rtl8192eu-linux-driver/core/rtw_io.c
Magnus Bergmark 1387cf623d
The official RTL8192EU linux driver from D-Link Australia
Version information: 20140812_rtl8192EU_linux_v4.3.1.1_11320
  2014-08-12
  version 4.3.1.1_11320
Source:
  ftp://files.dlink.com.au/products/DWA-131/REV_E/Drivers/DWA-131_Linux_driver_v4.3.1.1.zip

This version does not currently work on newer kernels, but it does
contain USB ID 2001:3319, which a lot of other repos in GitHub does not.
2015-08-18 21:03:11 +02:00

514 lines
14 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
/*
The purpose of rtw_io.c
a. provides the API
b. provides the protocol engine
c. provides the software interface between caller and the hardware interface
Compiler Flag Option:
1. CONFIG_SDIO_HCI:
a. USE_SYNC_IRP: Only sync operations are provided.
b. USE_ASYNC_IRP:Both sync/async operations are provided.
2. CONFIG_USB_HCI:
a. USE_ASYNC_IRP: Both sync/async operations are provided.
3. CONFIG_CFIO_HCI:
b. USE_SYNC_IRP: Only sync operations are provided.
Only sync read/rtw_write_mem operations are provided.
jackson@realtek.com.tw
*/
#define _RTW_IO_C_
#include <drv_types.h>
#if defined (PLATFORM_LINUX) && defined (PLATFORM_WINDOWS)
#error "Shall be Linux or Windows, but not both!\n"
#endif
#ifdef CONFIG_SDIO_HCI
#define rtw_le16_to_cpu(val) val
#define rtw_le32_to_cpu(val) val
#define rtw_cpu_to_le16(val) val
#define rtw_cpu_to_le32(val) val
#else
#define rtw_le16_to_cpu(val) le16_to_cpu(val)
#define rtw_le32_to_cpu(val) le32_to_cpu(val)
#define rtw_cpu_to_le16(val) cpu_to_le16(val)
#define rtw_cpu_to_le32(val) cpu_to_le32(val)
#endif
u8 _rtw_read8(_adapter *adapter, u32 addr)
{
u8 r_val;
//struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue;
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
u8 (*_read8)(struct intf_hdl *pintfhdl, u32 addr);
_func_enter_;
_read8 = pintfhdl->io_ops._read8;
r_val = _read8(pintfhdl, addr);
_func_exit_;
return r_val;
}
u16 _rtw_read16(_adapter *adapter, u32 addr)
{
u16 r_val;
//struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue;
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
u16 (*_read16)(struct intf_hdl *pintfhdl, u32 addr);
_func_enter_;
_read16 = pintfhdl->io_ops._read16;
r_val = _read16(pintfhdl, addr);
_func_exit_;
return rtw_le16_to_cpu(r_val);
}
u32 _rtw_read32(_adapter *adapter, u32 addr)
{
u32 r_val;
//struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue;
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
u32 (*_read32)(struct intf_hdl *pintfhdl, u32 addr);
_func_enter_;
_read32 = pintfhdl->io_ops._read32;
r_val = _read32(pintfhdl, addr);
_func_exit_;
return rtw_le32_to_cpu(r_val);
}
int _rtw_write8(_adapter *adapter, u32 addr, u8 val)
{
//struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue;
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
int (*_write8)(struct intf_hdl *pintfhdl, u32 addr, u8 val);
int ret;
_func_enter_;
_write8 = pintfhdl->io_ops._write8;
ret = _write8(pintfhdl, addr, val);
_func_exit_;
return RTW_STATUS_CODE(ret);
}
int _rtw_write16(_adapter *adapter, u32 addr, u16 val)
{
//struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue;
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
int (*_write16)(struct intf_hdl *pintfhdl, u32 addr, u16 val);
int ret;
_func_enter_;
_write16 = pintfhdl->io_ops._write16;
val = rtw_cpu_to_le16(val);
ret = _write16(pintfhdl, addr, val);
_func_exit_;
return RTW_STATUS_CODE(ret);
}
int _rtw_write32(_adapter *adapter, u32 addr, u32 val)
{
//struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue;
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
int (*_write32)(struct intf_hdl *pintfhdl, u32 addr, u32 val);
int ret;
_func_enter_;
_write32 = pintfhdl->io_ops._write32;
val = rtw_cpu_to_le32(val);
ret = _write32(pintfhdl, addr, val);
_func_exit_;
return RTW_STATUS_CODE(ret);
}
int _rtw_writeN(_adapter *adapter, u32 addr ,u32 length , u8 *pdata)
{
//struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue;
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = (struct intf_hdl*)(&(pio_priv->intf));
int (*_writeN)(struct intf_hdl *pintfhdl, u32 addr,u32 length, u8 *pdata);
int ret;
_func_enter_;
_writeN = pintfhdl->io_ops._writeN;
ret = _writeN(pintfhdl, addr,length,pdata);
_func_exit_;
return RTW_STATUS_CODE(ret);
}
#ifdef CONFIG_SDIO_HCI
u8 _rtw_sd_f0_read8(_adapter *adapter, u32 addr)
{
u8 r_val = 0x00;
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
u8 (*_sd_f0_read8)(struct intf_hdl *pintfhdl, u32 addr);
_func_enter_;
_sd_f0_read8 = pintfhdl->io_ops._sd_f0_read8;
if (_sd_f0_read8)
r_val = _sd_f0_read8(pintfhdl, addr);
else
DBG_871X_LEVEL(_drv_warning_, FUNC_ADPT_FMT" _sd_f0_read8 callback is NULL\n", FUNC_ADPT_ARG(adapter));
_func_exit_;
return r_val;
}
#endif /* CONFIG_SDIO_HCI */
int _rtw_write8_async(_adapter *adapter, u32 addr, u8 val)
{
//struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue;
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
int (*_write8_async)(struct intf_hdl *pintfhdl, u32 addr, u8 val);
int ret;
_func_enter_;
_write8_async = pintfhdl->io_ops._write8_async;
ret = _write8_async(pintfhdl, addr, val);
_func_exit_;
return RTW_STATUS_CODE(ret);
}
int _rtw_write16_async(_adapter *adapter, u32 addr, u16 val)
{
//struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue;
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
int (*_write16_async)(struct intf_hdl *pintfhdl, u32 addr, u16 val);
int ret;
_func_enter_;
_write16_async = pintfhdl->io_ops._write16_async;
val = rtw_cpu_to_le16(val);
ret = _write16_async(pintfhdl, addr, val);
_func_exit_;
return RTW_STATUS_CODE(ret);
}
int _rtw_write32_async(_adapter *adapter, u32 addr, u32 val)
{
//struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue;
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
int (*_write32_async)(struct intf_hdl *pintfhdl, u32 addr, u32 val);
int ret;
_func_enter_;
_write32_async = pintfhdl->io_ops._write32_async;
val = rtw_cpu_to_le32(val);
ret = _write32_async(pintfhdl, addr, val);
_func_exit_;
return RTW_STATUS_CODE(ret);
}
void _rtw_read_mem(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem)
{
void (*_read_mem)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem);
//struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue;
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
_func_enter_;
if( (adapter->bDriverStopped ==_TRUE) || (adapter->bSurpriseRemoved == _TRUE))
{
RT_TRACE(_module_rtl871x_io_c_, _drv_info_, ("rtw_read_mem:bDriverStopped(%d) OR bSurpriseRemoved(%d)", adapter->bDriverStopped, adapter->bSurpriseRemoved));
return;
}
_read_mem = pintfhdl->io_ops._read_mem;
_read_mem(pintfhdl, addr, cnt, pmem);
_func_exit_;
}
void _rtw_write_mem(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem)
{
void (*_write_mem)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem);
//struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue;
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
_func_enter_;
_write_mem = pintfhdl->io_ops._write_mem;
_write_mem(pintfhdl, addr, cnt, pmem);
_func_exit_;
}
void _rtw_read_port(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem)
{
u32 (*_read_port)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem);
//struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue;
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
_func_enter_;
if( (adapter->bDriverStopped ==_TRUE) || (adapter->bSurpriseRemoved == _TRUE))
{
RT_TRACE(_module_rtl871x_io_c_, _drv_info_, ("rtw_read_port:bDriverStopped(%d) OR bSurpriseRemoved(%d)", adapter->bDriverStopped, adapter->bSurpriseRemoved));
return;
}
_read_port = pintfhdl->io_ops._read_port;
_read_port(pintfhdl, addr, cnt, pmem);
_func_exit_;
}
void _rtw_read_port_cancel(_adapter *adapter)
{
void (*_read_port_cancel)(struct intf_hdl *pintfhdl);
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
_read_port_cancel = pintfhdl->io_ops._read_port_cancel;
RTW_DISABLE_FUNC(adapter, DF_RX_BIT);
if(_read_port_cancel)
_read_port_cancel(pintfhdl);
}
u32 _rtw_write_port(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem)
{
u32 (*_write_port)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem);
//struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue;
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
u32 ret = _SUCCESS;
_func_enter_;
_write_port = pintfhdl->io_ops._write_port;
ret = _write_port(pintfhdl, addr, cnt, pmem);
_func_exit_;
return ret;
}
u32 _rtw_write_port_and_wait(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem, int timeout_ms)
{
int ret = _SUCCESS;
struct xmit_buf *pxmitbuf = (struct xmit_buf *)pmem;
struct submit_ctx sctx;
rtw_sctx_init(&sctx, timeout_ms);
pxmitbuf->sctx = &sctx;
ret = _rtw_write_port(adapter, addr, cnt, pmem);
if (ret == _SUCCESS)
ret = rtw_sctx_wait(&sctx, __func__);
return ret;
}
void _rtw_write_port_cancel(_adapter *adapter)
{
void (*_write_port_cancel)(struct intf_hdl *pintfhdl);
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
_write_port_cancel = pintfhdl->io_ops._write_port_cancel;
RTW_DISABLE_FUNC(adapter, DF_TX_BIT);
if(_write_port_cancel)
_write_port_cancel(pintfhdl);
}
int rtw_init_io_priv(_adapter *padapter, void (*set_intf_ops)(_adapter *padapter,struct _io_ops *pops))
{
struct io_priv *piopriv = &padapter->iopriv;
struct intf_hdl *pintf = &piopriv->intf;
if (set_intf_ops == NULL)
return _FAIL;
piopriv->padapter = padapter;
pintf->padapter = padapter;
pintf->pintf_dev = adapter_to_dvobj(padapter);
set_intf_ops(padapter,&pintf->io_ops);
return _SUCCESS;
}
/*
* Increase and check if the continual_io_error of this @param dvobjprive is larger than MAX_CONTINUAL_IO_ERR
* @return _TRUE:
* @return _FALSE:
*/
int rtw_inc_and_chk_continual_io_error(struct dvobj_priv *dvobj)
{
int ret = _FALSE;
int value;
if( (value=ATOMIC_INC_RETURN(&dvobj->continual_io_error)) > MAX_CONTINUAL_IO_ERR) {
DBG_871X("[dvobj:%p][ERROR] continual_io_error:%d > %d\n", dvobj, value, MAX_CONTINUAL_IO_ERR);
ret = _TRUE;
} else {
//DBG_871X("[dvobj:%p] continual_io_error:%d\n", dvobj, value);
}
return ret;
}
/*
* Set the continual_io_error of this @param dvobjprive to 0
*/
void rtw_reset_continual_io_error(struct dvobj_priv *dvobj)
{
ATOMIC_SET(&dvobj->continual_io_error, 0);
}
#ifdef DBG_IO
u16 read_sniff_ranges[][2] = {
//{0x520, 0x523},
};
u16 write_sniff_ranges[][2] = {
//{0x520, 0x523},
//{0x4c, 0x4c},
};
int read_sniff_num = sizeof(read_sniff_ranges)/sizeof(u16)/2;
int write_sniff_num = sizeof(write_sniff_ranges)/sizeof(u16)/2;
bool match_read_sniff_ranges(u16 addr, u16 len)
{
int i;
for (i = 0; i<read_sniff_num; i++) {
if (addr + len > read_sniff_ranges[i][0] && addr <= read_sniff_ranges[i][1])
return _TRUE;
}
return _FALSE;
}
bool match_write_sniff_ranges(u16 addr, u16 len)
{
int i;
for (i = 0; i<write_sniff_num; i++) {
if (addr + len > write_sniff_ranges[i][0] && addr <= write_sniff_ranges[i][1])
return _TRUE;
}
return _FALSE;
}
u8 dbg_rtw_read8(_adapter *adapter, u32 addr, const char *caller, const int line)
{
u8 val = _rtw_read8(adapter, addr);
if (match_read_sniff_ranges(addr, 1))
DBG_871X("DBG_IO %s:%d rtw_read8(0x%04x) return 0x%02x\n", caller, line, addr, val);
return val;
}
u16 dbg_rtw_read16(_adapter *adapter, u32 addr, const char *caller, const int line)
{
u16 val = _rtw_read16(adapter, addr);
if (match_read_sniff_ranges(addr, 2))
DBG_871X("DBG_IO %s:%d rtw_read16(0x%04x) return 0x%04x\n", caller, line, addr, val);
return val;
}
u32 dbg_rtw_read32(_adapter *adapter, u32 addr, const char *caller, const int line)
{
u32 val = _rtw_read32(adapter, addr);
if (match_read_sniff_ranges(addr, 4))
DBG_871X("DBG_IO %s:%d rtw_read32(0x%04x) return 0x%08x\n", caller, line, addr, val);
return val;
}
int dbg_rtw_write8(_adapter *adapter, u32 addr, u8 val, const char *caller, const int line)
{
if (match_write_sniff_ranges(addr, 1))
DBG_871X("DBG_IO %s:%d rtw_write8(0x%04x, 0x%02x)\n", caller, line, addr, val);
return _rtw_write8(adapter, addr, val);
}
int dbg_rtw_write16(_adapter *adapter, u32 addr, u16 val, const char *caller, const int line)
{
if (match_write_sniff_ranges(addr, 2))
DBG_871X("DBG_IO %s:%d rtw_write16(0x%04x, 0x%04x)\n", caller, line, addr, val);
return _rtw_write16(adapter, addr, val);
}
int dbg_rtw_write32(_adapter *adapter, u32 addr, u32 val, const char *caller, const int line)
{
if (match_write_sniff_ranges(addr, 4))
DBG_871X("DBG_IO %s:%d rtw_write32(0x%04x, 0x%08x)\n", caller, line, addr, val);
return _rtw_write32(adapter, addr, val);
}
int dbg_rtw_writeN(_adapter *adapter, u32 addr ,u32 length , u8 *data, const char *caller, const int line)
{
if (match_write_sniff_ranges(addr, length))
DBG_871X("DBG_IO %s:%d rtw_writeN(0x%04x, %u)\n", caller, line, addr, length);
return _rtw_writeN(adapter, addr, length, data);
}
#endif