = (u8*)buffer;
u32 i=0, offset=0;
#ifdef CONFIG_PCI_HCI
u8 remainFW[4] = {0, 0, 0, 0};
u8 *p = NULL;
#endif
#ifdef CONFIG_USB_HCI
blockSize_p1 = MAX_REG_BOLCK_SIZE;
#endif
//3 Phase #1
blockCount_p1 = buffSize / blockSize_p1;
remainSize_p1 = buffSize % blockSize_p1;
if (blockCount_p1) {
RT_TRACE(_module_hal_init_c_, _drv_notice_,
("_BlockWrite: [P1] buffSize(%d) blockSize_p1(%d) blockCount_p1(%d) remainSize_p1(%d)\n",
buffSize, blockSize_p1, blockCount_p1, remainSize_p1));
}
for (i = 0; i < blockCount_p1; i++)
{
#ifdef CONFIG_USB_HCI
ret = rtw_writeN(padapter, (FW_START_ADDRESS + i * blockSize_p1), blockSize_p1, (bufferPtr + i * blockSize_p1));
#else
ret = rtw_write32(padapter, (FW_START_ADDRESS + i * blockSize_p1), le32_to_cpu(*((u32*)(bufferPtr + i * blockSize_p1))));
#endif
if(ret == _FAIL)
goto exit;
}
#ifdef CONFIG_PCI_HCI
p = (u8*)((u32*)(bufferPtr + blockCount_p1 * blockSize_p1));
if (remainSize_p1) {
switch (remainSize_p1) {
case 0:
break;
case 3:
remainFW[2]=*(p+2);
case 2:
remainFW[1]=*(p+1);
case 1:
remainFW[0]=*(p);
ret = rtw_write32(padapter, (FW_START_ADDRESS + blockCount_p1 * blockSize_p1),
le32_to_cpu(*(u32*)remainFW));
}
return ret;
}
#endif
//3 Phase #2
if (remainSize_p1)
{
offset = blockCount_p1 * blockSize_p1;
blockCount_p2 = remainSize_p1/blockSize_p2;
remainSize_p2 = remainSize_p1%blockSize_p2;
if (blockCount_p2) {
RT_TRACE(_module_hal_init_c_, _drv_notice_,
("_BlockWrite: [P2] buffSize_p2(%d) blockSize_p2(%d) blockCount_p2(%d) remainSize_p2(%d)\n",
(buffSize-offset), blockSize_p2 ,blockCount_p2, remainSize_p2));
}
#ifdef CONFIG_USB_HCI
for (i = 0; i < blockCount_p2; i++) {
ret = rtw_writeN(padapter, (FW_START_ADDRESS + offset + i*blockSize_p2), blockSize_p2, (bufferPtr + offset + i*blockSize_p2));
if(ret == _FAIL)
goto exit;
}
#endif
}
//3 Phase #3
if (remainSize_p2)
{
offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
blockCount_p3 = remainSize_p2 / blockSize_p3;
RT_TRACE(_module_hal_init_c_, _drv_notice_,
("_BlockWrite: [P3] buffSize_p3(%d) blockSize_p3(%d) blockCount_p3(%d)\n",
(buffSize-offset), blockSize_p3, blockCount_p3));
for(i = 0 ; i < blockCount_p3 ; i++){
ret =rtw_write8(padapter, (FW_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
if(ret == _FAIL)
goto exit;
}
}
exit:
return ret;
}
static int
_PageWrite_8192E(
IN PADAPTER padapter,
IN u32 page,
IN PVOID buffer,
IN u32 size
)
{
u8 value8;
u8 u8Page = (u8) (page & 0x07) ;
value8 = (rtw_read8(padapter, REG_MCUFWDL+2) & 0xF8) | u8Page ;
rtw_write8(padapter, REG_MCUFWDL+2,value8);
return _BlockWrite_8192E(padapter,buffer,size);
}
static VOID
_FillDummy_8192E(
u8* pFwBuf,
u32* pFwLen
)
{
u32 FwLen = *pFwLen;
u8 remain = (u8)(FwLen%4);
remain = (remain==0)?0:(4-remain);
while(remain>0)
{
pFwBuf[FwLen] = 0;
FwLen++;
remain--;
}
*pFwLen = FwLen;
}
static int
_WriteFW_8192E(
IN PADAPTER padapter,
IN PVOID buffer,
IN u32 size
)
{
// Since we need dynamic decide method of dwonload fw, so we call this function to get chip version.
// We can remove _ReadChipVersion from ReadpadapterInfo8192C later.
int ret = _SUCCESS;
u32 pageNums,remainSize ;
u32 page, offset;
u8 *bufferPtr = (u8*)buffer;
#ifdef CONFIG_PCI_HCI
// 20100120 Joseph: Add for 88CE normal chip.
// Fill in zero to make firmware image to dword alignment.
// _FillDummy(bufferPtr, &size);
#endif
pageNums = size / MAX_DLFW_PAGE_SIZE ;
//RT_ASSERT((pageNums <= 4), ("Page numbers should not greater then 4 \n"));
remainSize = size % MAX_DLFW_PAGE_SIZE;
for (page = 0; page < pageNums; page++) {
offset = page * MAX_DLFW_PAGE_SIZE;
ret = _PageWrite_8192E(padapter, page, bufferPtr+offset, MAX_DLFW_PAGE_SIZE);
if(ret == _FAIL)
goto exit;
}
if (remainSize) {
offset = pageNums * MAX_DLFW_PAGE_SIZE;
page = pageNums;
ret = _PageWrite_8192E(padapter, page, bufferPtr+offset, remainSize);
if(ret == _FAIL)
goto exit;
}
RT_TRACE(_module_hal_init_c_, _drv_info_, ("_WriteFW Done- for Normal chip.\n"));
exit:
return ret;
}
void _8051Reset8192E(PADAPTER padapter)
{
u8 u1bTmp, u1bTmp2;
// Reset MCU IO Wrapper,suggested by SD1-Gimmy
u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL+1);
rtw_write8(padapter,REG_RSV_CTRL+1, (u1bTmp2&(~BIT0)));
//Reset 8051
u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2));
// Enable MCU IO Wrapper
u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL+1);
rtw_write8(padapter, REG_RSV_CTRL+1, u1bTmp2|BIT0);
// Enable 8051
rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp|(BIT2));
DBG_871X("=====> _8051Reset8192E(): 8051 reset success .\n");
}
extern u8 g_fwdl_chksum_fail;
static s32 polling_fwdl_chksum(_adapter *adapter, u32 min_cnt, u32 timeout_ms)
{
s32 ret = _FAIL;
u32 value32;
u32 start = rtw_get_current_time();
u32 cnt = 0;
/* polling CheckSum report */
do {
cnt++;
value32 = rtw_read32(adapter, REG_MCUFWDL);
if (value32 & FWDL_ChkSum_rpt || adapter->bSurpriseRemoved || adapter->bDriverStopped)
break;
rtw_yield_os();
} while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt);
if (!(value32 & FWDL_ChkSum_rpt)) {
goto exit;
}
if (g_fwdl_chksum_fail) {
DBG_871X("%s: fwdl test case: fwdl_chksum_fail\n", __FUNCTION__);
g_fwdl_chksum_fail--;
goto exit;
}
ret = _SUCCESS;
exit:
DBG_871X("%s: Checksum report %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __FUNCTION__
, (ret==_SUCCESS)?"OK":"Fail", cnt, rtw_get_passing_time_ms(start), value32);
return ret;
}
extern u8 g_fwdl_wintint_rdy_fail;
static s32 _FWFreeToGo8192E(_adapter *adapter, u32 min_cnt, u32 timeout_ms)
{
s32 ret = _FAIL;
u32 value32;
u32 start = rtw_get_current_time();
u32 cnt = 0;
value32 = rtw_read32(adapter, REG_MCUFWDL);
value32 |= MCUFWDL_RDY;
value32 &= ~WINTINI_RDY;
rtw_write32(adapter, REG_MCUFWDL, value32);
_8051Reset8192E(adapter);
/* polling for FW ready */
do {
cnt++;
value32 = rtw_read32(adapter, REG_MCUFWDL);
if (value32 & WINTINI_RDY || adapter->bSurpriseRemoved || adapter->bDriverStopped)
break;
rtw_yield_os();
} while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt);
if (!(value32 & WINTINI_RDY)) {
goto exit;
}
if (g_fwdl_wintint_rdy_fail) {
DBG_871X("%s: fwdl test case: wintint_rdy_fail\n", __FUNCTION__);
g_fwdl_wintint_rdy_fail--;
goto exit;
}
ret = _SUCCESS;
exit:
DBG_871X("%s: Polling FW ready %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __FUNCTION__
, (ret==_SUCCESS)?"OK":"Fail", cnt, rtw_get_passing_time_ms(start), value32);
return ret;
}
s32
FirmwareDownload8192E(
IN PADAPTER Adapter,
IN BOOLEAN bUsedWoWLANFw
)
{
s32 rtStatus = _SUCCESS;
u8 write_fw = 0;
u32 fwdl_start_time;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
u8 *pFwImageFileName;
u8 *pucMappedFile = NULL;
PRT_FIRMWARE_8192E pFirmware = NULL;
u8 *pFwHdr = NULL;
u8 *pFirmwareBuf;
u32 FirmwareLen;
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(Adapter);
RT_TRACE(_module_hal_init_c_, _drv_info_, ("+%s\n", __FUNCTION__));
pFirmware = (PRT_FIRMWARE_8192E)rtw_zmalloc(sizeof(RT_FIRMWARE_8192E));
if(!pFirmware)
{
rtStatus = _FAIL;
goto exit;
}
#ifdef CONFIG_EMBEDDED_FWIMG
pFirmware->eFWSource = FW_SOURCE_HEADER_FILE;
#else
pFirmware->eFWSource = FW_SOURCE_IMG_FILE; // We should decided by Reg.
#endif
DBG_871X(" ===> FirmwareDownload88E() fw source from %s.\n", (pFirmware->eFWSource ? "Header": "File"));
switch(pFirmware->eFWSource)
{
case FW_SOURCE_IMG_FILE:
//TODO:
break;
case FW_SOURCE_HEADER_FILE:
#if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
if (bUsedWoWLANFw) {
if (!pwrpriv->wowlan_ap_mode) {
ODM_ConfigFWWithHeaderFile(&pHalData->odmpriv, CONFIG_FW_WoWLAN, (u8 *)&(pFirmware->szFwBuffer), &(pFirmware->ulFwLength));
DBG_871X("%s fw:%s, size: %d\n", __FUNCTION__, "WoWLAN", pFirmware->ulFwLength);
} else {
ODM_ConfigFWWithHeaderFile(&pHalData->odmpriv, CONFIG_FW_AP_WoWLAN, (u8*)&pFirmware->szFwBuffer, &pFirmware->ulFwLength);
DBG_8192C(" ===> %s fw: %s, size: %d\n", __FUNCTION__, "AP_WoWLAN", pFirmware->ulFwLength);
}
} else
#endif /* CONFIG_WOWLAN */
{
ODM_ConfigFWWithHeaderFile(&pHalData->odmpriv, CONFIG_FW_NIC, (u8 *)&(pFirmware->szFwBuffer), &(pFirmware->ulFwLength));
DBG_871X("%s fw:%s, size: %d\n", __FUNCTION__, "NIC", pFirmware->ulFwLength);
}
break;
}
if (pFirmware->ulFwLength > FW_SIZE_8192E) {
rtStatus = _FAIL;
DBG_871X_LEVEL(_drv_emerg_, "Firmware size:%u exceed %u\n", pFirmware->ulFwLength, FW_SIZE_8192E);
goto exit;
}
pFirmwareBuf = pFirmware->szFwBuffer;
FirmwareLen = pFirmware->ulFwLength;
pFwHdr = (u8 *)pFirmware->szFwBuffer;
if (IS_FW_HEADER_EXIST_8192E(pFwHdr))
{
// Shift 32 bytes for FW header
pFirmwareBuf = pFirmwareBuf + 32;
FirmwareLen = FirmwareLen - 32;
pHalData->FirmwareVersion = (u16)GET_FIRMWARE_HDR_VERSION_8192E(pFwHdr);
pHalData->FirmwareSubVersion = (u16)GET_FIRMWARE_HDR_SUB_VER_8192E(pFwHdr);
pHalData->FirmwareSignature = (u16)GET_FIRMWARE_HDR_SIGNATURE_8192E(pFwHdr);
DBG_871X ("%s: fw_ver=%d fw_subver=%d sig=0x%x\n",
__FUNCTION__, pHalData->FirmwareVersion, pHalData->FirmwareSubVersion, pHalData->FirmwareSignature);
}
else{
DBG_871X ("%s:FW header check failed .....\n", __FUNCTION__);
}
// Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself,
// or it will cause download Fw fail. 2010.02.01. by tynli.
if (rtw_read8(Adapter, REG_MCUFWDL) & BIT7) //8051 RAM code
{
rtw_write8(Adapter, REG_MCUFWDL, 0x00);
_8051Reset8192E(Adapter);
}
_FWDownloadEnable_8192E(Adapter, _TRUE);
fwdl_start_time = rtw_get_current_time();
while(!Adapter->bDriverStopped && !Adapter->bSurpriseRemoved
&& (write_fw++ < 3 || rtw_get_passing_time_ms(fwdl_start_time) < 500))
{
/* reset FWDL chksum */
rtw_write8(Adapter, REG_MCUFWDL, rtw_read8(Adapter, REG_MCUFWDL)|FWDL_ChkSum_rpt);
rtStatus = _WriteFW_8192E(Adapter, pFirmwareBuf, FirmwareLen);
if (rtStatus != _SUCCESS)
continue;
rtStatus = polling_fwdl_chksum(Adapter, 5, 50);
if (rtStatus == _SUCCESS)
break;
}
_FWDownloadEnable_8192E(Adapter, _FALSE);
if(_SUCCESS != rtStatus)
goto fwdl_stat;
rtStatus = _FWFreeToGo8192E(Adapter, 10, 200);
if (_SUCCESS != rtStatus)
goto fwdl_stat;
fwdl_stat:
DBG_871X("FWDL %s. write_fw:%u, %dms\n"
, (rtStatus == _SUCCESS)?"success":"fail"
, write_fw
, rtw_get_passing_time_ms(fwdl_start_time)
);
exit:
if (pFirmware)
rtw_mfree((u8*)pFirmware, sizeof(RT_FIRMWARE_8192E));
//RT_TRACE(COMP_INIT, DBG_LOUD, (" <=== FirmwareDownload91C()\n"));
#ifdef CONFIG_WOWLAN
if (adapter_to_pwrctl(Adapter)->wowlan_mode)
InitializeFirmwareVars8192E(Adapter);
else
DBG_871X_LEVEL(_drv_always_, "%s: wowland_mode:%d wowlan_wake_reason:%d\n",
__func__, adapter_to_pwrctl(Adapter)->wowlan_mode,
adapter_to_pwrctl(Adapter)->wowlan_wake_reason);
#endif
return rtStatus;
}
void InitializeFirmwareVars8192E(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
// Init Fw LPS related.
pwrpriv->bFwCurrentInPSMode = _FALSE;
// Init H2C counter. by tynli. 2009.12.09.
pHalData->LastHMEBoxNum = 0;
}
#if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
//===========================================
//
// Description: Prepare some information to Fw for WoWLAN.
// (1) Download wowlan Fw.
// (2) Download RSVD page packets.
// (3) Enable AP offload if needed.
//
// 2011.04.12 by tynli.
//
VOID
SetFwRelatedForWoWLAN8192E(
IN PADAPTER padapter,
IN u8 bHostIsGoingtoSleep
)
{
int status=_FAIL;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u8 bRecover = _FALSE;
//
// 1. Before WoWLAN we need to re-download WoWLAN Fw.
//
status = FirmwareDownload8192E(padapter, bHostIsGoingtoSleep);
if(status != _SUCCESS) {
DBG_871X("SetFwRelatedForWoWLAN8192E(): Re-Download Firmware failed!!\n");
return;
} else {
DBG_871X("SetFwRelatedForWoWLAN8192E(): Re-Download Firmware Success !!\n");
}
//
// 2. Re-Init the variables about Fw related setting.
//
InitializeFirmwareVars8192E(padapter);
}
#endif //CONFIG_WOWLAN
static void rtl8192e_free_hal_data(PADAPTER padapter)
{
_func_enter_;
if (padapter->HalData) {
phy_free_filebuf(padapter);
rtw_vmfree(padapter->HalData, sizeof(HAL_DATA_TYPE));
padapter->HalData = NULL;
}
_func_exit_;
}
//===========================================================
// Efuse related code
//===========================================================
VOID
Hal_EfuseParseBTCoexistInfo8192E(
IN PADAPTER Adapter,
IN pu1Byte hwinfo,
IN BOOLEAN AutoLoadFail
)
{
#ifdef CONFIG_BT_COEXIST
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
pHalData->EEPROMBluetoothCoexist = 0;
pHalData->EEPROMBluetoothType = BT_CSR_BC8;
pHalData->EEPROMBluetoothAntNum = Ant_x2;
pHalData->EEPROMBluetoothAntIsolation = 1;
pHalData->EEPROMBluetoothRadioShared = BT_Radio_Shared;
BT_InitHalVars(Adapter);
#endif
}
void
Hal_EfuseParseIDCode8192E(
IN PADAPTER padapter,
IN u8 *hwinfo
)
{
EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
u16 EEPROMId;
// Checl 0x8129 again for making sure autoload status!!
EEPROMId = le16_to_cpu(*((u16*)hwinfo));
if (EEPROMId != RTL_EEPROM_ID)
{
DBG_8192C("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
pEEPROM->bautoload_fail_flag = _TRUE;
}
else
{
pEEPROM->bautoload_fail_flag = _FALSE;
}
DBG_871X("EEPROM ID=0x%04x\n", EEPROMId);
}
VOID
Hal_ReadPROMVersion8192E(
IN PADAPTER Adapter,
IN u8* PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if(AutoloadFail){
pHalData->EEPROMVersion = EEPROM_Default_Version;
}
else{
pHalData->EEPROMVersion = *(u8 *)&PROMContent[EEPROM_VERSION_8192E];
if(pHalData->EEPROMVersion == 0xFF)
pHalData->EEPROMVersion = EEPROM_Default_Version;
}
//DBG_871X("pHalData->EEPROMVersion is 0x%x\n", pHalData->EEPROMVersion);
}
BOOLEAN
Hal_GetChnlGroup8192E(
IN u8 Channel,
OUT u8* pGroup
)
{
BOOLEAN bIn24G=_TRUE;
if(Channel <= 14)
{
bIn24G=_TRUE;
if (1 <= Channel && Channel <= 2 ) *pGroup = 0;
else if (3 <= Channel && Channel <= 5 ) *pGroup = 1;
else if (6 <= Channel && Channel <= 8 ) *pGroup = 2;
else if (9 <= Channel && Channel <= 11) *pGroup = 3;
else if (12 <= Channel && Channel <= 14) *pGroup = 4;
else
{
DBG_871X("==>%s in 2.4 G, but Channel %d in Group not found \n",__FUNCTION__, Channel);
}
}
else
{
bIn24G=_FALSE;
if (36 <= Channel && Channel <= 42) *pGroup = 0;
else if (44 <= Channel && Channel <= 48) *pGroup = 1;
else if (50 <= Channel && Channel <= 58) *pGroup = 2;
else if (60 <= Channel && Channel <= 64) *pGroup = 3;
else if (100 <= Channel && Channel <= 106) *pGroup = 4;
else if (108 <= Channel && Channel <= 114) *pGroup = 5;
else if (116 <= Channel && Channel <= 122) *pGroup = 6;
else if (124 <= Channel && Channel <= 130) *pGroup = 7;
else if (132 <= Channel && Channel <= 138) *pGroup = 8;
else if (140 <= Channel && Channel <= 144) *pGroup = 9;
else if (149 <= Channel && Channel <= 155) *pGroup = 10;
else if (157 <= Channel && Channel <= 161) *pGroup = 11;
else if (165 <= Channel && Channel <= 171) *pGroup = 12;
else if (173 <= Channel && Channel <= 177) *pGroup = 13;
else
{
DBG_871X("==>%s in 5G, but Channel %d in Group not found \n",__FUNCTION__,Channel);
}
}
//DBG_871X("<==mpt_GetChnlGroup8812A, (%s) Channel = %d, Group =%d,\n", (bIn24G) ? "2.4G" : "5G", Channel, *pGroup);
return bIn24G;
}
static void
hal_ReadPowerValueFromPROM8192E(
IN PADAPTER Adapter,
IN PTxPowerInfo24G pwrInfo24G,
IN u8* PROMContent,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u32 rfPath, eeAddr=EEPROM_TX_PWR_INX_8192E, group,TxCount=0;
_rtw_memset(pwrInfo24G, 0, sizeof(TxPowerInfo24G));
// _rtw_memset(pwrInfo5G, 0, sizeof(TxPowerInfo5G));
//DBG_871X("hal_ReadPowerValueFromPROM8812A(): PROMContent[0x%x]=0x%x\n", (eeAddr+1), PROMContent[eeAddr+1]);
if(0xFF == PROMContent[eeAddr+1]) //YJ,add,120316
AutoLoadFail = _TRUE;
if(AutoLoadFail)
{
DBG_871X("%s: Use Default value!\n",__FUNCTION__);
//for(rfPath = 0 ; rfPath < pHalData->NumTotalRFPath ; rfPath++)
for(rfPath = 0 ; rfPath < GET_HAL_RFPATH_NUM(Adapter); rfPath++)
{
// 2.4G default value
for(group = 0 ; group < MAX_CHNL_GROUP_24G; group++)
{
pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
pwrInfo24G->IndexBW40_Base[rfPath][group] =EEPROM_DEFAULT_24G_INDEX;
}
for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
{
if(TxCount==0)
{
pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
}
else
{
pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
}
}
}
//pHalData->bNOPG = TRUE;
return;
}
pHalData->bTXPowerDataReadFromEEPORM = _TRUE; //YJ,move,120316
for(rfPath = 0 ; rfPath < pHalData->NumTotalRFPath ; rfPath++)
{
if(rfPath == RF_PATH_B)
eeAddr = 0x3A;
// 2.4G default value
for(group = 0 ; group < MAX_CHNL_GROUP_24G; group++)
{
pwrInfo24G->IndexCCK_Base[rfPath][group] = PROMContent[eeAddr++];
if(pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
{
pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
//pHalData->bNOPG = _TRUE;
}
//DBG_871X("8812-2G RF-%d-G-%d CCK-Addr-%x BASE=%x\n",
//rfPath, group, eeAddr-1, pwrInfo24G->IndexCCK_Base[rfPath][group]);
}
for(group = 0 ; group < MAX_CHNL_GROUP_24G-1; group++)
{
pwrInfo24G->IndexBW40_Base[rfPath][group] = PROMContent[eeAddr++];
if(pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
//DBG_871X("8812-2G RF-%d-G-%d BW40-Addr-%x BASE=%x\n",
//rfPath, group, eeAddr-1, pwrInfo24G->IndexBW40_Base[rfPath][group]);
}
for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
{
if(TxCount==0)
{
pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
if(PROMContent[eeAddr] == 0xFF)
pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_HT20_DIFF;
else
{
pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
if(pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
}
//DBG_871X("8812-2G RF-%d-SS-%d BW20-Addr-%x DIFF=%d\n",
//rfPath, TxCount, eeAddr, pwrInfo24G->BW20_Diff[rfPath][TxCount]);
if(PROMContent[eeAddr] == 0xFF)
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_OFDM_DIFF;
else
{
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
if(pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
}
//DBG_871X("8812-2G RF-%d-SS-%d LGOD-Addr-%x DIFF=%d\n",
//rfPath, TxCount, eeAddr, pwrInfo24G->OFDM_Diff[rfPath][TxCount]);
pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
eeAddr++;
}
else
{
if(PROMContent[eeAddr] == 0xFF)
pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
else
{
pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
if(pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
}
//DBG_871X("8812-2G RF-%d-SS-%d BW40-Addr-%x DIFF=%d\n",
//rfPath, TxCount, eeAddr, pwrInfo24G->BW40_Diff[rfPath][TxCount]);
if(PROMContent[eeAddr] == 0xFF)
pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
else
{
pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
if(pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
}
//DBG_871X("8812-2G RF-%d-SS-%d BW20-Addr-%x DIFF=%d\n",
//rfPath, TxCount, eeAddr, pwrInfo24G->BW20_Diff[rfPath][TxCount]);
eeAddr++;
if(PROMContent[eeAddr] == 0xFF)
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
else
{
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
if(pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
}
//DBG_871X("8812-2G RF-%d-SS-%d LGOD-Addr-%x DIFF=%d\n",
//rfPath, TxCount, eeAddr, pwrInfo24G->BW20_Diff[rfPath][TxCount]);
if(PROMContent[eeAddr] == 0xFF)
pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
else
{
pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
if(pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
}
//DBG_871X("8812-2G RF-%d-SS-%d CCK-Addr-%x DIFF=%d\n",
//rfPath, TxCount, eeAddr, pwrInfo24G->CCK_Diff[rfPath][TxCount]);
eeAddr++;
}
}
}
}
void Hal_ReadPowerSavingMode8192E(
PADAPTER padapter,
IN u8* hwinfo,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter);
u8 tmpvalue;
if(AutoLoadFail){
pwrctl->bHWPowerdown = _FALSE;
pwrctl->bSupportRemoteWakeup = _FALSE;
}
else {
//hw power down mode selection , 0:rf-off / 1:power down
if(padapter->registrypriv.hwpdn_mode==2)
pwrctl->bHWPowerdown = (hwinfo[EEPROM_RF_FEATURE_OPTION_8192E] & BIT4);
else
pwrctl->bHWPowerdown = padapter->registrypriv.hwpdn_mode;
// decide hw if support remote wakeup function
// if hw supported, 8051 (SIE) will generate WeakUP signal( D+/D- toggle) when autoresume
#ifdef CONFIG_USB_HCI
pwrctl->bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0] & BIT1)?_TRUE :_FALSE;
#endif //CONFIG_USB_HCI
//if(SUPPORT_HW_RADIO_DETECT(Adapter))
//Adapter->registrypriv.usbss_enable = pwrctl->bSupportRemoteWakeup ;
DBG_871X("%s...bHWPwrPindetect(%x)-bHWPowerdown(%x) ,bSupportRemoteWakeup(%x)\n",__FUNCTION__,
pwrctl->bHWPwrPindetect, pwrctl->bHWPowerdown, pwrctl->bSupportRemoteWakeup);
DBG_871X("### PS params=> power_mgnt(%x),usbss_enable(%x) ###\n",padapter->registrypriv.power_mgnt,padapter->registrypriv.usbss_enable);
}
}
void
Hal_ReadTxPowerInfo8192E(
IN PADAPTER Adapter,
IN u8* PROMContent,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
TxPowerInfo24G pwrInfo24G;
u8 rfPath, ch, group, TxCount;
hal_ReadPowerValueFromPROM8192E(Adapter, &pwrInfo24G,PROMContent, AutoLoadFail);
//if(!AutoLoadFail)
// pHalData->bTXPowerDataReadFromEEPORM = _TRUE;
for(rfPath = 0 ; rfPath < pHalData->NumTotalRFPath ; rfPath++)
{
for(ch = 0 ; ch < CHANNEL_MAX_NUMBER_2G ; ch++)
{
Hal_GetChnlGroup8192E(ch+1, &group);
if(ch == 14-1)
{
pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][5];
pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
}
else
{
pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group];
pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
}
#if defined(DBG_TX_POWER_IDX)
DBG_871X("======= Path %d, ChannelIndex %d, Group %d=======\n",rfPath,ch, group);
DBG_871X("Index24G_CCK_Base[%d][%d] = 0x%x\n",rfPath,ch ,pHalData->Index24G_CCK_Base[rfPath][ch]);
DBG_871X("Index24G_BW40_Base[%d][%d] = 0x%x\n",rfPath,ch,pHalData->Index24G_BW40_Base[rfPath][ch]);
#endif
}
for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
{
pHalData->CCK_24G_Diff[rfPath][TxCount]=pwrInfo24G.CCK_Diff[rfPath][TxCount];
pHalData->OFDM_24G_Diff[rfPath][TxCount]=pwrInfo24G.OFDM_Diff[rfPath][TxCount];
pHalData->BW20_24G_Diff[rfPath][TxCount]=pwrInfo24G.BW20_Diff[rfPath][TxCount];
pHalData->BW40_24G_Diff[rfPath][TxCount]=pwrInfo24G.BW40_Diff[rfPath][TxCount];
#if defined(DBG_TX_POWER_IDX)
DBG_871X("--------------------------------------- 2.4G ---------------------------------------\n");
DBG_871X("CCK_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->CCK_24G_Diff[rfPath][TxCount]);
DBG_871X("OFDM_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->OFDM_24G_Diff[rfPath][TxCount]);
DBG_871X("BW20_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW20_24G_Diff[rfPath][TxCount]);
DBG_871X("BW40_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW40_24G_Diff[rfPath][TxCount]);
#endif
}
}
// 2010/10/19 MH Add Regulator recognize for CU.
if(!AutoLoadFail)
{
struct registry_priv *registry_par = &Adapter->registrypriv;
if(PROMContent[EEPROM_RF_BOARD_OPTION_8192E] == 0xFF)
pHalData->EEPROMRegulatory = 2; //(EEPROM_DEFAULT_BOARD_OPTION&0x7); //bit0~2
else
pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8192E]&0x7); //bit0~2
// 2012/09/26 MH Add for TX power calibrate rate.
pHalData->TxPwrCalibrateRate = PROMContent[EEPROM_TX_PWR_CALIBRATE_RATE_8192E];
}
else
{
pHalData->EEPROMRegulatory = 0;
// 2012/09/26 MH Add for TX power calibrate rate.
pHalData->TxPwrCalibrateRate = EEPROM_DEFAULT_TX_CALIBRATE_RATE;
}
DBG_871X("EEPROMRegulatory = 0x%x TxPwrCalibrateRate=0x%x\n", pHalData->EEPROMRegulatory, pHalData->TxPwrCalibrateRate);
}
VOID
Hal_ReadBoardType8192E(
IN PADAPTER Adapter,
IN u8* PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 board_type;
/*
Bit[7:5]: Board Type (PCIe)
0h: WiFi solo-mCard
1h: WiFi+BT combo-mCard
*/
if(!AutoloadFail)
{
board_type = (PROMContent[EEPROM_RF_BOARD_OPTION_8192E]&0xE0)>>5;
if(board_type == 0xFF){
pHalData->InterfaceSel = INTF_SEL0_USB ;
}
else{
pHalData->InterfaceSel = (board_type==1)?INTF_SEL4_USB_Combo :INTF_SEL0_USB;
}
}
else
{
pHalData->InterfaceSel = 0;
}
//DBG_871X("Board Type: 0x%2x\n", pHalData->InterfaceSel);
if(pHalData->InterfaceSel == INTF_SEL4_USB_Combo)
DBG_871X("Board Type: Combo Card \n");
else
DBG_871X("Board Type: Dongle or WIFI only Module \n");
}
VOID
Hal_ReadThermalMeter_8192E(
IN PADAPTER Adapter,
IN u8* PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
//u8 tempval;
//
// ThermalMeter from EEPROM
//
if(!AutoloadFail)
pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_8192E];
else
pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8192E;
//pHalData->EEPROMThermalMeter = (tempval&0x1f); //[4:0]
if(pHalData->EEPROMThermalMeter == 0xff || AutoloadFail)
{
pHalData->bAPKThermalMeterIgnore = _TRUE;
pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8192E;
}
//pHalData->ThermalMeter[0] = pHalData->EEPROMThermalMeter;
DBG_871X("ThermalMeter = 0x%x\n", pHalData->EEPROMThermalMeter);
}
VOID
Hal_ReadChannelPlan8192E(
IN PADAPTER padapter,
IN u8* hwinfo,
IN BOOLEAN AutoLoadFail
)
{
padapter->mlmepriv.ChannelPlan = hal_com_config_channel_plan(
padapter
, hwinfo?hwinfo[EEPROM_ChannelPlan_8192E]:0xFF
, padapter->registrypriv.channel_plan
, RT_CHANNEL_DOMAIN_REALTEK_DEFINE
, AutoLoadFail
);
Hal_ChannelPlanToRegulation(padapter, padapter->mlmepriv.ChannelPlan);
DBG_871X("mlmepriv.ChannelPlan = 0x%02x\n", padapter->mlmepriv.ChannelPlan);
}
VOID
Hal_EfuseParseXtal_8192E(
IN PADAPTER pAdapter,
IN u8* hwinfo,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
if(!AutoLoadFail)
{
pHalData->CrystalCap = hwinfo[EEPROM_XTAL_8192E];
if(pHalData->CrystalCap == 0xFF)
pHalData->CrystalCap = EEPROM_Default_CrystalCap_8192E; //what value should 8812 set?
}
else
{
pHalData->CrystalCap = EEPROM_Default_CrystalCap_8192E;
}
DBG_871X("CrystalCap: 0x%2x\n", pHalData->CrystalCap);
}
VOID
Hal_ReadAntennaDiversity8192E(
IN PADAPTER pAdapter,
IN u8* PROMContent,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
pHalData->TRxAntDivType = NO_ANTDIV;
pHalData->AntDivCfg = 0;
DBG_871X("SWAS: bHwAntDiv = %x, TRxAntDivType = %x\n", pHalData->AntDivCfg, pHalData->TRxAntDivType);
}
#define GetRegAmplifierType2G(_Adapter) (_Adapter->registrypriv.AmplifierType_2G)
#define GetRegAmplifierType5G(_Adapter) (_Adapter->registrypriv.AmplifierType_5G)
VOID
Hal_ReadPAType_8192E(
IN PADAPTER Adapter,
IN u8* PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if( ! AutoloadFail )
{
// PA Type
pHalData->PAType_2G = EF1Byte( *(u8*)&PROMContent[EEPROM_PA_TYPE_8192EU] );
pHalData->PAType_5G = EF1Byte( *(u8*)&PROMContent[EEPROM_PA_TYPE_8192EU] );
pHalData->LNAType_2G = EF1Byte( *(u8*)&PROMContent[EEPROM_LNA_TYPE_2G_8192EU] );
pHalData->LNAType_5G = EF1Byte( *(u8*)&PROMContent[EEPROM_LNA_TYPE_5G_8192EU] );
if (GetRegAmplifierType2G(Adapter) == 0) // AUTO
{
pHalData->ExternalPA_2G = ((pHalData->PAType_2G & BIT5) && (pHalData->PAType_2G & BIT4)) ? 1 : 0;
pHalData->ExternalLNA_2G = ((pHalData->LNAType_2G & BIT7) && (pHalData->LNAType_2G & BIT3)) ? 1 : 0; // 5G only now.
}
else
{
pHalData->ExternalPA_2G =0; //(GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_PA) ? 1 : 0;
pHalData->ExternalLNA_2G = 0;//(GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_LNA) ? 1 : 0;
}
/*
if (GetRegAmplifierType5G(Adapter) == 0) // AUTO
{
pHalData->ExternalPA_5G = ((pHalData->PAType_5G & BIT1) && (pHalData->PAType_5G & BIT0)) ? 1 : 0;
pHalData->ExternalLNA_5G = ((pHalData->LNAType_5G & BIT7) && (pHalData->LNAType_5G & BIT3)) ? 1 : 0; // 5G only now.
}
else
{
pHalData->ExternalPA_5G = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_PA_5G) ? 1 : 0;
pHalData->ExternalLNA_5G = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_LNA_5G) ? 1 : 0;
}
*/
}
else
{
pHalData->ExternalPA_2G = EEPROM_Default_PAType;
pHalData->ExternalPA_5G = 0xFF;
pHalData->ExternalLNA_2G = EEPROM_Default_LNAType;
pHalData->ExternalLNA_5G = 0xFF;
if (GetRegAmplifierType2G(Adapter) == 0) // AUTO
{
pHalData->ExternalPA_2G = 0;
pHalData->ExternalLNA_2G = 0;
}
else
{
pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_PA) ? 1 : 0;
pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_LNA) ? 1 : 0;
}
/*
if (GetRegAmplifierType5G(Adapter) == 0) // AUTO
{
pHalData->ExternalPA_5G = 0;
pHalData->ExternalLNA_5G = 0;
}
else
{
pHalData->ExternalPA_5G = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_PA_5G) ? 1 : 0;
pHalData->ExternalLNA_5G = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_LNA_5G) ? 1 : 0;
}
*/
}
DBG_871X("pHalData->PAType_2G is 0x%x, pHalData->ExternalPA_2G = %d\n", pHalData->PAType_2G, pHalData->ExternalPA_2G);
DBG_871X("pHalData->LNAType_2G is 0x%x, pHalData->ExternalLNA_2G = %d\n", pHalData->LNAType_2G, pHalData->ExternalLNA_2G);
}
enum{
VOLTAGE_V25 = 0x03,
LDOE25_SHIFT = 28 ,
};
static VOID
Hal_EfusePowerSwitch8192E(
IN PADAPTER pAdapter,
IN u8 bWrite,
IN u8 PwrState)
{
u8 tempval;
u16 tmpV16;
#define REG_EFUSE_ACCESS_JAGUAR 0xCF
#define EFUSE_ACCESS_ON_JAGUAR 0x69
#define EFUSE_ACCESS_OFF_JAGUAR 0x00
if (PwrState == _TRUE)
{
rtw_write8(pAdapter, REG_EFUSE_ACCESS_JAGUAR, EFUSE_ACCESS_ON_JAGUAR);
// 1.2V Power: From VDDON with Power Cut(0x0000h[15]), defualt valid
tmpV16 = rtw_read16(pAdapter,REG_SYS_ISO_CTRL);
if( ! (tmpV16 & PWC_EV12V ) ){
tmpV16 |= PWC_EV12V ;
//rtw_write16(pAdapter,REG_SYS_ISO_CTRL,tmpV16);
}
// Reset: 0x0000h[28], default valid
tmpV16 = rtw_read16(pAdapter,REG_SYS_FUNC_EN);
if( !(tmpV16 & FEN_ELDR) ){
tmpV16 |= FEN_ELDR ;
rtw_write16(pAdapter,REG_SYS_FUNC_EN,tmpV16);
}
// Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid
tmpV16 = rtw_read16(pAdapter,REG_SYS_CLKR);
if( (!(tmpV16 & LOADER_CLK_EN) ) ||(!(tmpV16 & ANA8M) ) ){
tmpV16 |= (LOADER_CLK_EN |ANA8M ) ;
rtw_write16(pAdapter,REG_SYS_CLKR,tmpV16);
}
if(bWrite == TRUE)
{
// Enable LDO 2.5V before read/write action
tempval = PlatformEFIORead1Byte(pAdapter, EFUSE_TEST+3);
tempval &= 0x0F;
tempval |= (VOLTAGE_V25 << 4);
PlatformEFIOWrite1Byte(pAdapter, EFUSE_TEST+3, (tempval | 0x80));
}
}
else
{
rtw_write8(pAdapter, REG_EFUSE_ACCESS_JAGUAR, EFUSE_ACCESS_OFF_JAGUAR);
if(bWrite == _TRUE){
// Disable LDO 2.5V after read/write action
tempval = rtw_read8(pAdapter, EFUSE_TEST+3);
rtw_write8(pAdapter, EFUSE_TEST+3, (tempval & 0x7F));
}
}
}
static VOID
rtl8192E_EfusePowerSwitch(
IN PADAPTER pAdapter,
IN u8 bWrite,
IN u8 PwrState)
{
Hal_EfusePowerSwitch8192E(pAdapter, bWrite, PwrState);
}
static bool efuse_read_phymap(
PADAPTER Adapter,
u8 *pbuf, //buffer to store efuse physical map
u16 *size //the max byte to read. will update to byte read
)
{
u8 *pos = pbuf;
u16 limit = *size;
u16 addr = 0;
bool reach_end = _FALSE;
//
// Refresh efuse init map as all 0xFF.
//
_rtw_memset(pbuf, 0xFF, limit);
//
// Read physical efuse content.
//
while(addr < limit)
{
ReadEFuseByte(Adapter, addr, pos, _FALSE);
if(*pos != 0xFF)
{
pos++;
addr++;
}
else
{
reach_end = _TRUE;
break;
}
}
*size = addr;
return reach_end;
}
static VOID
Hal_EfuseReadEFuse8192E(
PADAPTER Adapter,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
IN BOOLEAN bPseudoTest
)
{
u8 *efuseTbl = NULL;
u8 rtemp8[1];
u16 eFuse_Addr = 0;
u8 offset, wren;
u16 i, j;
u16 **eFuseWord = NULL;
u16 efuse_utilized = 0;
u8 efuse_usage = 0;
u8 u1temp = 0;
//
// Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10.
//
if((_offset + _size_byte)>EFUSE_MAP_LEN_8192E)
{// total E-Fuse table is 512bytes
DBG_8192C("Hal_EfuseReadEFuse8812A(): Invalid offset(%#x) with read bytes(%#x)!!\n",_offset, _size_byte);
goto exit;
}
efuseTbl = (u8*)rtw_zmalloc(EFUSE_MAP_LEN_8192E);
if(efuseTbl == NULL)
{
DBG_871X("%s: alloc efuseTbl fail!\n", __FUNCTION__);
goto exit;
}
eFuseWord= (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_8192E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
if(eFuseWord == NULL)
{
DBG_871X("%s: alloc eFuseWord fail!\n", __FUNCTION__);
goto exit;
}
// 0. Refresh efuse init map as all oxFF.
for (i = 0; i < EFUSE_MAX_SECTION_8192E; i++)
for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
eFuseWord[i][j] = 0xFFFF;
//
// 1. Read the first byte to check if efuse is empty!!!
//
//
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
if(*rtemp8 != 0xFF)
{
efuse_utilized++;
//DBG_8192C("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8);
eFuse_Addr++;
}
else
{
DBG_871X("EFUSE is empty efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8);
goto exit;
}
//
// 2. Read real efuse content. Filter PG header and every section data.
//
while((*rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_8192E))
{
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr-1, *rtemp8));
// Check PG header for section num.
if((*rtemp8 & 0x1F ) == 0x0F) //extended header
{
u1temp =( (*rtemp8 & 0xE0) >> 5);
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x *rtemp&0xE0 0x%x\n", u1temp, *rtemp8 & 0xE0));
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x \n", u1temp));
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8));
if((*rtemp8 & 0x0F) == 0x0F)
{
eFuse_Addr++;
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
if(*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_8192E))
{
eFuse_Addr++;
}
continue;
}
else
{
offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
wren = (*rtemp8 & 0x0F);
eFuse_Addr++;
}
}
else
{
offset = ((*rtemp8 >> 4) & 0x0f);
wren = (*rtemp8 & 0x0f);
}
if(offset < EFUSE_MAX_SECTION_8192E)
{
// Get word enable value from PG header
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Offset-%d Worden=%x\n", offset, wren));
for(i=0; i<EFUSE_MAX_WORD_UNIT; i++)
{
// Check word enable condition in the section
if(!(wren & 0x01))
{
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d \n", eFuse_Addr));
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
eFuse_Addr++;
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8));
efuse_utilized++;
eFuseWord[offset][i] = (*rtemp8 & 0xff);
if(eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_8192E)
break;
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d", eFuse_Addr));
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
eFuse_Addr++;
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8));
efuse_utilized++;
eFuseWord[offset][i] |= (((u2Byte)*rtemp8 << 8) & 0xff00);
if(eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_8192E)
break;
}
wren >>= 1;
}
}
// Read next PG header
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d rtemp 0x%x\n", eFuse_Addr, *rtemp8));
if(*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_8192E))
{
efuse_utilized++;
eFuse_Addr++;
}
}
//
// 3. Collect 16 sections and 4 word unit into Efuse map.
//
for(i=0; i<EFUSE_MAX_SECTION_8192E; i++)
{
for(j=0; j<EFUSE_MAX_WORD_UNIT; j++)
{
efuseTbl[(i*8)+(j*2)]=(eFuseWord[i][j] & 0xff);
efuseTbl[(i*8)+((j*2)+1)]=((eFuseWord[i][j] >> 8) & 0xff);
}
}
//
// 4. Copy from Efuse map to output pointer memory!!!
//
for(i=0; i<_size_byte; i++)
{
pbuf[i] = efuseTbl[_offset+i];
}
//
// 5. Calculate Efuse utilization.
//
efuse_usage = (u1Byte)((eFuse_Addr*100)/EFUSE_REAL_CONTENT_LEN_8192E);
rtw_hal_set_hwreg(Adapter, HW_VAR_EFUSE_BYTES, (u8 *)&eFuse_Addr);
exit:
if(efuseTbl)
rtw_mfree(efuseTbl, EFUSE_MAP_LEN_8192E);
if(eFuseWord)
rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_8192E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
}
static VOID
rtl8192E_ReadEFuse(
PADAPTER Adapter,
u8 efuseType,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
IN BOOLEAN bPseudoTest
)
{
#ifdef DBG_IOL_READ_EFUSE_MAP
u8 logical_map[512];
#endif
#ifdef CONFIG_IOL_READ_EFUSE_MAP
if(!bPseudoTest )//&& rtw_IOL_applied(Adapter))
{
int ret = _FAIL;
rtw_hal_power_on(Adapter);
iol_mode_enable(Adapter, 1);
#ifdef DBG_IOL_READ_EFUSE_MAP
iol_read_efuse(Adapter, 0, _offset, _size_byte, logical_map);
#else
ret = iol_read_efuse(Adapter, 0, _offset, _size_byte, pbuf);
#endif
iol_mode_enable(Adapter, 0);
if(_SUCCESS == ret)
goto exit;
}
#endif
Hal_EfuseReadEFuse8192E(Adapter, _offset, _size_byte, pbuf, bPseudoTest);
#ifdef CONFIG_IOL_READ_EFUSE_MAP
exit:
#endif
#ifdef DBG_IOL_READ_EFUSE_MAP
if(_rtw_memcmp(logical_map, Adapter->eeprompriv.efuse_eeprom_data, 0x130) == _FALSE)
{
int i;
DBG_871X("%s compare first 0x130 byte fail\n", __FUNCTION__);
for(i=0;i<512;i++)
{
if(i%16==0)
DBG_871X("0x%03x: ", i);
DBG_871X("%02x ", logical_map[i]);
if(i%16==15)
DBG_871X("\n");
}
DBG_871X("\n");
}
#endif
}
//Do not support BT
VOID
Hal_EFUSEGetEfuseDefinition8192E(
IN PADAPTER pAdapter,
IN u1Byte efuseType,
IN u1Byte type,
OUT PVOID pOut
)
{
switch(type)
{
case TYPE_EFUSE_MAX_SECTION:
{
pu1Byte pMax_section;
pMax_section = (pu1Byte)pOut;
if(efuseType == EFUSE_WIFI)
{
*pMax_section = EFUSE_MAX_SECTION_8192E;
}
else
*pMax_section = EFUSE_BT_MAX_SECTION_8192E;
}
break;
case TYPE_EFUSE_REAL_CONTENT_LEN:
{
pu2Byte pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
if(efuseType == EFUSE_WIFI)
{
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8192E;
}
else
*pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN_8192E;
}
break;
case TYPE_EFUSE_CONTENT_LEN_BANK:
{
pu2Byte pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
if(efuseType == EFUSE_WIFI)
{
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8192E;
}
else
*pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN_8192E;
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
{
pu2Byte pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
if(efuseType == EFUSE_WIFI)
{
*pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E);
}
else
*pu2Tmp = (u2Byte)(EFUSE_BT_REAL_BANK_CONTENT_LEN_8192E-EFUSE_PROTECT_BYTES_BANK_8192E);
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
{
pu2Byte pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
if(efuseType == EFUSE_WIFI)
{
*pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E);
}
else
*pu2Tmp = (u2Byte)(EFUSE_BT_REAL_CONTENT_LEN_8192E-(EFUSE_PROTECT_BYTES_BANK_8192E*3));
}
break;
case TYPE_EFUSE_MAP_LEN:
{
pu2Byte pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
if(efuseType == EFUSE_WIFI)
{
*pu2Tmp = (u2Byte)EFUSE_MAP_LEN_8192E;
}
else
*pu2Tmp = (u2Byte)EFUSE_BT_MAP_LEN_8192E;
}
break;
case TYPE_EFUSE_PROTECT_BYTES_BANK:
{
pu1Byte pu1Tmp;
pu1Tmp = (pu1Byte)pOut;
if(efuseType == EFUSE_WIFI)
*pu1Tmp = (u1Byte)(EFUSE_OOB_PROTECT_BYTES_8192E);
else
*pu1Tmp = (u1Byte)(EFUSE_PROTECT_BYTES_BANK_8192E);
}
break;
default:
{
pu1Byte pu1Tmp;
pu1Tmp = (pu1Byte)pOut;
*pu1Tmp = 0;
}
break;
}
}
VOID
Hal_EFUSEGetEfuseDefinition_Pseudo8192E(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN u8 type,
OUT PVOID pOut
)
{
switch(type)
{
case TYPE_EFUSE_MAX_SECTION:
{
pu1Byte pMax_section;
pMax_section = (pu1Byte)pOut;
if(efuseType == EFUSE_WIFI)
*pMax_section = EFUSE_MAX_SECTION_8192E;
else
*pMax_section = EFUSE_BT_MAX_SECTION_8192E;
}
break;
case TYPE_EFUSE_REAL_CONTENT_LEN:
{
pu2Byte pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
if(efuseType == EFUSE_WIFI)
{
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8192E;
}
else
*pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN_8192E;
}
break;
case TYPE_EFUSE_CONTENT_LEN_BANK:
{
pu2Byte pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
if(efuseType == EFUSE_WIFI)
{
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8192E;
}
else
*pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN_8192E;
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
{
pu2Byte pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
if(efuseType == EFUSE_WIFI)
{
*pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E);
}
else
*pu2Tmp = (u2Byte)(EFUSE_BT_REAL_BANK_CONTENT_LEN_8192E-EFUSE_PROTECT_BYTES_BANK_8192E);
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
{
pu2Byte pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
if(efuseType == EFUSE_WIFI)
{
*pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E);
}
else
*pu2Tmp = (u2Byte)(EFUSE_BT_REAL_CONTENT_LEN_8192E-(EFUSE_PROTECT_BYTES_BANK_8192E*3));
}
break;
case TYPE_EFUSE_MAP_LEN:
{
pu2Byte pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
if(efuseType == EFUSE_WIFI)
*pu2Tmp = (u2Byte)EFUSE_MAP_LEN_8192E;
else
*pu2Tmp = (u2Byte)EFUSE_BT_MAP_LEN_8192E;
}
break;
case TYPE_EFUSE_PROTECT_BYTES_BANK:
{
pu1Byte pu1Tmp;
pu1Tmp = (pu1Byte)pOut;
if(efuseType == EFUSE_WIFI)
*pu1Tmp = (u1Byte)(EFUSE_OOB_PROTECT_BYTES_8192E);
else
*pu1Tmp = (u1Byte)(EFUSE_PROTECT_BYTES_BANK_8192E);
}
break;
default:
{
pu1Byte pu1Tmp;
pu1Tmp = (pu1Byte)pOut;
*pu1Tmp = 0;
}
break;
}
}
static VOID
rtl8192E_EFUSE_GetEfuseDefinition(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN u8 type,
OUT void *pOut,
IN BOOLEAN bPseudoTest
)
{
if(bPseudoTest)
{
Hal_EFUSEGetEfuseDefinition_Pseudo8192E(pAdapter, efuseType, type, pOut);
}
else
{
Hal_EFUSEGetEfuseDefinition8192E(pAdapter, efuseType, type, pOut);
}
}
static u8
Hal_EfuseWordEnableDataWrite8192E( IN PADAPTER pAdapter,
IN u16 efuse_addr,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
u16 tmpaddr = 0;
u16 start_addr = efuse_addr;
u8 badworden = 0x0F;
u8 tmpdata[8];
_rtw_memset((PVOID)tmpdata, 0xff, PGPKT_DATA_SIZE);
//RT_TRACE(COMP_EFUSE, DBG_LOUD, ("word_en = %x efuse_addr=%x\n", word_en, efuse_addr));
if(!(word_en&BIT0))
{
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter,start_addr++, data[0], bPseudoTest);
efuse_OneByteWrite(pAdapter,start_addr++, data[1], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr, &tmpdata[0], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr+1, &tmpdata[1], bPseudoTest);
if((data[0]!=tmpdata[0])||(data[1]!=tmpdata[1])){
badworden &= (~BIT0);
}
}
if(!(word_en&BIT1))
{
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter,start_addr++, data[2], bPseudoTest);
efuse_OneByteWrite(pAdapter,start_addr++, data[3], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr , &tmpdata[2], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr+1, &tmpdata[3], bPseudoTest);
if((data[2]!=tmpdata[2])||(data[3]!=tmpdata[3])){
badworden &=( ~BIT1);
}
}
if(!(word_en&BIT2))
{
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter,start_addr++, data[4], bPseudoTest);
efuse_OneByteWrite(pAdapter,start_addr++, data[5], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr, &tmpdata[4], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr+1, &tmpdata[5], bPseudoTest);
if((data[4]!=tmpdata[4])||(data[5]!=tmpdata[5])){
badworden &=( ~BIT2);
}
}
if(!(word_en&BIT3))
{
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter,start_addr++, data[6], bPseudoTest);
efuse_OneByteWrite(pAdapter,start_addr++, data[7], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr, &tmpdata[6], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr+1, &tmpdata[7], bPseudoTest);
if((data[6]!=tmpdata[6])||(data[7]!=tmpdata[7])){
badworden &=( ~BIT3);
}
}
return badworden;
}
static u8
rtl8192E_Efuse_WordEnableDataWrite( IN PADAPTER pAdapter,
IN u16 efuse_addr,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
u8 ret=0;
ret = Hal_EfuseWordEnableDataWrite8192E(pAdapter, efuse_addr, word_en, data, bPseudoTest);
return ret;
}
static u16
hal_EfuseGetCurrentSize_8192E(IN PADAPTER pAdapter,
IN BOOLEAN bPseudoTest)
{
int bContinual = _TRUE;
u16 efuse_addr = 0;
u8 hoffset=0,hworden=0;
u8 efuse_data,word_cnts=0;
if(bPseudoTest)
{
efuse_addr = (u16)(fakeEfuseUsedBytes);
}
else
{
rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
}
//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), start_efuse_addr = %d\n", efuse_addr));
while ( bContinual &&
efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest) &&
(efuse_addr < EFUSE_REAL_CONTENT_LEN_8192E))
{
if(efuse_data!=0xFF)
{
if((efuse_data&0x1F) == 0x0F) //extended header
{
hoffset = efuse_data;
efuse_addr++;
efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest);
if((efuse_data & 0x0F) == 0x0F)
{
efuse_addr++;
continue;
}
else
{
hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
}
}
else
{
hoffset = (efuse_data>>4) & 0x0F;
hworden = efuse_data & 0x0F;
}
word_cnts = Efuse_CalculateWordCnts(hworden);
//read next header
efuse_addr = efuse_addr + (word_cnts*2)+1;
}
else
{
bContinual = _FALSE ;
}
}
if(bPseudoTest)
{
fakeEfuseUsedBytes = efuse_addr;
//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), return %d\n", fakeEfuseUsedBytes));
}
else
{
rtw_hal_set_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), return %d\n", efuse_addr));
}
return efuse_addr;
}
static u16
rtl8192E_EfuseGetCurrentSize(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN BOOLEAN bPseudoTest)
{
u16 ret=0;
ret = hal_EfuseGetCurrentSize_8192E(pAdapter, bPseudoTest);
return ret;
}
static int
hal_EfusePgPacketRead_8192E(
IN PADAPTER pAdapter,
IN u8 offset,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
u8 ReadState = PG_STATE_HEADER;
int bContinual = _TRUE;
int bDataEmpty = _TRUE ;
u8 efuse_data,word_cnts = 0;
u16 efuse_addr = 0;
u8 hoffset = 0,hworden = 0;
u8 tmpidx = 0;
u8 tmpdata[8];
u8 max_section = 0;
u8 tmp_header = 0;
if(data==NULL)
return _FALSE;
if(offset>EFUSE_MAX_SECTION_8192E)
return _FALSE;
_rtw_memset((PVOID)data, 0xff, sizeof(u8)*PGPKT_DATA_SIZE);
_rtw_memset((PVOID)tmpdata, 0xff, sizeof(u8)*PGPKT_DATA_SIZE);
//
// <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP.
// Skip dummy parts to prevent unexpected data read from Efuse.
// By pass right now. 2009.02.19.
//
while(bContinual && (efuse_addr < EFUSE_REAL_CONTENT_LEN_8192E) )
{
//------- Header Read -------------
if(ReadState & PG_STATE_HEADER)
{
if(efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest)&&(efuse_data!=0xFF))
{
if(EXT_HEADER(efuse_data))
{
tmp_header = efuse_data;
efuse_addr++;
efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest);
if(!ALL_WORDS_DISABLED(efuse_data))
{
hoffset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
}
else
{
DBG_8192C("Error, All words disabled\n");
efuse_addr++;
continue;
}
}
else
{
hoffset = (efuse_data>>4) & 0x0F;
hworden = efuse_data & 0x0F;
}
word_cnts = Efuse_CalculateWordCnts(hworden);
bDataEmpty = _TRUE ;
if(hoffset==offset)
{
for(tmpidx = 0;tmpidx< word_cnts*2 ;tmpidx++)
{
if(efuse_OneByteRead(pAdapter, efuse_addr+1+tmpidx ,&efuse_data, bPseudoTest) )
{
tmpdata[tmpidx] = efuse_data;
if(efuse_data!=0xff)
{
bDataEmpty = _FALSE;
}
}
}
if(bDataEmpty==_FALSE){
ReadState = PG_STATE_DATA;
}else{//read next header
efuse_addr = efuse_addr + (word_cnts*2)+1;
ReadState = PG_STATE_HEADER;
}
}
else{//read next header
efuse_addr = efuse_addr + (word_cnts*2)+1;
ReadState = PG_STATE_HEADER;
}
}
else{
bContinual = _FALSE ;
}
}
//------- Data section Read -------------
else if(ReadState & PG_STATE_DATA)
{
efuse_WordEnableDataRead(hworden,tmpdata,data);
efuse_addr = efuse_addr + (word_cnts*2)+1;
ReadState = PG_STATE_HEADER;
}
}
if( (data[0]==0xff) &&(data[1]==0xff) && (data[2]==0xff) && (data[3]==0xff) &&
(data[4]==0xff) &&(data[5]==0xff) && (data[6]==0xff) && (data[7]==0xff))
return _FALSE;
else
return _TRUE;
}
static int
rtl8192E_Efuse_PgPacketRead( IN PADAPTER pAdapter,
IN u8 offset,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
int ret=0;
ret = hal_EfusePgPacketRead_8192E(pAdapter, offset, data, bPseudoTest);
return ret;
}
int
hal_EfusePgPacketWrite_8192E(IN PADAPTER pAdapter,
IN u8 offset,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
u8 WriteState = PG_STATE_HEADER;
int bContinual = _TRUE,bDataEmpty=_TRUE;
//int bResult = _TRUE;
u16 efuse_addr = 0;
u8 efuse_data;
u8 pg_header = 0, pg_header_temp = 0;
u8 tmp_word_cnts=0,target_word_cnts=0;
u8 tmp_header,match_word_en,tmp_word_en;
PGPKT_STRUCT target_pkt;
PGPKT_STRUCT tmp_pkt;
u8 originaldata[sizeof(u8)*8];
u8 tmpindex = 0,badworden = 0x0F;
static int repeat_times = 0;
BOOLEAN bExtendedHeader = _FALSE;
u8 efuseType=EFUSE_WIFI;
//
// <Roger_Notes> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP.
// So we have to prevent unexpected data string connection, which will cause
// incorrect data auto-load from HW. The total size is equal or smaller than 498bytes
// (i.e., offset 0~497, and dummy 1bytes) expected after CP test.
// 2009.02.19.
//
if( Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest) >= (EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E))
{
DBG_871X("hal_EfusePgPacketWrite_8812A() error: %x >= %x\n", Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest), (EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E));
return _FALSE;
}
// Init the 8 bytes content as 0xff
target_pkt.offset = offset;
target_pkt.word_en= word_en;
// Initial the value to avoid compile warning
tmp_pkt.offset = 0;
tmp_pkt.word_en= 0;
//DBG_871X("hal_EfusePgPacketWrite_8812A target offset 0x%x word_en 0x%x \n", target_pkt.offset, target_pkt.word_en);
_rtw_memset((PVOID)target_pkt.data, 0xFF, sizeof(u8)*8);
efuse_WordEnableDataRead(word_en, data, target_pkt.data);
target_word_cnts = Efuse_CalculateWordCnts(target_pkt.word_en);
//efuse_reg_ctrl(pAdapter,_TRUE);//power on
//DBG_871X("EFUSE Power ON\n");
//
// <Roger_Notes> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP.
// So we have to prevent unexpected data string connection, which will cause
// incorrect data auto-load from HW. Dummy 1bytes is additional.
// 2009.02.19.
//
while( bContinual && (efuse_addr < (EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E)) )
{
if(WriteState==PG_STATE_HEADER)
{
bDataEmpty=_TRUE;
badworden = 0x0F;
//************ so *******************
//DBG_871X("EFUSE PG_STATE_HEADER\n");
if ( efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest) &&
(efuse_data!=0xFF))
{
if((efuse_data&0x1F) == 0x0F) //extended header
{
tmp_header = efuse_data;
efuse_addr++;
efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest);
if((efuse_data & 0x0F) == 0x0F) //wren fail
{
efuse_addr++;
continue;
}
else
{
tmp_pkt.offset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
tmp_pkt.word_en = efuse_data & 0x0F;
}
}
else
{
tmp_header = efuse_data;
tmp_pkt.offset = (tmp_header>>4) & 0x0F;
tmp_pkt.word_en = tmp_header & 0x0F;
}
tmp_word_cnts = Efuse_CalculateWordCnts(tmp_pkt.word_en);
//DBG_871X("section offset 0x%x worden 0x%x\n", tmp_pkt.offset, tmp_pkt.word_en);
//************ so-1 *******************
if(tmp_pkt.offset != target_pkt.offset)
{
efuse_addr = efuse_addr + (tmp_word_cnts*2) +1; //Next pg_packet
#if (EFUSE_ERROE_HANDLE == 1)
WriteState = PG_STATE_HEADER;
#endif
}
else //write the same offset
{
//DBG_871X("hal_EfusePgPacketWrite_8812A section offset the same\n");
//************ so-2 *******************
for(tmpindex=0 ; tmpindex<(tmp_word_cnts*2) ; tmpindex++)
{
if(efuse_OneByteRead(pAdapter, (efuse_addr+1+tmpindex) ,&efuse_data, bPseudoTest)&&(efuse_data != 0xFF)){
bDataEmpty = _FALSE;
}
}
//************ so-2-1 *******************
if(bDataEmpty == _FALSE)
{
//DBG_871X("hal_EfusePgPacketWrite_8812A section offset the same and data is NOT empty\n");
efuse_addr = efuse_addr + (tmp_word_cnts*2) +1; //Next pg_packet
#if (EFUSE_ERROE_HANDLE == 1)
WriteState=PG_STATE_HEADER;
#endif
}
else
{//************ so-2-2 *******************
//DBG_871X("hal_EfusePgPacketWrite_8812A section data empty\n");
match_word_en = 0x0F; //same bit as original wren
if( !( (target_pkt.word_en&BIT0)|(tmp_pkt.word_en&BIT0) ))
{
match_word_en &= (~BIT0);
}
if( !( (target_pkt.word_en&BIT1)|(tmp_pkt.word_en&BIT1) ))
{
match_word_en &= (~BIT1);
}
if( !( (target_pkt.word_en&BIT2)|(tmp_pkt.word_en&BIT2) ))
{
match_word_en &= (~BIT2);
}
if( !( (target_pkt.word_en&BIT3)|(tmp_pkt.word_en&BIT3) ))
{
match_word_en &= (~BIT3);
}
//************ so-2-2-A *******************
if((match_word_en&0x0F)!=0x0F)
{
badworden = Efuse_WordEnableDataWrite(pAdapter,efuse_addr+1, tmp_pkt.word_en ,target_pkt.data, bPseudoTest);
//************ so-2-2-A-1 *******************
//############################
if(0x0F != (badworden&0x0F))
{
u8 reorg_offset = offset;
u8 reorg_worden=badworden;
Efuse_PgPacketWrite(pAdapter, reorg_offset, reorg_worden, target_pkt.data, bPseudoTest);
}
//############################
tmp_word_en = 0x0F; //not the same bit as original wren
if( (target_pkt.word_en&BIT0)^(match_word_en&BIT0) )
{
tmp_word_en &= (~BIT0);
}
if( (target_pkt.word_en&BIT1)^(match_word_en&BIT1) )
{
tmp_word_en &= (~BIT1);
}
if( (target_pkt.word_en&BIT2)^(match_word_en&BIT2) )
{
tmp_word_en &= (~BIT2);
}
if( (target_pkt.word_en&BIT3)^(match_word_en&BIT3) )
{
tmp_word_en &=(~BIT3);
}
//************ so-2-2-A-2 *******************
if((tmp_word_en&0x0F)!=0x0F){
//reorganize other pg packet
// efuse_addr = efuse_addr + (2*tmp_word_cnts) +1;//next pg packet addr
efuse_addr = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest);
//===========================
target_pkt.offset = offset;
target_pkt.word_en= tmp_word_en;
//===========================
}else{
bContinual = _FALSE;
}
#if (EFUSE_ERROE_HANDLE == 1)
WriteState=PG_STATE_HEADER;
repeat_times++;
if(repeat_times>EFUSE_REPEAT_THRESHOLD_){
bContinual = _FALSE;
//bResult = _FALSE;
}
#endif
}
else{//************ so-2-2-B *******************
//reorganize other pg packet
efuse_addr = efuse_addr + (2*tmp_word_cnts) +1;//next pg packet addr
//===========================
target_pkt.offset = offset;
target_pkt.word_en= target_pkt.word_en;
//===========================
#if (EFUSE_ERROE_HANDLE == 1)
WriteState=PG_STATE_HEADER;
#endif
}
}
}
DBG_871X("EFUSE PG_STATE_HEADER-1\n");
}
else //************ s1: header == oxff *******************
{
bExtendedHeader = _FALSE;
if(target_pkt.offset >= EFUSE_MAX_SECTION_BASE)
{
pg_header = ((target_pkt.offset &0x07) << 5) | 0x0F;
//DBG_871X("hal_EfusePgPacketWrite_8812A extended pg_header[2:0] |0x0F 0x%x \n", pg_header);
efuse_OneByteWrite(pAdapter,efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter,efuse_addr, &tmp_header, bPseudoTest);
while(tmp_header == 0xFF)
{
//DBG_871X("hal_EfusePgPacketWrite_8812A extended pg_header[2:0] wirte fail \n");
repeat_times++;
if(repeat_times>EFUSE_REPEAT_THRESHOLD_){
bContinual = _FALSE;
//bResult = _FALSE;
efuse_addr++;
break;
}
efuse_OneByteWrite(pAdapter,efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter,efuse_addr, &tmp_header, bPseudoTest);
}
if(!bContinual)
break;
if(tmp_header == pg_header)
{
efuse_addr++;
pg_header_temp = pg_header;
pg_header = ((target_pkt.offset & 0x78) << 1 ) | target_pkt.word_en;
//DBG_871X("hal_EfusePgPacketWrite_8812A extended pg_header[6:3] | worden 0x%x word_en 0x%x \n", pg_header, target_pkt.word_en);
efuse_OneByteWrite(pAdapter,efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter,efuse_addr, &tmp_header, bPseudoTest);
while(tmp_header == 0xFF)
{
repeat_times++;
if(repeat_times>EFUSE_REPEAT_THRESHOLD_){
bContinual = _FALSE;
//bResult = _FALSE;
break;
}
efuse_OneByteWrite(pAdapter,efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter,efuse_addr, &tmp_header, bPseudoTest);
}
if(!bContinual)
break;
if((tmp_header & 0x0F) == 0x0F) //wren PG fail
{
repeat_times++;
if(repeat_times>EFUSE_REPEAT_THRESHOLD_){
bContinual = _FALSE;
//bResult = _FALSE;
break;
}
else
{
efuse_addr++;
continue;
}
}
else if(pg_header != tmp_header) //offset PG fail
{
bExtendedHeader = _TRUE;
tmp_pkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1);
tmp_pkt.word_en= tmp_header & 0x0F;
tmp_word_cnts = Efuse_CalculateWordCnts(tmp_pkt.word_en);
}
}
else if ((tmp_header & 0x1F) == 0x0F) //wrong extended header
{
efuse_addr+=2;
continue;
}
}
else
{
pg_header = ((target_pkt.offset << 4)&0xf0) |target_pkt.word_en;
efuse_OneByteWrite(pAdapter,efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter,efuse_addr, &tmp_header, bPseudoTest);
}
if(tmp_header == pg_header)
{ //************ s1-1*******************
WriteState = PG_STATE_DATA;
}
#if (EFUSE_ERROE_HANDLE == 1)
else if(tmp_header == 0xFF){//************ s1-3: if Write or read func doesn't work *******************
//efuse_addr doesn't change
WriteState = PG_STATE_HEADER;
repeat_times++;
if(repeat_times>EFUSE_REPEAT_THRESHOLD_){
bContinual = _FALSE;
//bResult = _FALSE;
}
}
#endif
else
{//************ s1-2 : fixed the header procedure *******************
if(!bExtendedHeader)
{
tmp_pkt.offset = (tmp_header>>4) & 0x0F;
tmp_pkt.word_en= tmp_header & 0x0F;
tmp_word_cnts = Efuse_CalculateWordCnts(tmp_pkt.word_en);
}
//************ s1-2-A :cover the exist data *******************
_rtw_memset(originaldata, 0xff, sizeof(u8)*8);
if(Efuse_PgPacketRead( pAdapter, tmp_pkt.offset,originaldata, bPseudoTest))
{ //check if data exist
//efuse_reg_ctrl(pAdapter,_TRUE);//power on
badworden = Efuse_WordEnableDataWrite(pAdapter,efuse_addr+1,tmp_pkt.word_en,originaldata, bPseudoTest);
//############################
if(0x0F != (badworden&0x0F))
{
u8 reorg_offset = tmp_pkt.offset;
u8 reorg_worden=badworden;
Efuse_PgPacketWrite(pAdapter,reorg_offset,reorg_worden,originaldata, bPseudoTest);
efuse_addr = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest);
}
//############################
else{
efuse_addr = efuse_addr + (tmp_word_cnts*2) +1; //Next pg_packet
}
}
//************ s1-2-B: wrong address*******************
else
{
efuse_addr = efuse_addr + (tmp_word_cnts*2) +1; //Next pg_packet
}
#if (EFUSE_ERROE_HANDLE == 1)
WriteState=PG_STATE_HEADER;
repeat_times++;
if(repeat_times>EFUSE_REPEAT_THRESHOLD_){
bContinual = _FALSE;
//bResult = _FALSE;
}
#endif
//DBG_871X("EFUSE PG_STATE_HEADER-2\n");
}
}
}
//write data state
else if(WriteState==PG_STATE_DATA)
{ //************ s1-1 *******************
//DBG_871X("EFUSE PG_STATE_DATA\n");
badworden = 0x0f;
badworden = Efuse_WordEnableDataWrite(pAdapter,efuse_addr+1,target_pkt.word_en,target_pkt.data, bPseudoTest);
if((badworden&0x0F)==0x0F)
{ //************ s1-1-A *******************
bContinual = _FALSE;
}
else
{//reorganize other pg packet //************ s1-1-B *******************
efuse_addr = efuse_addr + (2*target_word_cnts) +1;//next pg packet addr
//===========================
target_pkt.offset = offset;
target_pkt.word_en= badworden;
target_word_cnts = Efuse_CalculateWordCnts(target_pkt.word_en);
//===========================
#if (EFUSE_ERROE_HANDLE == 1)
WriteState=PG_STATE_HEADER;
repeat_times++;
if(repeat_times>EFUSE_REPEAT_THRESHOLD_){
bContinual = _FALSE;
//bResult = _FALSE;
}
#endif
//DBG_871X("EFUSE PG_STATE_HEADER-3\n");
}
}
}
if(efuse_addr >= (EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E))
{
DBG_871X("hal_EfusePgPacketWrite_8812A(): efuse_addr(%#x) Out of size!!\n", efuse_addr);
}
//efuse_reg_ctrl(pAdapter,_FALSE);//power off
return _TRUE;
}
static int
rtl8192E_Efuse_PgPacketWrite(IN PADAPTER pAdapter,
IN u8 offset,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
int ret;
ret = hal_EfusePgPacketWrite_8192E(pAdapter, offset, word_en, data, bPseudoTest);
return ret;
}
u8
GetEEPROMSize8192E(
IN PADAPTER Adapter
)
{
u8 size = 0;
u32 curRCR;
curRCR = rtw_read16(Adapter, REG_SYS_EEPROM_CTRL);
size = (curRCR & EEPROMSEL) ? 6 : 4; // 6: EEPROM used is 93C46, 4: boot from E-Fuse.
DBG_871X("EEPROM type is %s\n", size==4 ? "E-FUSE" : "93C46");
//return size;
return 4; // <20120713, Kordan> The default value of HW is 6 ?!!
}
//===========================================================
// Efuse related code
//===========================================================
static void ResumeTxBeacon(_adapter *padapter)
{
HAL_DATA_TYPE* pHalData = GET_HAL_DATA(padapter);
// 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value
// which should be read from register to a global variable.
rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, (pHalData->RegFwHwTxQCtrl) | BIT6);
pHalData->RegFwHwTxQCtrl |= BIT6;
rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0xff);
pHalData->RegReg542 |= BIT0;
rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
}
static void StopTxBeacon(_adapter *padapter)
{
HAL_DATA_TYPE* pHalData = GET_HAL_DATA(padapter);
// 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value
// which should be read from register to a global variable.
rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, (pHalData->RegFwHwTxQCtrl) & (~BIT6));
pHalData->RegFwHwTxQCtrl &= (~BIT6);
rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0x64);
pHalData->RegReg542 &= ~(BIT0);
rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
//todo: CheckFwRsvdPageContent(Adapter); // 2010.06.23. Added by tynli.
}
static void hw_var_set_opmode(PADAPTER Adapter, u8 variable, u8* val)
{
u8 val8;
u32 val32;
u8 mode = *((u8 *)val);
DBG_871X( ADPT_FMT "Port-%d set opmode = %d\n",ADPT_ARG(Adapter),
#ifdef CONFIG_CONCURRENT_MODE
Adapter->iface_type
#else
0
#endif
,mode);
#ifdef CONFIG_CONCURRENT_MODE
if(Adapter->iface_type == IFACE_PORT1)
{
// disable Port1 TSF update
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|DIS_TSF_UDT);
Set_MSR(Adapter, mode);
//DBG_871X("#### %s() -%d iface_type(%d) mode = %d ####\n", __FUNCTION__, __LINE__, Adapter->iface_type,mode);
if((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_))
{
if(!check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE))
{
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
rtw_write8(Adapter, REG_DRVERLYINT, 0x05);//restore early int time to 5ms
#if defined(CONFIG_USB_HCI)
UpdateInterruptMask8192EU(Adapter,_TRUE, 0, IMR_BCNDMAINT1_8192E);
#elif defined(CONFIG_SDIO_HCI)
#endif
#endif // CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#if defined(CONFIG_USB_HCI)
UpdateInterruptMask8192EU(Adapter,_TRUE ,0, (IMR_TXBCN0ERR_8192E|IMR_TXBCN0OK_8192E));
#elif defined(CONFIG_SDIO_HCI)
#endif
#endif// CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#endif //CONFIG_INTERRUPT_BASED_TXBCN
StopTxBeacon(Adapter);
}
rtw_write8(Adapter,REG_BCN_CTRL_1, 0x11);//disable atim wnd and disable beacon function
//rtw_write8(Adapter,REG_BCN_CTRL_1, 0x18);
}
else if((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/)
{
ResumeTxBeacon(Adapter);
rtw_write8(Adapter,REG_BCN_CTRL_1, 0x1a);
}
else if(mode == _HW_STATE_AP_)
{
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#if defined(CONFIG_USB_HCI)
UpdateInterruptMask8192EU(Adapter,_TRUE ,IMR_BCNDMAINT1_8192E, 0);
#elif defined(CONFIG_SDIO_HCI)
#endif
#endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#if defined(CONFIG_USB_HCI)
UpdateInterruptMask8192EU(Adapter,_TRUE ,(IMR_TXBCN0ERR_8192E|IMR_TXBCN0OK_8192E), 0);
#elif defined(CONFIG_SDIO_HCI)
#endif
#endif//CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#endif //CONFIG_INTERRUPT_BASED_TXBCN
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL_1, 0x12);
//Set RCR
//rtw_write32(padapter, REG_RCR, 0x70002a8e);//CBSSID_DATA must set to 0
//rtw_write32(Adapter, REG_RCR, 0x7000228e);//CBSSID_DATA must set to 0
rtw_write32(Adapter, REG_RCR, 0x7000208e);//CBSSID_DATA must set to 0,reject ICV_ERR packet
//enable to rx data frame
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
//enable to rx ps-poll
rtw_write16(Adapter, REG_RXFLTMAP1, 0x0400);
//Beacon Control related register for first time
rtw_write8(Adapter, REG_BCNDMATIM, 0x02); // 2ms
//rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF);
rtw_write8(Adapter, REG_ATIMWND_1, 0x0a); // 10ms for port1
rtw_write16(Adapter, REG_BCNTCFG, 0x00);
rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0xff04);
rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);// +32767 (~32ms)
//reset TSF2
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1));
//enable BCN1 Function for if2
//don't enable update TSF1 for if2 (due to TSF update when beacon/probe rsp are received)
rtw_write8(Adapter, REG_BCN_CTRL_1, (DIS_TSF_UDT|EN_BCN_FUNCTION | EN_TXBCN_RPT|DIS_RX_BSSID_FIT));
//SW_BCN_SEL - Port1
//rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2)|BIT4);
rtw_hal_set_hwreg(Adapter, HW_VAR_DL_BCN_SEL, NULL);
// select BCN on port 1
rtw_write8(Adapter, REG_CCK_CHECK_8192E,
(rtw_read8(Adapter, REG_CCK_CHECK_8192E)|BIT_BCN_PORT_SEL));
#ifdef CONFIG_CONCURRENT_MODE
if(check_buddy_fwstate(Adapter, WIFI_FW_NULL_STATE))
rtw_write8(Adapter, REG_BCN_CTRL,
rtw_read8(Adapter, REG_BCN_CTRL) & ~EN_BCN_FUNCTION);
#endif
//dis BCN0 ATIM WND if if1 is station
//rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|DIS_ATIM);
#ifdef CONFIG_TSF_RESET_OFFLOAD
// Reset TSF for STA+AP concurrent mode
if ( check_buddy_fwstate(Adapter, (WIFI_STATION_STATE|WIFI_ASOC_STATE)) ) {
if (reset_tsf(Adapter, IFACE_PORT1) == _FALSE)
DBG_871X("ERROR! %s()-%d: Reset port1 TSF fail\n",
__FUNCTION__, __LINE__);
}
#endif // CONFIG_TSF_RESET_OFFLOAD
}
}
else
#endif //CONFIG_CONCURRENT_MODE
{
// disable Port0 TSF update
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|DIS_TSF_UDT);
Set_MSR(Adapter, mode);
//DBG_871X("#### %s() -%d iface_type(0) mode = %d ####\n", __FUNCTION__, __LINE__, mode);
if((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_))
{
#ifdef CONFIG_CONCURRENT_MODE
if(!check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE))
#endif //CONFIG_CONCURRENT_MODE
{
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
rtw_write8(Adapter, REG_DRVERLYINT, 0x05);//restore early int time to 5ms
#if defined(CONFIG_USB_HCI)
UpdateInterruptMask8192EU(Adapter,_TRUE, 0, IMR_BCNDMAINT0_8192E);
#elif defined(CONFIG_SDIO_HCI)
#endif
#endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#if defined(CONFIG_USB_HCI)
UpdateInterruptMask8192EU(Adapter,_TRUE ,0, (IMR_TXBCN0ERR_8192E|IMR_TXBCN0OK_8192E));
#elif defined(CONFIG_SDIO_HCI)
#endif
#endif //CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#endif //CONFIG_INTERRUPT_BASED_TXBCN
StopTxBeacon(Adapter);
}
rtw_write8(Adapter,REG_BCN_CTRL, 0x19);//disable atim wnd
//rtw_write8(Adapter,REG_BCN_CTRL, 0x18);
}
else if((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/)
{
ResumeTxBeacon(Adapter);
rtw_write8(Adapter,REG_BCN_CTRL, 0x1a);
}
else if(mode == _HW_STATE_AP_)
{
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#if defined(CONFIG_USB_HCI)
UpdateInterruptMask8192EU(Adapter,_TRUE ,IMR_BCNDMAINT0_8192E, 0);
#elif defined(CONFIG_SDIO_HCI)
#endif
#endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#if defined(CONFIG_USB_HCI)
UpdateInterruptMask8192EU(Adapter,_TRUE ,(IMR_TXBCN0ERR_8192E|IMR_TXBCN0OK_8192E), 0);
#elif defined(CONFIG_SDIO_HCI)
#endif
#endif//CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#endif //CONFIG_INTERRUPT_BASED_TXBCN
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL, 0x12);
//Set RCR
//rtw_write32(padapter, REG_RCR, 0x70002a8e);//CBSSID_DATA must set to 0
//rtw_write32(Adapter, REG_RCR, 0x7000228e);//CBSSID_DATA must set to 0
rtw_write32(Adapter, REG_RCR, 0x7000208e);//CBSSID_DATA must set to 0,reject ICV_ERR packet
//enable to rx data frame
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
//enable to rx ps-poll
rtw_write16(Adapter, REG_RXFLTMAP1, 0x0400);
//Beacon Control related register for first time
rtw_write8(Adapter, REG_BCNDMATIM, 0x02); // 2ms
//rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF);
rtw_write8(Adapter, REG_ATIMWND, 0x0a); // 10ms
rtw_write16(Adapter, REG_BCNTCFG, 0x00);
rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0xff04);
rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);// +32767 (~32ms)
//reset TSF
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
//enable BCN0 Function for if1
//don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received)
rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT|EN_BCN_FUNCTION | EN_TXBCN_RPT|DIS_RX_BSSID_FIT));
//SW_BCN_SEL - Port0
//rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) & ~BIT4);
rtw_hal_set_hwreg(Adapter, HW_VAR_DL_BCN_SEL, NULL);
// select BCN on port 0
rtw_write8(Adapter, REG_CCK_CHECK_8192E,
(rtw_read8(Adapter, REG_CCK_CHECK_8192E)& ~BIT_BCN_PORT_SEL));
#ifdef CONFIG_CONCURRENT_MODE
if(check_buddy_fwstate(Adapter, WIFI_FW_NULL_STATE))
rtw_write8(Adapter, REG_BCN_CTRL_1,
rtw_read8(Adapter, REG_BCN_CTRL_1) & ~EN_BCN_FUNCTION);
#endif
//dis BCN1 ATIM WND if if2 is station
//rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|DIS_ATIM);
#ifdef CONFIG_TSF_RESET_OFFLOAD
// Reset TSF for STA+AP concurrent mode
if ( check_buddy_fwstate(Adapter, (WIFI_STATION_STATE|WIFI_ASOC_STATE)) ) {
if (reset_tsf(Adapter, IFACE_PORT0) == _FALSE)
DBG_871X("ERROR! %s()-%d: Reset port0 TSF fail\n",__FUNCTION__, __LINE__);
}
#endif // CONFIG_TSF_RESET_OFFLOAD
}
}
}
static void hw_var_set_macaddr(PADAPTER Adapter, u8 variable, u8* val)
{
u8 idx = 0;
u32 reg_macid;
#ifdef CONFIG_CONCURRENT_MODE
if(Adapter->iface_type == IFACE_PORT1)
{
reg_macid = REG_MACID1;
}
else
#endif
{
reg_macid = REG_MACID;
}
for(idx = 0 ; idx < 6; idx++)
{
rtw_write8(Adapter, (reg_macid+idx), val[idx]);
}
}
static void hw_var_set_bssid(PADAPTER Adapter, u8 variable, u8* val)
{
u8 idx = 0;
u32 reg_bssid;
#ifdef CONFIG_CONCURRENT_MODE
if(Adapter->iface_type == IFACE_PORT1)
{
reg_bssid = REG_BSSID1;
}
else
#endif
{
reg_bssid = REG_BSSID;
}
for(idx = 0 ; idx < 6; idx++)
{
rtw_write8(Adapter, (reg_bssid+idx), val[idx]);
}
}
static void hw_var_set_bcn_func(PADAPTER Adapter, u8 variable, u8* val)
{
u32 bcn_ctrl_reg;
#ifdef CONFIG_CONCURRENT_MODE
if(Adapter->iface_type == IFACE_PORT1)
{
bcn_ctrl_reg = REG_BCN_CTRL_1;
}
else
#endif
{
bcn_ctrl_reg = REG_BCN_CTRL;
}
if(*((u8 *)val))
{
rtw_write8(Adapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
}
else
{
rtw_write8(Adapter, bcn_ctrl_reg, rtw_read8(Adapter, bcn_ctrl_reg)&(~(EN_BCN_FUNCTION | EN_TXBCN_RPT)));
}
}
static void hw_var_set_correct_tsf(PADAPTER Adapter, u8 variable, u8* val)
{
#ifdef CONFIG_CONCURRENT_MODE
u64 tsf;
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
PADAPTER pbuddy_adapter = Adapter->pbuddy_adapter;
//tsf = pmlmeext->TSFValue - ((u32)pmlmeext->TSFValue % (pmlmeinfo->bcn_interval*1024)) -1024; //us
tsf = pmlmeext->TSFValue - rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024)) -1024; //us
if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
{
//pHalData->RegTxPause |= STOP_BCNQ;BIT(6)
//rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)|BIT(6)));
StopTxBeacon(Adapter);
}
if(Adapter->iface_type == IFACE_PORT1)
{
//disable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~EN_BCN_FUNCTION));
rtw_write32(Adapter, REG_TSFTR1, tsf);
rtw_write32(Adapter, REG_TSFTR1+4, tsf>>32);
//enable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|EN_BCN_FUNCTION);
// Update buddy port's TSF if it is SoftAP for beacon TX issue!
if ( (pmlmeinfo->state&0x03) == WIFI_FW_STATION_STATE
&& check_buddy_fwstate(Adapter, WIFI_AP_STATE)
) {
//disable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~EN_BCN_FUNCTION));
rtw_write32(Adapter, REG_TSFTR, tsf);
rtw_write32(Adapter, REG_TSFTR+4, tsf>>32);
//enable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|EN_BCN_FUNCTION);
#ifdef CONFIG_TSF_RESET_OFFLOAD
// Update buddy port's TSF(TBTT) if it is SoftAP for beacon TX issue!
if (reset_tsf(Adapter, IFACE_PORT0) == _FALSE)
DBG_871X("ERROR! %s()-%d: Reset port0 TSF fail\n",
__FUNCTION__, __LINE__);
#endif // CONFIG_TSF_RESET_OFFLOAD
}
}
else
{
//disable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~EN_BCN_FUNCTION));
rtw_write32(Adapter, REG_TSFTR, tsf);
rtw_write32(Adapter, REG_TSFTR+4, tsf>>32);
//enable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|EN_BCN_FUNCTION);
// Update buddy port's TSF if it is SoftAP for beacon TX issue!
if ( (pmlmeinfo->state&0x03) == WIFI_FW_STATION_STATE
&& check_buddy_fwstate(Adapter, WIFI_AP_STATE)
) {
//disable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~EN_BCN_FUNCTION));
rtw_write32(Adapter, REG_TSFTR1, tsf);
rtw_write32(Adapter, REG_TSFTR1+4, tsf>>32);
//enable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|EN_BCN_FUNCTION);
#ifdef CONFIG_TSF_RESET_OFFLOAD
// Update buddy port's TSF if it is SoftAP for beacon TX issue!
if (reset_tsf(Adapter, IFACE_PORT1) == _FALSE)
DBG_871X("ERROR! %s()-%d: Reset port1 TSF fail\n",
__FUNCTION__, __LINE__);
#endif // CONFIG_TSF_RESET_OFFLOAD
}
}
if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
{
//pHalData->RegTxPause &= (~STOP_BCNQ);
//rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)&(~BIT(6))));
ResumeTxBeacon(Adapter);
}
#endif
}
static void hw_var_set_mlme_disconnect(PADAPTER Adapter, u8 variable, u8* val)
{
#ifdef CONFIG_CONCURRENT_MODE
if(check_buddy_mlmeinfo_state(Adapter, _HW_STATE_NOLINK_))
rtw_write16(Adapter, REG_RXFLTMAP2, 0x00);
if(Adapter->iface_type == IFACE_PORT1)
{
//reset TSF1
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1));
//disable update TSF1
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|DIS_TSF_UDT);
// disable Port1's beacon function
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(3)));
}
else
{
//reset TSF
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
//disable update TSF
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|DIS_TSF_UDT);
}
#endif
}
static void hw_var_set_mlme_sitesurvey(PADAPTER Adapter, u8 variable, u8* val)
{
u32 value_rcr, rcr_clear_bit, reg_bcn_ctl;
u16 value_rxfltmap2;
struct mlme_priv *pmlmepriv=&(Adapter->mlmepriv);
#ifdef CONFIG_CONCURRENT_MODE
if(Adapter->iface_type == IFACE_PORT1)
reg_bcn_ctl = REG_BCN_CTRL_1;
else
#endif
reg_bcn_ctl = REG_BCN_CTRL;
#ifdef CONFIG_FIND_BEST_CHANNEL
rcr_clear_bit = (RCR_CBSSID_BCN | RCR_CBSSID_DATA);
// Recieve all data frames
value_rxfltmap2 = 0xFFFF;
#else /* CONFIG_FIND_BEST_CHANNEL */
rcr_clear_bit = RCR_CBSSID_BCN;
//config RCR to receive different BSSID & not to receive data frame
value_rxfltmap2 = 0;
#endif /* CONFIG_FIND_BEST_CHANNEL */
if( (check_fwstate(pmlmepriv, WIFI_AP_STATE) == _TRUE)
#ifdef CONFIG_CONCURRENT_MODE
|| (check_buddy_fwstate(Adapter, WIFI_AP_STATE) == _TRUE)
#endif
)
{
rcr_clear_bit = RCR_CBSSID_BCN;
}
#ifdef CONFIG_TDLS
// TDLS will clear RCR_CBSSID_DATA bit for connection.
else if (Adapter->tdlsinfo.link_established & _TRUE)
{
rcr_clear_bit = RCR_CBSSID_BCN;
}
#endif // CONFIG_TDLS
value_rcr = rtw_read32(Adapter, REG_RCR);
if(*((u8 *)val))//under sitesurvey
{
value_rcr &= ~(rcr_clear_bit);
rtw_write32(Adapter, REG_RCR, value_rcr);
rtw_write16(Adapter, REG_RXFLTMAP2, value_rxfltmap2);
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE |WIFI_ADHOC_MASTER_STATE)) {
//disable update TSF
rtw_write8(Adapter, reg_bcn_ctl, rtw_read8(Adapter, reg_bcn_ctl)|DIS_TSF_UDT);
}
// Save orignal RRSR setting.for Dual band patch
//pHalData->RegRRSR = rtw_read16(Adapter, REG_RRSR);
#ifdef CONFIG_CONCURRENT_MODE
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
check_buddy_fwstate(Adapter, _FW_LINKED))
{
StopTxBeacon(Adapter);
}
#endif
}
else//sitesurvey done
{
if(check_fwstate(pmlmepriv, (_FW_LINKED|WIFI_AP_STATE))
#ifdef CONFIG_CONCURRENT_MODE
|| check_buddy_fwstate(Adapter, (_FW_LINKED|WIFI_AP_STATE))
#endif
)
{
//enable to rx data frame
rtw_write16(Adapter, REG_RXFLTMAP2,0xFFFF);
}
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE |WIFI_ADHOC_MASTER_STATE)) {
//enable update TSF
rtw_write8(Adapter, reg_bcn_ctl, rtw_read8(Adapter, reg_bcn_ctl)&(~(DIS_TSF_UDT)));
}
value_rcr |= rcr_clear_bit;
rtw_write32(Adapter, REG_RCR, value_rcr);
// Restore orignal RRSR setting.
//rtw_write16(Adapter, REG_RRSR, pHalData->RegRRSR);
#ifdef CONFIG_CONCURRENT_MODE
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
check_buddy_fwstate(Adapter, _FW_LINKED))
{
ResumeTxBeacon(Adapter);
}
#endif
}
}
static void hw_var_set_mlme_join(PADAPTER Adapter, u8 variable, u8* val)
{
#ifdef CONFIG_CONCURRENT_MODE
u8 RetryLimit = 0x30;
u8 type = *((u8 *)val);
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct mlme_priv *pmlmepriv = &Adapter->mlmepriv;
EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(Adapter);
if(type == 0) // prepare to join
{
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
check_buddy_fwstate(Adapter, _FW_LINKED))
{
StopTxBeacon(Adapter);
}
//enable to rx data frame.Accept all data frame
//rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF);
rtw_write16(Adapter, REG_RXFLTMAP2,0xFFFF);
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE))
{
//rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_BCN);
u32 val32;
//Check BSSID BCN, BSSID DATA only for station mode
val32 = rtw_read32(Adapter, REG_RCR);
val32 &= ~(RCR_CBSSID_BCN|RCR_CBSSID_DATA);
rtw_write32(Adapter, REG_RCR, val32);
}
else
{
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN);
}
if(check_fwstate(pmlmepriv, WIFI_STATION_STATE) == _TRUE)
{
RetryLimit = (pEEPROM->CustomerID == RT_CID_CCX) ? 7 : 48;
}
else // Ad-hoc Mode
{
RetryLimit = 0x7;
}
}
else if(type == 1) //joinbss_event call back when join res < 0
{
if(check_buddy_mlmeinfo_state(Adapter, _HW_STATE_NOLINK_))
rtw_write16(Adapter, REG_RXFLTMAP2,0x00);
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
check_buddy_fwstate(Adapter, _FW_LINKED))
{
ResumeTxBeacon(Adapter);
//reset TSF 1/2 after ResumeTxBeacon
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1)|BIT(0));
}
}
else if(type == 2) //sta add event call back
{
//enable update TSF
if(Adapter->iface_type == IFACE_PORT1)
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~DIS_TSF_UDT));
else
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~DIS_TSF_UDT));
if(check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
{
//fixed beacon issue for 8191su...........
rtw_write8(Adapter,0x542 ,0x02);
RetryLimit = 0x7;
}
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
check_buddy_fwstate(Adapter, _FW_LINKED))
{
ResumeTxBeacon(Adapter);
//reset TSF 1/2 after ResumeTxBeacon
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1)|BIT(0));
}
}
rtw_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT);
#endif
}
/***********************************************************/
// RTL8192E-MAC Setting
VOID
_InitTxBufferBoundary_8192E(
IN PADAPTER Adapter,
IN u8 txpktbuf_bndy
)
{
struct registry_priv *pregistrypriv = &Adapter->registrypriv;
rtw_write8(Adapter, REG_BCNQ_BDNY, txpktbuf_bndy);
rtw_write8(Adapter, REG_MGQ_BDNY, txpktbuf_bndy);
rtw_write8(Adapter, REG_WMAC_LBK_BF_HD, txpktbuf_bndy);
rtw_write8(Adapter, REG_TRXFF_BNDY, txpktbuf_bndy);
rtw_write8(Adapter, REG_DWBCN0_CTRL_8192E+1, txpktbuf_bndy);//BCN_HEAD
#ifdef CONFIG_CONCURRENT_MODE
rtw_write8(Adapter, REG_BCNQ1_BDNY, txpktbuf_bndy+8);
rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+1, txpktbuf_bndy+8);//BCN1_HEAD
// BIT1- BIT_SW_BCN_SEL_EN
rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2)|BIT1);
#endif
}
VOID
_InitPageBoundary_8192E(
IN PADAPTER Adapter
)
{
//u2Byte rxff_bndy;
//u2Byte Offset;
//BOOLEAN bSupportRemoteWakeUp;
//Adapter->HalFunc.GetHalDefVarHandler(Adapter, HAL_DEF_WOWLAN , &bSupportRemoteWakeUp);
// RX Page Boundary
//srand(static_cast<unsigned int>(time(NULL)) );
// Offset = MAX_RX_DMA_BUFFER_SIZE_8812/256;
// rxff_bndy = (Offset*256)-1;
rtw_write16(Adapter, (REG_TRXFF_BNDY + 2), MAX_RX_DMA_BUFFER_SIZE_8192E-1);
}
VOID
_InitDriverInfoSize_8192E(
IN PADAPTER Adapter,
IN u8 drvInfoSize
)
{
rtw_write8(Adapter,REG_RX_DRVINFO_SZ, drvInfoSize);
}
VOID _InitRxSetting_8192E( IN PADAPTER Adapter )
{
rtw_write32(Adapter, REG_MACID, 0x87654321);
rtw_write32(Adapter, REG_MACID1, 0x87654321);
}
VOID _InitRDGSetting_8192E(PADAPTER Adapter)
{
rtw_write8(Adapter,REG_RD_CTRL,0xFF);
rtw_write16(Adapter, REG_RD_NAV_NXT, 0x200);
rtw_write8(Adapter,REG_RD_RESP_PKT_TH,0x05);
}
void _InitID_8192E(IN PADAPTER Adapter)
{
hal_init_macaddr(Adapter);//set mac_address
}
VOID
_InitNetworkType_8192E(
IN PADAPTER Adapter
)
{
u32 value32;
value32 = rtw_read32(Adapter, REG_CR);
// TODO: use the other function to set network type
value32 = (value32 & ~MASK_NETTYPE) | _NETTYPE(NT_LINK_AP);
rtw_write32(Adapter, REG_CR, value32);
}
VOID
_InitWMACSetting_8192E(
IN PADAPTER Adapter
)
{
//u4Byte value32;
//u16 value16;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
//pHalData->ReceiveConfig = AAP | APM | AM | AB | APP_ICV | ADF | AMF | APP_FCS | HTC_LOC_CTRL | APP_MIC | APP_PHYSTS;
//pHalData->ReceiveConfig =
//RCR_AAP | RCR_APM | RCR_AM | RCR_AB |RCR_CBSSID_DATA| RCR_CBSSID_BCN| RCR_APP_ICV | RCR_AMF | RCR_HTC_LOC_CTRL | RCR_APP_MIC | RCR_APP_PHYST_RXFF;
// don't turn on AAP, it will allow all packets to driver
pHalData->ReceiveConfig = RCR_APM | RCR_AM | RCR_AB |RCR_CBSSID_DATA| RCR_CBSSID_BCN| RCR_APP_ICV | RCR_AMF | RCR_HTC_LOC_CTRL | RCR_APP_MIC | RCR_APP_PHYST_RXFF;
#if (1 == RTL8192E_RX_PACKET_INCLUDE_CRC)
pHalData->ReceiveConfig |= ACRC32;
#endif
// some REG_RCR will be modified later by phy_ConfigMACWithHeaderFile()
rtw_write32(Adapter, REG_RCR, pHalData->ReceiveConfig);
// Accept all multicast address
rtw_write32(Adapter, REG_MAR, 0xFFFFFFFF);
rtw_write32(Adapter, REG_MAR + 4, 0xFFFFFFFF);
// Accept all data frames
//value16 = 0xFFFF;
//rtw_write16(Adapter, REG_RXFLTMAP2, value16);
// 2010.09.08 hpfan
// Since ADF is removed from RCR, ps-poll will not be indicate to driver,
// RxFilterMap should mask ps-poll to gurantee AP mode can rx ps-poll.
//value16 = 0x400;
//rtw_write16(Adapter, REG_RXFLTMAP1, value16);
// Accept all management frames
//value16 = 0xFFFF;
//rtw_write16(Adapter, REG_RXFLTMAP0, value16);
//enable RX_SHIFT bits
//rtw_write8(Adapter, REG_TRXDMA_CTRL, rtw_read8(Adapter, REG_TRXDMA_CTRL)|BIT(1));
}
VOID _InitAdaptiveCtrl_8192E(IN PADAPTER Adapter)
{
u16 value16;
u32 value32;
// Response Rate Set
value32 = rtw_read32(Adapter, REG_RRSR);
value32 &= ~RATE_BITMAP_ALL;
value32 |= RATE_RRSR_CCK_ONLY_1M;
rtw_write32(Adapter, REG_RRSR, value32);
// CF-END Threshold
//m_spIoBase->rtw_write8(REG_CFEND_TH, 0x1);
// SIFS (used in NAV)
value16 = _SPEC_SIFS_CCK(0x10) | _SPEC_SIFS_OFDM(0x10);
rtw_write16(Adapter, REG_SPEC_SIFS, value16);
// Retry Limit
value16 = _LRL(0x30) | _SRL(0x30);
rtw_write16(Adapter, REG_RL, value16);
}
VOID _InitEDCA_8192E( IN PADAPTER Adapter)
{
// Set Spec SIFS (used in NAV)
rtw_write16(Adapter,REG_SPEC_SIFS, 0x100a);
rtw_write16(Adapter,REG_MAC_SPEC_SIFS, 0x100a);
// Set SIFS for CCK
rtw_write16(Adapter,REG_SIFS_CTX, 0x100a);
// Set SIFS for OFDM
rtw_write16(Adapter,REG_SIFS_TRX, 0x100a);
// TXOP
rtw_write32(Adapter, REG_EDCA_BE_PARAM, 0x005EA42B);
rtw_write32(Adapter, REG_EDCA_BK_PARAM, 0x0000A44F);
rtw_write32(Adapter, REG_EDCA_VI_PARAM, 0x005EA324);
rtw_write32(Adapter, REG_EDCA_VO_PARAM, 0x002FA226);
}
VOID _InitRetryFunction_8192E( IN PADAPTER Adapter)
{
u8 value8;
value8 = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL);
value8 |= EN_AMPDU_RTY_NEW;
rtw_write8(Adapter, REG_FWHW_TXQ_CTRL, value8);
// Set ACK timeout
rtw_write8(Adapter, REG_ACKTO, 0x40); //masked by page for BCM IOT issue temporally
//rtw_write8(Adapter, REG_ACKTO, 0x80);
}
VOID
_BeaconFunctionEnable(
IN PADAPTER Adapter,
IN BOOLEAN Enable,
IN BOOLEAN Linked
)
{
rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT | EN_BCN_FUNCTION));
//SetBcnCtrlReg(Adapter, (BIT4 | BIT3 | BIT1), 0x00);
//RT_TRACE(COMP_BEACON, DBG_LOUD, ("_BeaconFunctionEnable 0x550 0x%x\n", PlatformEFIORead1Byte(Adapter, 0x550)));
rtw_write8(Adapter, REG_RD_CTRL+1, 0x6F);
}
VOID _InitBeaconParameters_8192E(IN PADAPTER Adapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
rtw_write16(Adapter, REG_BCN_CTRL, 0x1010);
// TODO: Remove these magic number
rtw_write16(Adapter, REG_TBTT_PROHIBIT,0x6404);// ms
rtw_write8(Adapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8192E);// 5ms
rtw_write8(Adapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8192E); // 2ms
// Suggested by designer timchen. Change beacon AIFS to the largest number
// beacause test chip does not contension before sending beacon. by tynli. 2009.11.03
rtw_write16(Adapter, REG_BCNTCFG, 0x660F);
pHalData->RegBcnCtrlVal = rtw_read8(Adapter, REG_BCN_CTRL);
pHalData->RegTxPause = rtw_read8(Adapter, REG_TXPAUSE);
pHalData->RegFwHwTxQCtrl = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL+2);
pHalData->RegReg542 = rtw_read8(Adapter, REG_TBTT_PROHIBIT+2);
pHalData->RegCR_1 = rtw_read8(Adapter, REG_CR+1);
}
void SetBeaconRelatedRegisters8192E(PADAPTER padapter)
{
u32 value32;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
u32 bcn_ctrl_reg = REG_BCN_CTRL;
//reset TSF, enable update TSF, correcting TSF On Beacon
//REG_BCN_INTERVAL
//REG_BCNDMATIM
//REG_ATIMWND
//REG_TBTT_PROHIBIT
//REG_DRVERLYINT
//REG_BCN_MAX_ERR
//REG_BCNTCFG //(0x510)
//REG_DUAL_TSF_RST
//REG_BCN_CTRL //(0x550)
//BCN interval
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->iface_type == IFACE_PORT1){
bcn_ctrl_reg = REG_BCN_CTRL_1;
}
#endif
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->iface_type == IFACE_PORT1){
rtw_write16(padapter, REG_BCN_INTERVAL+2, pmlmeinfo->bcn_interval);//port 1 - BCN interval
}
else
#endif
{
rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
}
rtw_write8(padapter, REG_ATIMWND, 0x02);// 2ms
_InitBeaconParameters_8192E(padapter);
rtw_write8(padapter, REG_SLOT, 0x09);
value32 =rtw_read32(padapter, REG_TCR);
value32 &= ~TSFRST;
rtw_write32(padapter, REG_TCR, value32);
value32 |= TSFRST;
rtw_write32(padapter, REG_TCR, value32);
// NOTE: Fix test chip's bug (about contention windows's randomness)
rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
_BeaconFunctionEnable(padapter, _TRUE, _TRUE);
ResumeTxBeacon(padapter);
//rtw_write8(padapter, 0x422, rtw_read8(padapter, 0x422)|BIT(6));
//rtw_write8(padapter, 0x541, 0xff);
//rtw_write8(padapter, 0x542, rtw_read8(padapter, 0x541)|BIT(0));
rtw_write8(padapter, bcn_ctrl_reg, rtw_read8(padapter, bcn_ctrl_reg)|BIT(1));
}
VOID _InitBeaconMaxError_8192E(
IN PADAPTER Adapter,
IN BOOLEAN InfraMode
)
{
#ifdef RTL8192CU_ADHOC_WORKAROUND_SETTING
rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF);
#else
//rtw_write8(Adapter, REG_BCN_MAX_ERR, (InfraMode ? 0xFF : 0x10));
#endif
}
// Set CCK and OFDM Block "ON"
void _BBTurnOnBlock_8192E(PADAPTER padapter)
{
#if (DISABLE_BB_RF)
return;
#endif
PHY_SetBBReg(padapter, rFPGA0_RFMOD, bCCKEn, 0x1);
PHY_SetBBReg(padapter, rFPGA0_RFMOD, bOFDMEn, 0x1);
}
VOID
hal_ReadRFType_8192E(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
#if DISABLE_BB_RF
pHalData->rf_chip = RF_PSEUDO_11N;
#else
pHalData->rf_chip = RF_6052;
#endif
pHalData->BandSet = BAND_ON_2_4G;
}
u8 Hal_CrystalAFEAdjust(_adapter * Adapter)
{
u8 val8;
u32 val32;
// 40Mhz crystal source,MAC 0x28[2]=0
val8 = rtw_read8(Adapter, REG_AFE_CTRL2_8192E);
val8 &= 0xfb;
rtw_write8(Adapter, REG_AFE_CTRL2_8192E, val8);
val32 = rtw_read32(Adapter, REG_AFE_CTRL4_8192E);
val32 &= 0xfffffc7f;
rtw_write32(Adapter, REG_AFE_CTRL4_8192E, val32);
// 92E AFE parameter
//AFE PLL KVCO selection, MAC 0x28[6]=1
val8 = rtw_read8(Adapter, REG_AFE_CTRL2_8192E);
val8 &= 0xBF;
rtw_write8(Adapter, REG_AFE_CTRL2_8192E, val8);
//AFE PLL KVCO selection, MAC 0x78[21]=0
val32 = rtw_read32(Adapter, REG_AFE_CTRL4_8192E);
val32 &= 0xffdfffff;
rtw_write32(Adapter, REG_AFE_CTRL4_8192E, val32);
return _SUCCESS;
}
// RTL8192E-MAC Setting
/***********************************************************/
void SetHwReg8192E(PADAPTER Adapter, u8 variable, u8* val)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct dm_priv *pdmpriv = &pHalData->dmpriv;
DM_ODM_T *podmpriv = &pHalData->odmpriv;
_func_enter_;
switch(variable)
{
case HW_VAR_MEDIA_STATUS:
{
u8 val8, mode;
mode = *val;
val8 = rtw_read8(Adapter, MSR)&0x0c;
val8 |= mode;
rtw_write8(Adapter, MSR, val8);
}
break;
case HW_VAR_MEDIA_STATUS1:
{
u8 val8, mode;
mode = *val;
val8 = rtw_read8(Adapter, MSR)&0x03;
val8 |= *((u8 *)val) <<2;
rtw_write8(Adapter, MSR, val8);
}
break;
case HW_VAR_SET_OPMODE:
hw_var_set_opmode(Adapter, variable, val);
break;
case HW_VAR_MAC_ADDR:
hw_var_set_macaddr(Adapter, variable, val);
break;
case HW_VAR_BSSID:
hw_var_set_bssid(Adapter, variable, val);
break;
case HW_VAR_BASIC_RATE:
{
u16 BrateCfg = 0;
u8 RateIndex = 0;
// 2007.01.16, by Emily
// Select RRSR (in Legacy-OFDM and CCK)
// For 8190, we select only 24M, 12M, 6M, 11M, 5.5M, 2M, and 1M from the Basic rate.
// We do not use other rates.
HalSetBrateCfg( Adapter, val, &BrateCfg );
//2011.03.30 add by Luke Lee
//CCK 2M ACK should be disabled for some BCM and Atheros AP IOT
//because CCK 2M has poor TXEVM
//CCK 5.5M & 11M ACK should be enabled for better performance
pHalData->BasicRateSet = BrateCfg = (BrateCfg |0xd) & 0x15d;
BrateCfg |= 0x01; // default enable 1M ACK rate
DBG_8192C(FUNC_ADPT_FMT" HW_VAR_BASIC_RATE: BrateCfg(%#x)\n", FUNC_ADPT_ARG(Adapter),BrateCfg);
// Set RRSR rate table.
rtw_write8(Adapter, REG_RRSR, BrateCfg&0xff);
rtw_write8(Adapter, REG_RRSR+1, (BrateCfg>>8)&0xff);
rtw_write8(Adapter, REG_RRSR+2, rtw_read8(Adapter, REG_RRSR+2)&0xf0);
}
break;
case HW_VAR_TXPAUSE:
rtw_write8(Adapter, REG_TXPAUSE, *((u8 *)val));
break;
case HW_VAR_BCN_FUNC:
hw_var_set_bcn_func(Adapter, variable, val);
break;
case HW_VAR_CORRECT_TSF:
#ifdef CONFIG_CONCURRENT_MODE
hw_var_set_correct_tsf(Adapter, variable, val);
#else
{
u64 tsf;
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
//tsf = pmlmeext->TSFValue - ((u32)pmlmeext->TSFValue % (pmlmeinfo->bcn_interval*1024)) -1024; //us
tsf = pmlmeext->TSFValue - rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024)) -1024; //us
if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
{
//pHalData->RegTxPause |= STOP_BCNQ;BIT(6)
//rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)|BIT(6)));
StopTxBeacon(Adapter);
}
//disable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~EN_BCN_FUNCTION));
rtw_write32(Adapter, REG_TSFTR, tsf);
rtw_write32(Adapter, REG_TSFTR+4, tsf>>32);
//enable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|EN_BCN_FUNCTION);
if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
{
//pHalData->RegTxPause &= (~STOP_BCNQ);
//rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)&(~BIT(6))));
ResumeTxBeacon(Adapter);
}
}
#endif
break;
case HW_VAR_CHECK_BSSID:
if(*((u8 *)val))
{
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN);
}
else
{
u32 val32;
val32 = rtw_read32(Adapter, REG_RCR);
val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);
rtw_write32(Adapter, REG_RCR, val32);
}
break;
case HW_VAR_MLME_DISCONNECT:
#ifdef CONFIG_CONCURRENT_MODE
hw_var_set_mlme_disconnect(Adapter, variable, val);
#else
{
//Set RCR to not to receive data frame when NO LINK state
//rtw_write32(Adapter, REG_RCR, rtw_read32(padapter, REG_RCR) & ~RCR_ADF);
//reject all data frames
rtw_write16(Adapter, REG_RXFLTMAP2,0x00);
//reset TSF
rtw_write8(Adapter, REG_DUAL_TSF_RST, (BIT(0)|BIT(1)));
//disable update TSF
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|DIS_TSF_UDT);
}
#endif
break;
case HW_VAR_MLME_SITESURVEY:
hw_var_set_mlme_sitesurvey(Adapter, variable, val);
break;
case HW_VAR_MLME_JOIN:
#ifdef CONFIG_CONCURRENT_MODE
hw_var_set_mlme_join(Adapter, variable, val);
#else
{
u8 RetryLimit = 0x30;
u8 type = *((u8 *)val);
struct mlme_priv *pmlmepriv = &Adapter->mlmepriv;
EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(Adapter);
if(type == 0) // prepare to join
{
//enable to rx data frame.Accept all data frame
//rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF);
rtw_write16(Adapter, REG_RXFLTMAP2,0xFFFF);
if(Adapter->in_cta_test)
{
u32 v = rtw_read32(Adapter, REG_RCR);
v &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN );//| RCR_ADF
rtw_write32(Adapter, REG_RCR, v);
}
else
{
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN);
}
if(check_fwstate(pmlmepriv, WIFI_STATION_STATE) == _TRUE)
{
RetryLimit = (pEEPROM->CustomerID == RT_CID_CCX) ? 7 : 48;
}
else // Ad-hoc Mode
{
RetryLimit = 0x7;
}
}
else if(type == 1) //joinbss_event call back when join res < 0
{
rtw_write16(Adapter, REG_RXFLTMAP2,0x00);
}
else if(type == 2) //sta add event call back
{
//enable update TSF
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~DIS_TSF_UDT));
if(check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
{
RetryLimit = 0x7;
}
}
rtw_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT);
}
#endif
break;
case HW_VAR_ON_RCR_AM:
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_AM);
DBG_871X("%s, %d, RCR= %x \n", __FUNCTION__,__LINE__, rtw_read32(Adapter, REG_RCR));
break;
case HW_VAR_OFF_RCR_AM:
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)& (~RCR_AM));
DBG_871X("%s, %d, RCR= %x \n", __FUNCTION__,__LINE__, rtw_read32(Adapter, REG_RCR));
break;
case HW_VAR_BEACON_INTERVAL:
rtw_write16(Adapter, REG_BCN_INTERVAL, *((u16 *)val));
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
{
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
u16 bcn_interval = *((u16 *)val);
if((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE){
DBG_8192C("%s==> bcn_interval:%d, eraly_int:%d \n",__FUNCTION__,bcn_interval,bcn_interval>>1);
rtw_write8(Adapter, REG_DRVERLYINT, bcn_interval>>1);// 50ms for sdio
}
}
#endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
break;
case HW_VAR_SLOT_TIME:
{
rtw_write8(Adapter, REG_SLOT, val[0]);
}
break;
case HW_VAR_RESP_SIFS:
{
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
if((pmlmeext->cur_wireless_mode==WIRELESS_11G) ||
(pmlmeext->cur_wireless_mode==WIRELESS_11BG))//WIRELESS_MODE_G){
{
val[0] = 0x0a;
val[1] = 0x0a;
}
else{
val[0] = 0x0e;
val[1] = 0x0e;
}
// SIFS for OFDM Data ACK
PlatformEFIOWrite1Byte(Adapter, REG_SIFS_CTX_8192E+1, val[0]);
// SIFS for OFDM consecutive tx like CTS data!
PlatformEFIOWrite1Byte(Adapter, REG_SIFS_TRX_8192E+1, val[1]);
PlatformEFIOWrite1Byte(Adapter,REG_SPEC_SIFS_8192E+1, val[0]);
PlatformEFIOWrite1Byte(Adapter,REG_MAC_SPEC_SIFS_8192E+1, val[0]);
//Revise SIFS setting due to Hardware register definition change.
PlatformEFIOWrite1Byte(Adapter, REG_RESP_SIFS_OFDM_8192E+1, val[0]);
PlatformEFIOWrite1Byte(Adapter, REG_RESP_SIFS_OFDM_8192E, val[0]);
}
/*{
//SIFS_Timer = 0x0a0a0808;
//RESP_SIFS for CCK
rtw_write8(Adapter, REG_RESP_SIFS_CCK, val[0]); // SIFS_T2T_CCK (0x08)
rtw_write8(Adapter, REG_RESP_SIFS_CCK+1, val[1]); // SIFS_R2T_CCK(0x08)
//RESP_SIFS for OFDM
rtw_write8(Adapter, REG_RESP_SIFS_OFDM, val[2]); //SIFS_T2T_OFDM (0x0a)
rtw_write8(Adapter, REG_RESP_SIFS_OFDM+1, val[3]); //SIFS_R2T_OFDM(0x0a)
}*/
break;
case HW_VAR_ACK_PREAMBLE:
{
u8 regTmp;
u8 bShortPreamble = *( (PBOOLEAN)val );
// Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily)
regTmp = (pHalData->nCur40MhzPrimeSC)<<5;
rtw_write8(Adapter, REG_RRSR+2, regTmp);
regTmp = BIT(4)|BIT(5);
if(bShortPreamble)
regTmp |= BIT1;
else
regTmp &= (~BIT1);
rtw_write8(Adapter, REG_TRXPTCL_CTL_8192E+2, regTmp);
}
break;
case HW_VAR_SEC_CFG:
#ifdef CONFIG_CONCURRENT_MODE
rtw_write8(Adapter, REG_SECCFG, 0x0c|BIT(5));// enable tx enc and rx dec engine, and no key search for MC/BC
#else
rtw_write8(Adapter, REG_SECCFG, *((u8 *)val));
#endif
break;
case HW_VAR_CAM_EMPTY_ENTRY:
{
u8 ucIndex = *((u8 *)val);
u8 i;
u32 ulCommand=0;
u32 ulContent=0;
u32 ulEncAlgo=CAM_AES;
for(i=0;i<CAM_CONTENT_COUNT;i++)
{
// filled id in CAM config 2 byte
if( i == 0)
{
ulContent |=(ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
//ulContent |= CAM_VALID;
}
else
{
ulContent = 0;
}
// polling bit, and No Write enable, and address
ulCommand= CAM_CONTENT_COUNT*ucIndex+i;
ulCommand= ulCommand | CAM_POLLINIG|CAM_WRITE;
// write content 0 is equall to mark invalid
rtw_write32(Adapter, WCAMI, ulContent); //delay_ms(40);
//RT_TRACE(COMP_SEC, DBG_LOUD, ("CAM_empty_entry(): WRITE A4: %lx \n",ulContent));
rtw_write32(Adapter, RWCAM, ulCommand); //delay_ms(40);
//RT_TRACE(COMP_SEC, DBG_LOUD, ("CAM_empty_entry(): WRITE A0: %lx \n",ulCommand));
}
}
break;
case HW_VAR_CAM_INVALID_ALL:
rtw_write32(Adapter, RWCAM, BIT(31)|BIT(30));
break;
case HW_VAR_CAM_WRITE:
{
u32 cmd;
u32 *cam_val = (u32 *)val;
rtw_write32(Adapter, WCAMI, cam_val[0]);
cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
rtw_write32(Adapter, RWCAM, cmd);
}
break;
case HW_VAR_CAM_READ:
{
}
break;
case HW_VAR_AC_PARAM_VO:
rtw_write32(Adapter, REG_EDCA_VO_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_AC_PARAM_VI:
rtw_write32(Adapter, REG_EDCA_VI_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_AC_PARAM_BE:
pHalData->AcParam_BE = ((u32 *)(val))[0];
rtw_write32(Adapter, REG_EDCA_BE_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_AC_PARAM_BK:
rtw_write32(Adapter, REG_EDCA_BK_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_ACM_CTRL:
{
u8 acm_ctrl = *((u8 *)val);
u8 AcmCtrl = rtw_read8( Adapter, REG_ACMHWCTRL);
if(acm_ctrl > 1)
AcmCtrl = AcmCtrl | 0x1;
if(acm_ctrl & BIT(3))
AcmCtrl |= AcmHw_VoqEn;
else
AcmCtrl &= (~AcmHw_VoqEn);
if(acm_ctrl & BIT(2))
AcmCtrl |= AcmHw_ViqEn;
else
AcmCtrl &= (~AcmHw_ViqEn);
if(acm_ctrl & BIT(1))
AcmCtrl |= AcmHw_BeqEn;
else
AcmCtrl &= (~AcmHw_BeqEn);
DBG_871X("[HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl );
rtw_write8(Adapter, REG_ACMHWCTRL, AcmCtrl );
}
break;
case HW_VAR_AMPDU_MIN_SPACE:
{
u8 MinSpacingToSet;
u8 SecMinSpace;
MinSpacingToSet = *((u8 *)val);
pHalData->AMPDUDensity = MinSpacingToSet;
if(MinSpacingToSet <= 7)
{
switch(Adapter->securitypriv.dot11PrivacyAlgrthm)
{
case _NO_PRIVACY_:
case _AES_:
SecMinSpace = 0;
break;
case _WEP40_:
case _WEP104_:
case _TKIP_:
case _TKIP_WTMIC_:
SecMinSpace = 6;
break;
default:
SecMinSpace = 7;
break;
}
if(MinSpacingToSet < SecMinSpace){
MinSpacingToSet = SecMinSpace;
}
//RT_TRACE(COMP_MLME, DBG_LOUD, ("Set HW_VAR_AMPDU_MIN_SPACE: %#x\n", Adapter->MgntInfo.MinSpaceCfg));
//rtw_write8(Adapter, REG_AMPDU_MIN_SPACE, (rtw_read8(Adapter, REG_AMPDU_MIN_SPACE) & 0xf8) | MinSpacingToSet);
}
}
break;
case HW_VAR_AMPDU_FACTOR:
{
u32 AMPDULen = (*(u8 *)val);
if(AMPDULen < HT_AGG_SIZE_64K)
AMPDULen = (0x2000 << (*(u8 *)val)) -1;
else
AMPDULen = 0xffff;
rtw_write16(Adapter, REG_AMPDU_MAX_LENGTH_8192E, AMPDULen);
}
break;
case HW_VAR_H2C_FW_PWRMODE:
{
u8 psmode = (*(u8 *)val);
// Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power
// saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang.
if( (psmode != PS_MODE_ACTIVE) && (!IS_92C_SERIAL(pHalData->VersionID)))
{
ODM_RF_Saving(podmpriv, _TRUE);
}
rtl8192e_set_FwPwrMode_cmd(Adapter, psmode);
}
break;
case HW_VAR_H2C_FW_JOINBSSRPT:
{
u8 mstatus = (*(u8 *)val);
rtl8192e_set_FwJoinBssReport_cmd(Adapter, mstatus);
}
break;
#ifdef CONFIG_P2P_PS
case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
{
u8 p2p_ps_state = (*(u8 *)val);
rtl8192e_set_p2p_ps_offload_cmd(Adapter, p2p_ps_state);
}
break;
#endif //CONFIG_P2P
#ifdef CONFIG_TDLS
case HW_VAR_TDLS_WRCR:
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)&(~RCR_CBSSID_DATA ));
break;
case HW_VAR_TDLS_INIT_CH_SEN:
{
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)&(~ RCR_CBSSID_DATA )&(~RCR_CBSSID_BCN ));
rtw_write16(Adapter, REG_RXFLTMAP2,0xffff);
//disable update TSF
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|DIS_TSF_UDT);
}
break;
case HW_VAR_TDLS_DONE_CH_SEN:
{
//enable update TSF
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~ DIS_TSF_UDT));
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|(RCR_CBSSID_BCN ));
}
break;
case HW_VAR_TDLS_RS_RCR:
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|(RCR_CBSSID_DATA));
break;
#endif //CONFIG_TDLS
case HW_VAR_INITIAL_GAIN:
{
DIG_T *pDigTable = &podmpriv->DM_DigTable;
u32 rx_gain = ((u32 *)(val))[0];
if(rx_gain == 0xff){//restore rx gain
ODM_Write_DIG(podmpriv,pDigTable->BackupIGValue);
}
else{
pDigTable->BackupIGValue = pDigTable->CurIGValue;
ODM_Write_DIG(podmpriv,rx_gain);
}
}
break;
case HW_VAR_TRIGGER_GPIO_0:
//rtl8192cu_trigger_gpio_0(Adapter);
break;
#ifdef CONFIG_BT_COEXIST
case HW_VAR_BT_SET_COEXIST:
{
u8 bStart = (*(u8 *)val);
rtl8812_set_dm_bt_coexist(Adapter, bStart);
}
break;
case HW_VAR_BT_ISSUE_DELBA:
{
u8 dir = (*(u8 *)val);
rtl8812_issue_delete_ba(Adapter, dir);
}
break;
#endif
#ifdef CONFIG_SW_ANTENNA_DIVERSITY
case HW_VAR_ANTENNA_DIVERSITY_LINK:
//odm_SwAntDivRestAfterLink8192C(Adapter);
ODM_SwAntDivRestAfterLink(podmpriv);
break;
#endif
#ifdef CONFIG_ANTENNA_DIVERSITY
case HW_VAR_ANTENNA_DIVERSITY_SELECT:
{
u8 Optimum_antenna = (*(u8 *)val);
u8 Ant ;
//switch antenna to Optimum_antenna
//DBG_8192C("==> HW_VAR_ANTENNA_DIVERSITY_SELECT , Ant_(%s)\n",(Optimum_antenna==2)?"A":"B");
if(pHalData->CurAntenna != Optimum_antenna)
{
Ant = (Optimum_antenna==2)?MAIN_ANT:AUX_ANT;
ODM_UpdateRxIdleAnt(&pHalData->odmpriv, Ant);
pHalData->CurAntenna = Optimum_antenna ;
//DBG_8192C("==> HW_VAR_ANTENNA_DIVERSITY_SELECT , Ant_(%s)\n",(Optimum_antenna==2)?"A":"B");
}
}
break;
#endif
case HW_VAR_EFUSE_BYTES: // To set EFUE total used bytes, added by Roger, 2008.12.22.
pHalData->EfuseUsedBytes = *((u16 *)val);
break;
case HW_VAR_FIFO_CLEARN_UP:
{
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(Adapter);
u8 trycnt = 100;
//pause tx
rtw_write8(Adapter,REG_TXPAUSE,0xff);
//keep sn
Adapter->xmitpriv.nqos_ssn = rtw_read16(Adapter,REG_NQOS_SEQ);
if(pwrpriv->bkeepfwalive != _TRUE)
{
//RX DMA stop
rtw_write32(Adapter,REG_RXPKT_NUM,(rtw_read32(Adapter,REG_RXPKT_NUM)|RW_RELEASE_EN));
do{
if(!(rtw_read32(Adapter,REG_RXPKT_NUM)&RXDMA_IDLE))
break;
}while(trycnt--);
if(trycnt ==0)
DBG_8192C("Stop RX DMA failed...... \n");
//RQPN Load 0
rtw_write16(Adapter,REG_RQPN_NPQ,0x0);
rtw_write32(Adapter,REG_RQPN,0x80000000);
rtw_mdelay_os(10);
}
}
break;
case HW_VAR_CHECK_TXBUF:
#ifdef CONFIG_CONCURRENT_MODE
{
int i;
u8 RetryLimit = 0x01;
rtw_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT);
for(i=0;i<1000;i++)
{
if(rtw_read32(Adapter, 0x200) != rtw_read32(Adapter, 0x204))
{
//DBG_871X("packet in tx packet buffer - 0x204=%x, 0x200=%x (%d)\n", rtw_read32(Adapter, 0x204), rtw_read32(Adapter, 0x200), i);
rtw_msleep_os(10);
}
else
{
DBG_871X("no packet in tx packet buffer (%d)\n", i);
break;
}
}
RetryLimit = 0x30;
rtw_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT);
}
#endif
break;
case HW_VAR_H2C_MEDIA_STATUS_RPT:
{
rtl8192e_set_FwMediaStatus_cmd(Adapter , (*(u16 *)val));
}
break;
case HW_VAR_BCN_VALID:
#ifdef CONFIG_CONCURRENT_MODE
if(Adapter->iface_type == IFACE_PORT1)
{
rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) | BIT0);
}
else
#endif
{
//BCN_VALID, BIT16 of REG_DWBCN0_CTRL_8192E = BIT0 of REG_DWBCN0_CTRL_8192E+2, write 1 to clear, Clear by sw
rtw_write8(Adapter, REG_DWBCN0_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN0_CTRL_8192E+2) | BIT0);
}
break;
case HW_VAR_DL_BCN_SEL:
#ifdef CONFIG_CONCURRENT_MODE
if(Adapter->iface_type == IFACE_PORT1)
{
//SW_BCN_SEL - Port1
rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2)|BIT4);
}
else
#endif
{
//SW_BCN_SEL - Port0
rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) & ~BIT4);
}
break;
case HW_VAR_DO_IQK:
pHalData->bNeedIQK = _TRUE;
break;
case HW_VAR_APFM_ON_MAC:
pHalData->bMacPwrCtrlOn = *val;
DBG_8192C("%s: bMacPwrCtrlOn=%d\n", __FUNCTION__, pHalData->bMacPwrCtrlOn);
break;
default:
SetHwReg(Adapter, variable, val);
break;
}
_func_exit_;
}
void GetHwReg8192E(PADAPTER Adapter, u8 variable, u8* val)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
DM_ODM_T *podmpriv = &pHalData->odmpriv;
_func_enter_;
switch(variable)
{
case HW_VAR_TXPAUSE:
val[0] = rtw_read8(Adapter, REG_TXPAUSE);
break;
case HW_VAR_BCN_VALID:
#ifdef CONFIG_CONCURRENT_MODE
if(Adapter->iface_type == IFACE_PORT1)
{
val[0] = (BIT0 & rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2))?_TRUE:_FALSE;
}
else
#endif
{
//BCN_VALID, BIT16 of REG_DWBCN0_CTRL_8192E = BIT0 of REG_DWBCN0_CTRL_8192E+2
val[0] = (BIT0 & rtw_read8(Adapter, REG_DWBCN0_CTRL_8192E+2))?_TRUE:_FALSE;
}
break;
case HW_VAR_FWLPS_RF_ON:
{
//When we halt NIC, we should check if FW LPS is leave.
if(adapter_to_pwrctl(Adapter)->rf_pwrstate == rf_off)
{
// If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave,
// because Fw is unload.
val[0] = _TRUE;
}
else
{
// refine by scott
u32 valCR;
valCR = rtw_read8(Adapter, REG_CR);
valCR &= 0xC0;
if(valCR)
val[0] = _TRUE;
else
val[0] = _FALSE;
}
}
break;
#ifdef CONFIG_ANTENNA_DIVERSITY
case HW_VAR_CURRENT_ANTENNA:
val[0] = pHalData->CurAntenna;
break;
#endif
case HW_VAR_EFUSE_BYTES: // To get EFUE total used bytes, added by Roger, 2008.12.22.
*((u16 *)(val)) = pHalData->EfuseUsedBytes;
break;
case HW_VAR_CHK_HI_QUEUE_EMPTY:
//*val = ((rtw_read32(Adapter, REG_HGQ_INFORMATION)&0x00007f00)==0) ? _TRUE:_FALSE;
*val = (rtw_read16(Adapter, REG_TXPKT_EMPTY)&BIT(10)) ? _TRUE:_FALSE;
break;
case HW_VAR_APFM_ON_MAC:
*val = pHalData->bMacPwrCtrlOn;
break;
case HW_VAR_SYS_CLKR:
*val = rtw_read8(Adapter, REG_SYS_CLKR);
break;
default:
GetHwReg(Adapter, variable, val);
break;
}
_func_exit_;
}
//
// Description:
// Change default setting of specified variable.
//
u8
SetHalDefVar8192E(
IN PADAPTER Adapter,
IN HAL_DEF_VARIABLE eVariable,
IN PVOID pValue
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 bResult = _SUCCESS;
switch(eVariable)
{
default:
bResult =SetHalDefVar(Adapter, eVariable, pValue);
break;
}
return bResult;
}
//
// Description:
// Query setting of specified variable.
//
u8
GetHalDefVar8192E(
IN PADAPTER Adapter,
IN HAL_DEF_VARIABLE eVariable,
IN PVOID pValue
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 bResult = _SUCCESS;
switch(eVariable)
{
case HAL_DEF_IS_SUPPORT_ANT_DIV:
#ifdef CONFIG_ANTENNA_DIVERSITY
*((u8 *)pValue) = (pHalData->AntDivCfg==0)?_FALSE:_TRUE;
#endif
break;
case HAL_DEF_CURRENT_ANTENNA:
#ifdef CONFIG_ANTENNA_DIVERSITY
*(( u8*)pValue) = pHalData->CurAntenna;
#endif
break;
case HAL_DEF_DRVINFO_SZ:
*(( u32*)pValue) = DRVINFO_SZ;
break;
case HAL_DEF_MAX_RECVBUF_SZ:
*(( u32*)pValue) = MAX_RECVBUF_SZ;
break;
case HAL_DEF_RX_PACKET_OFFSET:
*(( u32*)pValue) = RXDESC_SIZE + (DRVINFO_SZ*8);
break;
case HAL_DEF_TX_LDPC:
if(IS_NORMAL_CHIP(pHalData->VersionID))
*((PBOOLEAN)pValue) = _FALSE;
else
*((PBOOLEAN)pValue) = _FALSE;
break;
case HAL_DEF_RX_LDPC:
if(IS_NORMAL_CHIP(pHalData->VersionID))
*((PBOOLEAN)pValue) = _FALSE;
else
*((PBOOLEAN)pValue) = _FALSE;
break;
case HAL_DEF_TX_STBC:
if (pHalData->rf_type == RF_2T2R)
*(u8 *)pValue = 1;
else
*(u8 *)pValue = 0;
break;
case HAL_DEF_RX_STBC:
*(u8 *)pValue = 1;
break;
case HAL_DEF_EXPLICIT_BEAMFORMER:
case HAL_DEF_EXPLICIT_BEAMFORMEE:
*((PBOOLEAN)pValue) = _TRUE;
break;
case HW_DEF_RA_INFO_DUMP:
{
u8 mac_id = *((u8*)pValue);
u32 cmd;
u32 ra_info1,ra_info2;
u32 rate_mask1,rate_mask2;
u8 curr_tx_rate,curr_tx_sgi,hight_rate,lowest_rate;
DBG_871X("============ RA status check Mac_id:%d ===================\n",mac_id);
cmd = 0x40000100 |mac_id;
rtw_write32(Adapter,REG_HMEBOX_E2_E3_8192E,cmd);
rtw_msleep_os(10);
ra_info1 = rtw_read32(Adapter,REG_RSVD5_8192E);
curr_tx_rate = ra_info1&0x7F;
curr_tx_sgi = (ra_info1>>7)&0x01;
DBG_8192C("[ ra_info1:0x%08x ] =>cur_tx_rate= %s,cur_sgi:%d, PWRSTS = 0x%02x \n",
ra_info1,
HDATA_RATE(curr_tx_rate),
curr_tx_sgi,
(ra_info1>>8) & 0x07);
cmd = 0x40000400 |mac_id;
rtw_write32(Adapter,REG_HMEBOX_E2_E3_8192E,cmd);
rtw_msleep_os(10);
ra_info1 = rtw_read32(Adapter,REG_RSVD5_8192E);
ra_info2 = rtw_read32(Adapter,REG_RSVD6_8192E);
rate_mask1 = rtw_read32(Adapter,REG_RSVD7_8192E);
rate_mask2 = rtw_read32(Adapter,REG_RSVD8_8192E);
hight_rate = ra_info2&0xFF;
lowest_rate = (ra_info2>>8) & 0xFF;
DBG_8192C("[ ra_info1:0x%08x ] =>RSSI = %d, BW_setting = 0x%02x, DISRA = 0x%02x, VHT_EN = 0x%02x \n",
ra_info1,
ra_info1&0xFF,
(ra_info1>>8) & 0xFF,
(ra_info1>>16) & 0xFF,
(ra_info1>>24) & 0xFF );
DBG_8192C("[ ra_info2:0x%08x ] =>hight_rate= %s, lowest_rate= %s, SGI = 0x%02x, RateID = %d \n",
ra_info2,
HDATA_RATE(hight_rate),
HDATA_RATE(lowest_rate),
(ra_info2>>16) & 0xFF,
(ra_info2>>24) & 0xFF );
DBG_8192C("rate_mask2:0x%08x , rate_mask1:0x%08x \n",rate_mask2,rate_mask1);
}
break;
default:
bResult = GetHalDefVar(Adapter, eVariable, pValue);
break;
}
return bResult;
}
void rtl8192E_GetHalODMVar(
PADAPTER Adapter,
HAL_ODM_VARIABLE eVariable,
PVOID pValue1,
BOOLEAN bSet)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
PDM_ODM_T podmpriv = &pHalData->odmpriv;
switch(eVariable){
case HAL_ODM_STA_INFO:
break;
default:
break;
}
}
void rtl8192E_SetHalODMVar(
PADAPTER Adapter,
HAL_ODM_VARIABLE eVariable,
PVOID pValue1,
BOOLEAN bSet)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
PDM_ODM_T podmpriv = &pHalData->odmpriv;
//_irqL irqL;
switch(eVariable){
case HAL_ODM_STA_INFO:
{
struct sta_info *psta = (struct sta_info *)pValue1;
if(bSet){
DBG_8192C("### Set STA_(%d) info\n",psta->mac_id);
ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS,psta->mac_id,psta);
}
else{
DBG_8192C("### Clean STA_(%d) info\n",psta->mac_id);
//_enter_critical_bh(&pHalData->odm_stainfo_lock, &irqL);
ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS,psta->mac_id,NULL);
//_exit_critical_bh(&pHalData->odm_stainfo_lock, &irqL);
}
}
break;
case HAL_ODM_P2P_STATE:
ODM_CmnInfoUpdate(podmpriv,ODM_CMNINFO_WIFI_DIRECT,bSet);
break;
case HAL_ODM_WIFI_DISPLAY_STATE:
ODM_CmnInfoUpdate(podmpriv,ODM_CMNINFO_WIFI_DISPLAY,bSet);
break;
default:
break;
}
}
void rtl8192e_start_thread(_adapter *padapter)
{
#ifdef CONFIG_SDIO_HCI
#ifndef CONFIG_SDIO_TX_TASKLET
struct xmit_priv *xmitpriv = &padapter->xmitpriv;
xmitpriv->SdioXmitThread = kernel_thread(rtl8192es_xmit_thread, padapter, CLONE_FS|CLONE_FILES);
if (xmitpriv->SdioXmitThread < 0) {
RT_TRACE(_module_hal_xmit_c_, _drv_err_, ("%s: start rtl8188es_xmit_thread FAIL!!\n", __FUNCTION__));
}
#endif
#endif
}
void rtl8192e_stop_thread(_adapter *padapter)
{
#ifdef CONFIG_SDIO_HCI
#ifndef CONFIG_SDIO_TX_TASKLET
struct xmit_priv *xmitpriv = &padapter->xmitpriv;
// stop xmit_buf_thread
if (xmitpriv->SdioXmitThread ) {
_rtw_up_sema(&xmitpriv->SdioXmitSema);
_rtw_down_sema(&xmitpriv->SdioXmitTerminateSema);
xmitpriv->SdioXmitThread = 0;
}
#endif
#endif
}
void hal_notch_filter_8192E(_adapter *adapter, bool enable)
{
if (enable) {
DBG_871X("Enable notch filter\n");
//rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
} else {
DBG_871X("Disable notch filter\n");
//rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
}
}
void
ReadChipVersion8192E(
IN PADAPTER Adapter
)
{
u32 value32;
HAL_VERSION ChipVersion ;
HAL_DATA_TYPE *pHalData;
u8 tmpvdr;
pHalData = GET_HAL_DATA(Adapter);
value32 = rtw_read32(Adapter, REG_SYS_CFG1_8192E);
DBG_871X("ReadChipVersion192e 0xF0 = 0x%x \n", value32);
_rtw_memset(&ChipVersion, 0,sizeof(HAL_VERSION) );
ChipVersion.ICType = CHIP_8192E;
ChipVersion.RFType = (value32 & RF_TYPE_ID)?RF_2T2R :RF_1T1R;
ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
tmpvdr = (value32 & EXT_VENDOR_ID) >> EXT_VENDOR_ID_SHIFT;
if(tmpvdr == 0x00)
ChipVersion.VendorType = CHIP_VENDOR_TSMC;
else if(tmpvdr == 0x01)
ChipVersion.VendorType = CHIP_VENDOR_SMIC;
else if(tmpvdr == 0x02)
ChipVersion.VendorType = CHIP_VENDOR_UMC;
ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; // IC version (CUT)
pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
#if 1
dump_chip_info(ChipVersion);
#endif
pHalData->VersionID = ChipVersion;
if (IS_1T2R(ChipVersion)){
pHalData->rf_type = RF_1T2R;
pHalData->NumTotalRFPath = 2;
}
else if (IS_2T2R(ChipVersion)){
pHalData->rf_type = RF_2T2R;
pHalData->NumTotalRFPath = 2;
}
else{
pHalData->rf_type = RF_1T1R;
pHalData->NumTotalRFPath = 1;
}
DBG_871X("RF_Type is %x!!\n", pHalData->rf_type);
}
void UpdateHalRAMask8192E(PADAPTER padapter, u32 mac_id, u8 rssi_level)
{
u32 mask,rate_bitmap;
u8 shortGIrate = _FALSE;
u8 arg[4] = {0};
struct sta_info *psta;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
//struct dm_priv *pdmpriv = &pHalData->dmpriv;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
if (mac_id >= NUM_STA) //CAM_SIZE
{
return;
}
psta = pmlmeinfo->FW_sta_info[mac_id].psta;
if(psta == NULL)
{
return;
}
shortGIrate = query_ra_short_GI(psta);
mask = psta->ra_mask;
rate_bitmap = 0xffffffff;
rate_bitmap = ODM_Get_Rate_Bitmap(&pHalData->odmpriv,mac_id,mask,rssi_level);
DBG_871X("%s => mac_id:%d, networkType:0x%02x, mask:0x%08x\n\t ==> rssi_level:%d, rate_bitmap:0x%08x\n",
__FUNCTION__,mac_id,psta->wireless_mode,mask,rssi_level,rate_bitmap);
mask &= rate_bitmap;
#ifdef CONFIG_BT_COEXIST
rate_bitmap = rtw_btcoex_GetRaMask(padapter);
mask &= ~rate_bitmap;
#endif // CONFIG_BT_COEXIST
arg[0] = mac_id;
arg[1] = psta->raid;
arg[2] = shortGIrate;
arg[3] = psta->init_rate;
rtl8192e_set_raid_cmd(padapter, mask, arg);
}
void rtl8192e_init_default_value(_adapter * padapter)
{
PHAL_DATA_TYPE pHalData;
struct pwrctrl_priv *pwrctrlpriv;
struct dm_priv *pdmpriv;
u8 i;
pHalData = GET_HAL_DATA(padapter);
pwrctrlpriv = adapter_to_pwrctl(padapter);
pdmpriv = &pHalData->dmpriv;
//init default value
padapter->registrypriv.wireless_mode = WIRELESS_11BG_24N;
pHalData->fw_ractrl = _FALSE;
if(!pwrctrlpriv->bkeepfwalive)
pHalData->LastHMEBoxNum = 0;
//init dm default value
pHalData->odmpriv.RFCalibrateInfo.bIQKInitialized = _FALSE;
pHalData->odmpriv.RFCalibrateInfo.TM_Trigger = 0;//for IQK
pHalData->pwrGroupCnt = 0;
pHalData->PGMaxGroup= MAX_PG_GROUP;
pHalData->odmpriv.RFCalibrateInfo.ThermalValue_HP_index = 0;
for(i = 0; i < HP_THERMAL_NUM; i++)
pHalData->odmpriv.RFCalibrateInfo.ThermalValue_HP[i] = 0;
pHalData->IntrMask[0] = (u32)( \
//IMR_ROK |
//IMR_RDU |
//IMR_VODOK |
//IMR_VIDOK |
//IMR_BEDOK |
//IMR_BKDOK |
//IMR_MGNTDOK |
//IMR_HIGHDOK |
//IMR_CPWM |
//IMR_CPWM2 |
//IMR_C2HCMD |
//IMR_HISR1_IND_INT |
//IMR_ATIMEND |
//IMR_BCNDMAINT_E |
//IMR_HSISR_IND_ON_INT |
//IMR_BCNDOK0 |
//IMR_BCNDMAINT0 |
//IMR_TSF_BIT32_TOGGLE |
//IMR_TXBCN0OK |
//IMR_TXBCN0ERR |
//IMR_GTINT3 |
//IMR_GTINT4 |
//IMR_TXCCK |
0);
pHalData->IntrMask[1] = (u32)(\
//IMR_RXFOVW |
//IMR_TXFOVW |
//IMR_RXERR |
//IMR_TXERR |
//IMR_ATIMEND_E |
//IMR_BCNDOK1 |
//IMR_BCNDOK2 |
//IMR_BCNDOK3 |
//IMR_BCNDOK4 |
//IMR_BCNDOK5 |
//IMR_BCNDOK6 |
//IMR_BCNDOK7 |
//IMR_BCNDMAINT1 |
//IMR_BCNDMAINT2 |
//IMR_BCNDMAINT3 |
//IMR_BCNDMAINT4 |
//IMR_BCNDMAINT5 |
//IMR_BCNDMAINT6 |
//IMR_BCNDMAINT7 |
0);
pHalData->EfuseHal.fakeEfuseBank = 0;
pHalData->EfuseHal.fakeEfuseUsedBytes = 0;
_rtw_memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE);
_rtw_memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN);
_rtw_memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN);
}
void rtl8192e_set_hal_ops(struct hal_ops *pHalFunc)
{
pHalFunc->free_hal_data = &rtl8192e_free_hal_data;
pHalFunc->dm_init = &rtl8192e_init_dm_priv;
pHalFunc->dm_deinit = &rtl8192e_deinit_dm_priv;
pHalFunc->read_chip_version = &ReadChipVersion8192E;
pHalFunc->set_bwmode_handler = &PHY_SetBWMode8192E;
pHalFunc->set_channel_handler = &PHY_SwChnl8192E;
pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8192E;
pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8192E;
pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8192E;
pHalFunc->hal_dm_watchdog = &rtl8192e_HalDmWatchDog;
pHalFunc->Add_RateATid = &rtl8192e_Add_RateATid;
pHalFunc->run_thread= &rtl8192e_start_thread;
pHalFunc->cancel_thread= &rtl8192e_stop_thread;
#ifdef CONFIG_ANTENNA_DIVERSITY
pHalFunc->AntDivBeforeLinkHandler = &AntDivBeforeLink8192e;
pHalFunc->AntDivCompareHandler = &AntDivCompare8192e;
#endif
pHalFunc->read_bbreg = &PHY_QueryBBReg8192E;
pHalFunc->write_bbreg = &PHY_SetBBReg8192E;
pHalFunc->read_rfreg = &PHY_QueryRFReg8192E;
pHalFunc->write_rfreg = &PHY_SetRFReg8192E;
// Efuse related function
pHalFunc->EfusePowerSwitch = &rtl8192E_EfusePowerSwitch;
pHalFunc->ReadEFuse = &rtl8192E_ReadEFuse;
pHalFunc->EFUSEGetEfuseDefinition = &rtl8192E_EFUSE_GetEfuseDefinition;
pHalFunc->EfuseGetCurrentSize = &rtl8192E_EfuseGetCurrentSize;
pHalFunc->Efuse_PgPacketRead = &rtl8192E_Efuse_PgPacketRead;
pHalFunc->Efuse_PgPacketWrite = &rtl8192E_Efuse_PgPacketWrite;
pHalFunc->Efuse_WordEnableDataWrite = &rtl8192E_Efuse_WordEnableDataWrite;
#ifdef DBG_CONFIG_ERROR_DETECT
pHalFunc->sreset_init_value = &sreset_init_value;
pHalFunc->sreset_reset_value = &sreset_reset_value;
pHalFunc->silentreset = &sreset_reset;
pHalFunc->sreset_xmit_status_check = &rtl8192e_sreset_xmit_status_check;
pHalFunc->sreset_linked_status_check = &rtl8192e_sreset_linked_status_check;
pHalFunc->sreset_get_wifi_status = &sreset_get_wifi_status;
pHalFunc->sreset_inprogress= &sreset_inprogress;
#endif //DBG_CONFIG_ERROR_DETECT
pHalFunc->GetHalODMVarHandler = &rtl8192E_GetHalODMVar;
pHalFunc->SetHalODMVarHandler = &rtl8192E_SetHalODMVar;
//pHalFunc->hal_notch_filter = &hal_notch_filter_rtl8192E;
pHalFunc->UpdateRAMaskHandler = &UpdateHalRAMask8192E;
}