rtl8192eu-linux-driver/hal/rtl8192e/rtl8192e_hal_init.c
2021-10-12 16:02:19 +02:00

4832 lines
137 KiB
C
Raw Blame History

/******************************************************************************
*
* Copyright(c) 2012 - 2017 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#define _RTL8192E_HAL_INIT_C_
/* #include <drv_types.h> */
#include <rtl8192e_hal.h>
#include "hal8192e_fw.h"
/* -------------------------------------------------------------------------
*
* LLT R/W/Init function
*
* ------------------------------------------------------------------------- */
static s32 _LLTWrite(PADAPTER padapter, u32 address, u32 data)
{
s32 status = _SUCCESS;
s8 count = POLLING_LLT_THRESHOLD;
u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
rtw_write32(padapter, REG_LLT_INIT, value);
/* polling */
do {
value = rtw_read32(padapter, REG_LLT_INIT);
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
break;
} while (--count);
if (count <= 0) {
RTW_INFO("Failed to polling write LLT done at address %d!\n", address);
status = _FAIL;
}
return status;
}
u8 _LLTRead(PADAPTER padapter, u32 address)
{
s32 count = POLLING_LLT_THRESHOLD;
u32 value = _LLT_INIT_ADDR(address) | _LLT_OP(_LLT_READ_ACCESS);
u16 LLTReg = REG_LLT_INIT;
rtw_write32(padapter, LLTReg, value);
/* polling and get value */
do {
value = rtw_read32(padapter, LLTReg);
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
return (u8)value;
} while (--count);
return 0xFF;
}
s32 InitLLTTable8192E(PADAPTER padapter, u8 txpktbuf_bndy)
{
s32 status = _FAIL;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u32 value32;
systime start = 0;
u32 passing_time = 0;
#if 1
value32 = rtw_read32(padapter, REG_AUTO_LLT);
rtw_write32(padapter, REG_AUTO_LLT, value32 | BIT_AUTO_INIT_LLT);
start = rtw_get_current_time();
while (((value32 = rtw_read32(padapter, REG_AUTO_LLT)) & BIT_AUTO_INIT_LLT)
&& ((passing_time = rtw_get_passing_time_ms(start)) < 1000)
)
rtw_usleep_os(2);
if (value32 & BIT_AUTO_INIT_LLT) {
RTW_INFO("Auto %s(%08x) failed\n", __FUNCTION__, value32);
status = _FAIL;
} else {
RTW_INFO("Auto %s success\n", __FUNCTION__);
status = _SUCCESS;
}
#else
for (i = 0; i < (txpktbuf_bndy - 1); i++) {
status = _LLTWrite(padapter, i, i + 1);
if (_SUCCESS != status)
return status;
}
/* end of list */
status = _LLTWrite(padapter, (txpktbuf_bndy - 1), 0xFF);
if (_SUCCESS != status)
return status;
/* Make the other pages as ring buffer */
/* This ring buffer is used as beacon buffer if we config this MAC as two MAC transfer. */
/* Otherwise used as local loopback buffer. */
for (i = txpktbuf_bndy; i < Last_Entry_Of_TxPktBuf; i++) {
status = _LLTWrite(padapter, i, (i + 1));
if (_SUCCESS != status)
return status;
}
/* Let last entry point to the start entry of ring buffer */
status = _LLTWrite(padapter, Last_Entry_Of_TxPktBuf, txpktbuf_bndy);
if (_SUCCESS != status)
return status;
#endif
return status;
}
BOOLEAN HalDetectPwrDownMode8192E(PADAPTER Adapter)
{
u8 tmpvalue = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct pwrctrl_priv *pwrctrlpriv = adapter_to_pwrctl(Adapter);
EFUSE_ShadowRead(Adapter, 1, EEPROM_RF_FEATURE_OPTION_8192E, (u32 *)&tmpvalue);
/* 2010/08/25 MH INF priority > PDN Efuse value. */
if (tmpvalue & BIT(4) && pwrctrlpriv->reg_pdnmode)
pHalData->pwrdown = _TRUE;
else
pHalData->pwrdown = _FALSE;
RTW_INFO("HalDetectPwrDownMode(): PDN=%d\n", pHalData->pwrdown);
return pHalData->pwrdown;
} /* HalDetectPwrDownMode */
#if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
void Hal_DetectWoWMode(PADAPTER pAdapter)
{
adapter_to_pwrctl(pAdapter)->bSupportRemoteWakeup = _TRUE;
}
#endif
static VOID
_FWDownloadEnable_8192E(
IN PADAPTER padapter,
IN BOOLEAN enable
)
{
u8 tmp;
if (enable) {
/* MCU firmware download enable. */
tmp = rtw_read8(padapter, REG_MCUFWDL);
rtw_write8(padapter, REG_MCUFWDL, tmp | 0x01);
/* 8051 reset */
tmp = rtw_read8(padapter, REG_MCUFWDL + 2);
rtw_write8(padapter, REG_MCUFWDL + 2, tmp & 0xf7);
} else {
/* MCU firmware download disable. */
tmp = rtw_read8(padapter, REG_MCUFWDL);
rtw_write8(padapter, REG_MCUFWDL, tmp & 0xfe);
}
}
#ifdef CONFIG_PLATFORM_HISILICON
#define MAX_REG_BOLCK_SIZE 4
#else
#define MAX_REG_BOLCK_SIZE 254
#endif
static int
_BlockWrite_8192E(
IN PADAPTER padapter,
IN PVOID buffer,
IN u32 buffSize
)
{
int ret = _SUCCESS;
u32 blockSize_p1 = 4; /* (Default) Phase #1 : PCI muse use 4-byte write to download FW */
u32 blockSize_p2 = 8; /* Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */
u32 blockSize_p3 = 1; /* Phase #3 : Use 1-byte, the remnant of FW image. */
u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
u32 remainSize_p1 = 0, remainSize_p2 = 0;
u8 *bufferPtr = (u8 *)buffer;
u32 i = 0, offset = 0;
#ifdef CONFIG_PCI_HCI
u8 remainFW[4] = {0, 0, 0, 0};
u8 *p = NULL;
#endif
#ifdef CONFIG_USB_HCI
blockSize_p1 = MAX_REG_BOLCK_SIZE;
#endif
/* 3 Phase #1 */
blockCount_p1 = buffSize / blockSize_p1;
remainSize_p1 = buffSize % blockSize_p1;
for (i = 0; i < blockCount_p1; i++) {
#ifdef CONFIG_USB_HCI
ret = rtw_writeN(padapter, (FW_START_ADDRESS + i * blockSize_p1), blockSize_p1, (bufferPtr + i * blockSize_p1));
#else
ret = rtw_write32(padapter, (FW_START_ADDRESS + i * blockSize_p1), le32_to_cpu(*((u32 *)(bufferPtr + i * blockSize_p1))));
#endif
if (ret == _FAIL)
goto exit;
}
#ifdef CONFIG_PCI_HCI
p = (u8 *)((u32 *)(bufferPtr + blockCount_p1 * blockSize_p1));
if (remainSize_p1) {
switch (remainSize_p1) {
case 0:
break;
case 3:
remainFW[2] = *(p + 2);
case 2:
remainFW[1] = *(p + 1);
case 1:
remainFW[0] = *(p);
ret = rtw_write32(padapter, (FW_START_ADDRESS + blockCount_p1 * blockSize_p1),
le32_to_cpu(*(u32 *)remainFW));
}
return ret;
}
#endif
/* 3 Phase #2 */
if (remainSize_p1) {
offset = blockCount_p1 * blockSize_p1;
blockCount_p2 = remainSize_p1 / blockSize_p2;
remainSize_p2 = remainSize_p1 % blockSize_p2;
#ifdef CONFIG_USB_HCI
for (i = 0; i < blockCount_p2; i++) {
ret = rtw_writeN(padapter, (FW_START_ADDRESS + offset + i * blockSize_p2), blockSize_p2, (bufferPtr + offset + i * blockSize_p2));
if (ret == _FAIL)
goto exit;
}
#endif
}
/* 3 Phase #3 */
if (remainSize_p2) {
offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
blockCount_p3 = remainSize_p2 / blockSize_p3;
for (i = 0 ; i < blockCount_p3 ; i++) {
ret = rtw_write8(padapter, (FW_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
if (ret == _FAIL)
goto exit;
}
}
exit:
return ret;
}
static int
_PageWrite_8192E(
IN PADAPTER padapter,
IN u32 page,
IN PVOID buffer,
IN u32 size
)
{
u8 value8;
u8 u8Page = (u8)(page & 0x07) ;
value8 = (rtw_read8(padapter, REG_MCUFWDL + 2) & 0xF8) | u8Page ;
rtw_write8(padapter, REG_MCUFWDL + 2, value8);
return _BlockWrite_8192E(padapter, buffer, size);
}
static int
_WriteFW_8192E(
IN PADAPTER padapter,
IN PVOID buffer,
IN u32 size
)
{
/* Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */
int ret = _SUCCESS;
u32 pageNums, remainSize ;
u32 page, offset;
u8 *bufferPtr = (u8 *)buffer;
#ifdef CONFIG_PCI_HCI
/* 20100120 Joseph: Add for 88CE normal chip. */
/* Fill in zero to make firmware image to dword alignment.
* _FillDummy(bufferPtr, &size); */
#endif
pageNums = size / MAX_DLFW_PAGE_SIZE ;
/* RT_ASSERT((pageNums <= 4), ("Page numbers should not greater then 4\n")); */
remainSize = size % MAX_DLFW_PAGE_SIZE;
for (page = 0; page < pageNums; page++) {
offset = page * MAX_DLFW_PAGE_SIZE;
ret = _PageWrite_8192E(padapter, page, bufferPtr + offset, MAX_DLFW_PAGE_SIZE);
if (ret == _FAIL)
goto exit;
}
if (remainSize) {
offset = pageNums * MAX_DLFW_PAGE_SIZE;
page = pageNums;
ret = _PageWrite_8192E(padapter, page, bufferPtr + offset, remainSize);
if (ret == _FAIL)
goto exit;
}
exit:
return ret;
}
void _8051Reset8192E(PADAPTER padapter)
{
u8 u1bTmp, u1bTmp2;
u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL);
rtw_write8(padapter, REG_RSV_CTRL, (u1bTmp2 & (~BIT1)));
/* Reset MCU IO Wrapper,suggested by SD1-Gimmy */
u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL + 1);
rtw_write8(padapter, REG_RSV_CTRL + 1, (u1bTmp2 & (~BIT0)));
/* Reset 8051 */
u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN + 1);
rtw_write8(padapter, REG_SYS_FUNC_EN + 1, u1bTmp & (~BIT2));
u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL);
rtw_write8(padapter, REG_RSV_CTRL, (u1bTmp2 & (~BIT1)));
/* Enable MCU IO Wrapper */
u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL + 1);
rtw_write8(padapter, REG_RSV_CTRL + 1, u1bTmp2 | BIT0);
/* Enable 8051 */
rtw_write8(padapter, REG_SYS_FUNC_EN + 1, u1bTmp | (BIT2));
RTW_INFO("=====> _8051Reset8192E(): 8051 reset success .\n");
}
static s32 polling_fwdl_chksum(_adapter *adapter, u32 min_cnt, u32 timeout_ms)
{
s32 ret = _FAIL;
u32 value32;
systime start = rtw_get_current_time();
u32 cnt = 0;
/* polling CheckSum report */
do {
cnt++;
value32 = rtw_read32(adapter, REG_MCUFWDL);
if (value32 & FWDL_ChkSum_rpt || RTW_CANNOT_IO(adapter))
break;
yield();
} while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt);
if (!(value32 & FWDL_ChkSum_rpt))
goto exit;
if (rtw_fwdl_test_trigger_chksum_fail())
goto exit;
ret = _SUCCESS;
exit:
RTW_INFO("%s: Checksum report %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __FUNCTION__
, (ret == _SUCCESS) ? "OK" : "Fail", cnt, rtw_get_passing_time_ms(start), value32);
return ret;
}
static s32 _FWFreeToGo8192E(_adapter *adapter, u32 min_cnt, u32 timeout_ms)
{
s32 ret = _FAIL;
u32 value32;
systime start = rtw_get_current_time();
u32 cnt = 0;
value32 = rtw_read32(adapter, REG_MCUFWDL);
value32 |= MCUFWDL_RDY;
value32 &= ~WINTINI_RDY;
rtw_write32(adapter, REG_MCUFWDL, value32);
_8051Reset8192E(adapter);
/* polling for FW ready */
do {
cnt++;
value32 = rtw_read32(adapter, REG_MCUFWDL);
if (value32 & WINTINI_RDY || RTW_CANNOT_IO(adapter))
break;
yield();
} while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt);
if (!(value32 & WINTINI_RDY))
goto exit;
if (rtw_fwdl_test_trigger_wintint_rdy_fail())
goto exit;
ret = _SUCCESS;
exit:
RTW_INFO("%s: Polling FW ready %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __FUNCTION__
, (ret == _SUCCESS) ? "OK" : "Fail", cnt, rtw_get_passing_time_ms(start), value32);
return ret;
}
#ifdef CONFIG_FILE_FWIMG
extern char *rtw_fw_file_path;
extern char *rtw_fw_wow_file_path;
u8 FwBuffer[FW_SIZE_8192E];
#endif
s32
FirmwareDownload8192E(
IN PADAPTER Adapter,
IN BOOLEAN bUsedWoWLANFw
)
{
s32 rtStatus = _SUCCESS;
u8 write_fw = 0;
systime fwdl_start_time;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
u8 *pFwImageFileName;
u8 *pucMappedFile = NULL;
PRT_FIRMWARE_8192E pFirmware = NULL;
u8 *pFwHdr = NULL;
u8 *pFirmwareBuf;
u32 FirmwareLen;
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(Adapter);
#ifdef CONFIG_FILE_FWIMG
u8 *fwfilepath;
#endif
pFirmware = (PRT_FIRMWARE_8192E)rtw_zmalloc(sizeof(RT_FIRMWARE_8192E));
if (!pFirmware) {
rtStatus = _FAIL;
goto exit;
}
#ifdef CONFIG_FILE_FWIMG
#ifdef CONFIG_WOWLAN
if (bUsedWoWLANFw)
fwfilepath = rtw_fw_wow_file_path;
else
#endif
fwfilepath = rtw_fw_file_path;
if (rtw_is_file_readable(fwfilepath) == _TRUE) {
RTW_INFO("%s acquire FW from file:%s\n", __func__, fwfilepath);
pFirmware->eFWSource = FW_SOURCE_IMG_FILE;
} else
#endif /* CONFIG_FILE_FWIMG */
{
#ifdef CONFIG_EMBEDDED_FWIMG
pFirmware->eFWSource = FW_SOURCE_HEADER_FILE;
#else
pFirmware->eFWSource = FW_SOURCE_IMG_FILE; /* We should decided by Reg. */
#endif
}
RTW_INFO(" ===> FirmwareDownload88E() fw source from %s.\n", (pFirmware->eFWSource ? "Header" : "File"));
switch (pFirmware->eFWSource) {
case FW_SOURCE_IMG_FILE:
#ifdef CONFIG_FILE_FWIMG
rtStatus = rtw_retrieve_from_file(fwfilepath, FwBuffer, FW_SIZE_8192E);
pFirmware->ulFwLength = rtStatus >= 0 ? rtStatus : 0;
pFirmware->szFwBuffer = FwBuffer;
#endif
break;
case FW_SOURCE_HEADER_FILE:
if (bUsedWoWLANFw) {
#ifdef CONFIG_WOWLAN
if (pwrpriv->wowlan_mode) {
pFirmware->szFwBuffer = array_mp_8192e_fw_wowlan;
pFirmware->ulFwLength = array_length_mp_8192e_fw_wowlan;
RTW_INFO("%s fw:%s, size: %d\n", __FUNCTION__, "WoWLAN", pFirmware->ulFwLength);
}
#endif /* CONFIG_WOWLAN */
#ifdef CONFIG_AP_WOWLAN
if (pwrpriv->wowlan_ap_mode) {
pFirmware->szFwBuffer = array_mp_8192e_fw_ap;
pFirmware->ulFwLength = array_length_mp_8192e_fw_ap;
RTW_INFO(" ===> %s fw: %s, size: %d\n", __FUNCTION__, "AP_WoWLAN", pFirmware->ulFwLength);
}
#endif /* CONFIG_AP_WOWLAN */
} else {
pFirmware->szFwBuffer = array_mp_8192e_fw_nic;
pFirmware->ulFwLength = array_length_mp_8192e_fw_nic;
RTW_INFO("%s fw:%s, size: %d\n", __FUNCTION__, "NIC", pFirmware->ulFwLength);
}
break;
}
if ((pFirmware->ulFwLength - 32) > FW_SIZE_8192E) {
rtStatus = _FAIL;
RTW_ERR("Firmware size:%u exceed %u\n", pFirmware->ulFwLength, FW_SIZE_8192E);
goto exit;
}
pFirmwareBuf = pFirmware->szFwBuffer;
FirmwareLen = pFirmware->ulFwLength;
pFwHdr = (u8 *)pFirmware->szFwBuffer;
if (IS_FW_HEADER_EXIST_8192E(pFwHdr)) {
/* Shift 32 bytes for FW header */
pFirmwareBuf = pFirmwareBuf + 32;
FirmwareLen = FirmwareLen - 32;
pHalData->firmware_version = (u16)GET_FIRMWARE_HDR_VERSION_8192E(pFwHdr);
pHalData->firmware_sub_version = (u16)GET_FIRMWARE_HDR_SUB_VER_8192E(pFwHdr);
pHalData->FirmwareSignature = (u16)GET_FIRMWARE_HDR_SIGNATURE_8192E(pFwHdr);
RTW_INFO("%s: fw_ver=%d fw_subver=%d sig=0x%x\n",
__FUNCTION__, pHalData->firmware_version, pHalData->firmware_sub_version, pHalData->FirmwareSignature);
} else
RTW_INFO("%s:FW header check failed .....\n", __FUNCTION__);
/* Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, */
/* or it will cause download Fw fail. 2010.02.01. by tynli. */
if (rtw_read8(Adapter, REG_MCUFWDL) & BIT7) { /* 8051 RAM code */
rtw_write8(Adapter, REG_MCUFWDL, 0x00);
_8051Reset8192E(Adapter);
}
_FWDownloadEnable_8192E(Adapter, _TRUE);
fwdl_start_time = rtw_get_current_time();
while (!RTW_CANNOT_IO(Adapter)
&& (write_fw++ < 3 || rtw_get_passing_time_ms(fwdl_start_time) < 500)) {
/* reset FWDL chksum */
rtw_write8(Adapter, REG_MCUFWDL, rtw_read8(Adapter, REG_MCUFWDL) | FWDL_ChkSum_rpt);
rtStatus = _WriteFW_8192E(Adapter, pFirmwareBuf, FirmwareLen);
if (rtStatus != _SUCCESS)
continue;
rtStatus = polling_fwdl_chksum(Adapter, 5, 50);
if (rtStatus == _SUCCESS)
break;
}
_FWDownloadEnable_8192E(Adapter, _FALSE);
if (_SUCCESS != rtStatus)
goto fwdl_stat;
rtStatus = _FWFreeToGo8192E(Adapter, 10, 200);
if (_SUCCESS != rtStatus)
goto fwdl_stat;
fwdl_stat:
RTW_INFO("FWDL %s. write_fw:%u, %dms\n"
, (rtStatus == _SUCCESS) ? "success" : "fail"
, write_fw
, rtw_get_passing_time_ms(fwdl_start_time)
);
exit:
if (pFirmware)
rtw_mfree((u8 *)pFirmware, sizeof(RT_FIRMWARE_8192E));
InitializeFirmwareVars8192E(Adapter);
return rtStatus;
}
void InitializeFirmwareVars8192E(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
/* Init Fw LPS related. */
pwrpriv->bFwCurrentInPSMode = _FALSE;
/* Init H2C counter. by tynli. 2009.12.09. */
pHalData->LastHMEBoxNum = 0;
}
/* ***********************************************************
* Efuse related code
* *********************************************************** */
void
hal_InitPGData_8192E(
IN PADAPTER padapter,
IN OUT u8 *PROMContent
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u32 i;
u16 value16;
if (_FALSE == pHalData->bautoload_fail_flag) {
/* autoload OK. */
if (is_boot_from_eeprom(padapter)) {
/* Read all Content from EEPROM or EFUSE. */
for (i = 0; i < HWSET_MAX_SIZE_8192E; i += 2) {
/* value16 = EF2Byte(ReadEEprom(pAdapter, (u2Byte) (i>>1))); */
/* *((u16*)(&PROMContent[i])) = value16; */
}
} else {
/* Read EFUSE real map to shadow. */
EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE);
}
} else {
/* autoload fail */
/* pHalData->AutoloadFailFlag = _TRUE; */
/* update to default value 0xFF */
if (!is_boot_from_eeprom(padapter))
EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE);
}
#ifdef CONFIG_EFUSE_CONFIG_FILE
if (check_phy_efuse_tx_power_info_valid(padapter) == _FALSE) {
if (Hal_readPGDataFromConfigFile(padapter) != _SUCCESS)
RTW_ERR("invalid phy efuse and read from file fail, will use driver default!!\n");
}
#endif
}
VOID
Hal_EfuseParseBTCoexistInfo8192E(
IN PADAPTER Adapter,
IN pu1Byte hwinfo,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u1Byte tempval;
if (!AutoLoadFail) {
tempval = hwinfo[EEPROM_RF_BOARD_OPTION_8192E];
if (((tempval & 0xe0) >> 5) == 0x1) /* [7:5] */
pHalData->EEPROMBluetoothCoexist = 1;
else
pHalData->EEPROMBluetoothCoexist = 0;
pHalData->EEPROMBluetoothType = BT_RTL8192E;
tempval = hwinfo[EEPROM_RF_BT_SETTING_8192E];
/* pHalData->EEPROMBluetoothAntNum = (tempval&0x1); */ /* bit [0] */
pHalData->EEPROMBluetoothAntNum = Ant_x2;
} else {
pHalData->EEPROMBluetoothCoexist = 1;
pHalData->EEPROMBluetoothType = BT_RTL8192E;
pHalData->EEPROMBluetoothAntNum = Ant_x2;
}
#ifdef CONFIG_BT_COEXIST
if (1 == pHalData->EEPROMBluetoothCoexist) {
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (!hal_btcoex_AntIsolationConfig_ParaFile(Adapter , PHY_FILE_WIFI_ANT_ISOLATION))
#endif
hal_btcoex_SetAntIsolationType(Adapter, 0);
}
RTW_INFO("%s: %s BT-coex, wifi ant_num=%d\n",
__FUNCTION__,
pHalData->EEPROMBluetoothCoexist == _TRUE ? "Enable" : "Disable",
pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1);
#endif /* CONFIG_BT_COEXIST */
}
void
Hal_EfuseParseIDCode8192E(
IN PADAPTER padapter,
IN u8 *hwinfo
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
u16 EEPROMId;
/* Checl 0x8129 again for making sure autoload status!! */
EEPROMId = le16_to_cpu(*((u16 *)hwinfo));
if (EEPROMId != RTL_EEPROM_ID) {
RTW_INFO("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
pHalData->bautoload_fail_flag = _TRUE;
} else
pHalData->bautoload_fail_flag = _FALSE;
RTW_INFO("EEPROM ID=0x%04x\n", EEPROMId);
}
VOID
Hal_ReadPROMVersion8192E(
IN PADAPTER Adapter,
IN u8 *PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if (AutoloadFail)
pHalData->EEPROMVersion = EEPROM_Default_Version;
else {
pHalData->EEPROMVersion = *(u8 *)&PROMContent[EEPROM_VERSION_8192E];
if (pHalData->EEPROMVersion == 0xFF)
pHalData->EEPROMVersion = EEPROM_Default_Version;
}
/* RTW_INFO("pHalData->EEPROMVersion is 0x%x\n", pHalData->EEPROMVersion); */
}
void Hal_ReadPowerSavingMode8192E(
PADAPTER padapter,
IN u8 *hwinfo,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter);
u8 tmpvalue;
if (AutoLoadFail) {
pwrctl->bHWPowerdown = _FALSE;
pwrctl->bSupportRemoteWakeup = _FALSE;
} else {
/* hw power down mode selection , 0:rf-off / 1:power down */
if (padapter->registrypriv.hwpdn_mode == 2)
pwrctl->bHWPowerdown = (hwinfo[EEPROM_RF_FEATURE_OPTION_8192E] & BIT4);
else
pwrctl->bHWPowerdown = padapter->registrypriv.hwpdn_mode;
/* decide hw if support remote wakeup function */
/* if hw supported, 8051 (SIE) will generate WeakUP signal( D+/D- toggle) when autoresume */
#ifdef CONFIG_USB_HCI
pwrctl->bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0] & BIT1) ? _TRUE : _FALSE;
#endif /* CONFIG_USB_HCI */
RTW_INFO("%s...bHWPwrPindetect(%x)-bHWPowerdown(%x) ,bSupportRemoteWakeup(%x)\n", __FUNCTION__,
pwrctl->bHWPwrPindetect, pwrctl->bHWPowerdown, pwrctl->bSupportRemoteWakeup);
RTW_INFO("### PS params=> power_mgnt(%x),usbss_enable(%x) ###\n", padapter->registrypriv.power_mgnt, padapter->registrypriv.usbss_enable);
}
}
void
Hal_ReadTxPowerInfo8192E(
IN PADAPTER Adapter,
IN u8 *PROMContent,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
TxPowerInfo24G pwrInfo24G;
hal_load_txpwr_info(Adapter, &pwrInfo24G, NULL, PROMContent);
/* 2010/10/19 MH Add Regulator recognize for CU. */
if (!AutoLoadFail) {
struct registry_priv *registry_par = &Adapter->registrypriv;
if (PROMContent[EEPROM_RF_BOARD_OPTION_8192E] == 0xFF)
pHalData->EEPROMRegulatory = 2; /* (EEPROM_DEFAULT_BOARD_OPTION&0x7); */ /* bit0~2 */
else
pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8192E] & 0x7); /* bit0~2 */
} else
pHalData->EEPROMRegulatory = 0;
RTW_INFO("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory);
}
VOID
Hal_ReadBoardType8192E(
IN PADAPTER Adapter,
IN u8 *PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 board_type;
/*
Bit[7:5]: Board Type (PCIe)
0h: WiFi solo-mCard
1h: WiFi+BT combo-mCard
*/
if (!AutoloadFail) {
board_type = (PROMContent[EEPROM_RF_BOARD_OPTION_8192E] & 0xE0) >> 5;
if (PROMContent[EEPROM_RF_BOARD_OPTION_8192E] == 0xFF)
pHalData->InterfaceSel = INTF_SEL0_USB ;
else
pHalData->InterfaceSel = (board_type == 1) ? INTF_SEL4_USB_Combo : INTF_SEL0_USB;
} else
pHalData->InterfaceSel = 0;
/* RTW_INFO("Board Type: 0x%2x\n", pHalData->InterfaceSel); */
if (pHalData->InterfaceSel == INTF_SEL4_USB_Combo)
RTW_INFO("Board Type: Combo Card\n");
else
RTW_INFO("Board Type: Dongle or WIFI only Module\n");
}
VOID
Hal_ReadThermalMeter_8192E(
IN PADAPTER Adapter,
IN u8 *PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
/* u8 tempval; */
/* */
/* ThermalMeter from EEPROM */
/* */
if (!AutoloadFail)
pHalData->eeprom_thermal_meter = PROMContent[EEPROM_THERMAL_METER_8192E];
else
pHalData->eeprom_thermal_meter = EEPROM_Default_ThermalMeter_8192E;
/* pHalData->eeprom_thermal_meter = (tempval&0x1f); */ /* [4:0] */
if (pHalData->eeprom_thermal_meter == 0xff || AutoloadFail) {
pHalData->odmpriv.rf_calibrate_info.is_apk_thermal_meter_ignore = _TRUE;
pHalData->eeprom_thermal_meter = EEPROM_Default_ThermalMeter_8192E;
}
/* pHalData->ThermalMeter[0] = pHalData->eeprom_thermal_meter; */
RTW_INFO("ThermalMeter = 0x%x\n", pHalData->eeprom_thermal_meter);
}
VOID
Hal_ReadChannelPlan8192E(
IN PADAPTER padapter,
IN u8 *hwinfo,
IN BOOLEAN AutoLoadFail
)
{
hal_com_config_channel_plan(
padapter
, hwinfo ? &hwinfo[EEPROM_COUNTRY_CODE_8192E] : NULL
, hwinfo ? hwinfo[EEPROM_ChannelPlan_8192E] : 0xFF
, padapter->registrypriv.alpha2
, padapter->registrypriv.channel_plan
, RTW_CHPLAN_WORLD_NULL
, AutoLoadFail
);
}
VOID
Hal_EfuseParseXtal_8192E(
IN PADAPTER pAdapter,
IN u8 *hwinfo,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
if (!AutoLoadFail) {
pHalData->crystal_cap = hwinfo[EEPROM_XTAL_8192E];
if (pHalData->crystal_cap == 0xFF)
pHalData->crystal_cap = EEPROM_Default_CrystalCap_8192E; /* what value should 8812 set? */
} else
pHalData->crystal_cap = EEPROM_Default_CrystalCap_8192E;
RTW_INFO("crystal_cap: 0x%2x\n", pHalData->crystal_cap);
}
VOID
Hal_ReadAntennaDiversity8192E(
IN PADAPTER pAdapter,
IN u8 *PROMContent,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
pHalData->AntDivCfg = 0;
RTW_INFO("SWAS: bHwAntDiv = %x, TRxAntDivType = %x\n", pHalData->AntDivCfg, pHalData->TRxAntDivType);
}
VOID
Hal_ReadPAType_8192E(
IN PADAPTER Adapter,
IN u8 *PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 PA_LNAType_2G = 0;
if (!AutoloadFail) {
if (GetRegAmplifierType2G(Adapter) == 0) { /* AUTO*/
/* PA & LNA Type */
PA_LNAType_2G = LE_BITS_TO_1BYTE(&PROMContent[EEPROM_RFE_OPTION_8192E], 2, 2); /* 0xCA[3:2] */
/*
ePA/eLNA sel.(ePA+eLNA=0x0, ePA+iLNA enable = 0x1, iPA+eLNA enable =0x2, iPA+iLNA=0x3)
*/
switch (PA_LNAType_2G) {
case 0:
pHalData->ExternalPA_2G = 1;
pHalData->ExternalLNA_2G = 1;
break;
case 1:
pHalData->ExternalPA_2G = 1;
pHalData->ExternalLNA_2G = 0;
break;
case 2:
pHalData->ExternalPA_2G = 0;
pHalData->ExternalLNA_2G = 1;
break;
case 3:
default:
pHalData->ExternalPA_2G = 0;
pHalData->ExternalLNA_2G = 0;
break;
}
} else {
pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_PA) ? 1 : 0;
pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_LNA) ? 1 : 0;
}
#if 0
if (GetRegAmplifierType5G(Adapter) == 0) { /* AUTO */
pHalData->external_pa_5g = ((pHalData->PAType_5G & BIT1) && (pHalData->PAType_5G & BIT0)) ? 1 : 0;
pHalData->external_lna_5g = ((pHalData->LNAType_5G & BIT7) && (pHalData->LNAType_5G & BIT3)) ? 1 : 0; /* 5G only now. */
} else {
pHalData->external_pa_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_PA_5G) ? 1 : 0;
pHalData->external_lna_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_LNA_5G) ? 1 : 0;
}
#endif
} else {
pHalData->ExternalPA_2G = EEPROM_Default_PAType;
pHalData->external_pa_5g = EEPROM_Default_PAType;
pHalData->ExternalLNA_2G = EEPROM_Default_LNAType;
pHalData->external_lna_5g = EEPROM_Default_LNAType;
if (GetRegAmplifierType2G(Adapter) == 0) { /* AUTO*/
pHalData->ExternalPA_2G = EEPROM_Default_PAType;
pHalData->ExternalLNA_2G = EEPROM_Default_LNAType;
} else {
pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_PA) ? 1 : 0;
pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_LNA) ? 1 : 0;
}
#if 0
if (GetRegAmplifierType5G(Adapter) == 0) { /* AUTO */
pHalData->external_pa_5g = 0;
pHalData->external_lna_5g = 0;
} else {
pHalData->external_pa_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_PA_5G) ? 1 : 0;
pHalData->external_lna_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_LNA_5G) ? 1 : 0;
}
#endif
}
RTW_INFO("pHalData->ExternalPA_2G = %d , pHalData->ExternalLNA_2G = %d\n", pHalData->ExternalPA_2G, pHalData->ExternalLNA_2G);
}
VOID
Hal_ReadAmplifierType_8192E(
IN PADAPTER Adapter,
IN pu1Byte PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 GLNA_type = 0;
if (!AutoloadFail) {
if (GetRegGLNAType(Adapter) == 0) /* AUTO */
GLNA_type = LE_BITS_TO_1BYTE(&PROMContent[EEPROM_RFE_OPTION_8192E], 4, 3); /* 0xCA[6:4] */
else
GLNA_type = GetRegGLNAType(Adapter) & 0x7;
} else {
if (GetRegGLNAType(Adapter) == 0) /* AUTO */
GLNA_type = 0;
else
GLNA_type = GetRegGLNAType(Adapter) & 0x7;
}
/*
Ext-LNA Gain sel.(form 10dB to 24dB, 1table/2dB,ext: 000=10dB, 001=12dB...)
*/
switch (GLNA_type) {
case 2:
pHalData->TypeGLNA = 0xf; /* (14dB) */
break;
case 3:
pHalData->TypeGLNA = 0xa; /* (16dB) */
break;
case 4:
pHalData->TypeGLNA = 0x5;/* (18dB) */
break;
case 6:
default:
pHalData->TypeGLNA = 0x0;/* (22dB) */
break;
}
RTW_INFO("pHalData->TypeGLNA is 0x%x\n", pHalData->TypeGLNA);
}
VOID
Hal_ReadRFEType_8192E(
IN PADAPTER Adapter,
IN pu1Byte PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if (!AutoloadFail) {
if (GetRegRFEType(Adapter) != 64) {
pHalData->rfe_type = GetRegRFEType(Adapter);
/*
Above 3, rfe_type is filled the default value.
*/
if (pHalData->rfe_type > 3)
pHalData->rfe_type = EEPROM_DEFAULT_RFE_OPTION_8192E;
} else if ((0xFF == PROMContent[EEPROM_RFE_OPTION_8192E]) ||
((pHalData->ExternalPA_2G == 0) && (pHalData->ExternalLNA_2G == 0)))
pHalData->rfe_type = EEPROM_DEFAULT_RFE_OPTION_8192E;
else {
/*
type 0:0x00 for 92EE/ER_HP RFE control
type 1:0x01 for 92EU/ES_HP RFE control
type 2:0x10 for 92EU/ES_HP_COMBO RFE control
type 3:0x11 for 92EE_HP_COMBO RFE control
*/
pHalData->rfe_type = PROMContent[EEPROM_RFE_OPTION_8192E] & 0x3; /* 0xCA[1:0] */
}
} else {
if (GetRegRFEType(Adapter) != 64) {
pHalData->rfe_type = GetRegRFEType(Adapter);
/*
Above 3, rfe_type is filled the default value.
*/
if (pHalData->rfe_type > 3)
pHalData->rfe_type = EEPROM_DEFAULT_RFE_OPTION_8192E;
} else
pHalData->rfe_type = EEPROM_DEFAULT_RFE_OPTION_8192E;
}
RTW_INFO("pHalData->rfe_type is 0x%x\n", pHalData->rfe_type);
}
void Hal_EfuseParseKFreeData_8192E(
IN PADAPTER Adapter,
IN u8 *PROMContent,
IN BOOLEAN AutoloadFail)
{
#ifdef CONFIG_RF_POWER_TRIM
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct kfree_data_t *kfree_data = &pHalData->kfree_data;
u8 Efuse_BB_GAIN;
u8 pg_pwrtrim = 0xFF, pg_therm = 0xFF;
if ((Adapter->registrypriv.RegPwrTrimEnable == 1) || !AutoloadFail) {
efuse_OneByteRead(Adapter, PPG_BB_GAIN_2G_TXA_OFFSET_8192E, &pg_pwrtrim, _FALSE);
efuse_OneByteRead(Adapter, PPG_THERMAL_OFFSET_8192E, &pg_therm, _FALSE);
kfree_data->bb_gain[BB_GAIN_2G][RF_PATH_A]
= KFREE_BB_GAIN_2G_TX_OFFSET(pg_pwrtrim & PPG_BB_GAIN_2G_TX_OFFSET_MASK);
kfree_data->bb_gain[BB_GAIN_2G][RF_PATH_B]
= KFREE_BB_GAIN_2G_TX_OFFSET(pg_pwrtrim & PPG_BB_GAIN_2G_TXB_OFFSET_MASK >> 4);
kfree_data->thermal = KFREE_THERMAL_OFFSET(pg_therm & PPG_THERMAL_OFFSET_MASK);
if (GET_PG_KFREE_ON_8192E(PROMContent) && PROMContent[0xc1] != 0xff)
kfree_data->flag |= KFREE_FLAG_ON;
if (GET_PG_KFREE_THERMAL_K_ON_8192E(PROMContent) && PROMContent[0xc8] != 0xff)
kfree_data->flag |= KFREE_FLAG_THERMAL_K_ON;
}
if (Adapter->registrypriv.RegPwrTrimEnable == 1) {
kfree_data->flag |= KFREE_FLAG_ON;
kfree_data->flag |= KFREE_FLAG_THERMAL_K_ON;
}
if (kfree_data->flag & KFREE_FLAG_THERMAL_K_ON)
pHalData->eeprom_thermal_meter += kfree_data->thermal;
RTW_INFO("kfree flag:%u\n", kfree_data->flag);
if (Adapter->registrypriv.RegPwrTrimEnable == 1 || kfree_data->flag & KFREE_FLAG_ON)
RTW_INFO("bb_gain A:%d\n", kfree_data->bb_gain[BB_GAIN_2G][RF_PATH_A]);
if (Adapter->registrypriv.RegPwrTrimEnable == 1 || kfree_data->flag & KFREE_FLAG_ON)
RTW_INFO("bb_gain B:%d\n", kfree_data->bb_gain[BB_GAIN_2G][RF_PATH_B]);
if (Adapter->registrypriv.RegPwrTrimEnable == 1 || kfree_data->flag & KFREE_FLAG_THERMAL_K_ON)
RTW_INFO("thermal:%d\n", kfree_data->thermal);
#endif /*CONFIG_RF_POWER_TRIM*/
}
enum {
VOLTAGE_V25 = 0x03,
LDOE25_SHIFT = 28 ,
};
static VOID
Hal_EfusePowerSwitch8192E(
IN PADAPTER pAdapter,
IN u8 bWrite,
IN u8 PwrState)
{
u8 tempval;
u16 tmpV16;
u8 EFUSE_ACCESS_ON_8192E = 0x69;
u8 EFUSE_ACCESS_OFF_8192E = 0x00;
if (PwrState == _TRUE) {
rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON_8192E);
/* Reset: 0x0000h[28], default valid */
tmpV16 = rtw_read16(pAdapter, REG_SYS_FUNC_EN);
if (!(tmpV16 & FEN_ELDR)) {
tmpV16 |= FEN_ELDR ;
rtw_write16(pAdapter, REG_SYS_FUNC_EN, tmpV16);
}
/* Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
tmpV16 = rtw_read16(pAdapter, REG_SYS_CLKR);
if ((!(tmpV16 & LOADER_CLK_EN)) || (!(tmpV16 & ANA8M))) {
tmpV16 |= (LOADER_CLK_EN | ANA8M) ;
rtw_write16(pAdapter, REG_SYS_CLKR, tmpV16);
}
if (bWrite == _TRUE) {
/* Enable LDO 2.5V before read/write action */
tempval = rtw_read8(pAdapter, EFUSE_TEST + 3);
tempval &= 0x07; /* 0x34[30:27] = 4<><34>1110 => LDOE25 voltage select to 2.25V Suggested by SD1 Jackie & DD -Tm_lin */
/* tempval |= (VOLTAGE_V25 << 4); */
tempval |= 0x70;
rtw_write8(pAdapter, EFUSE_TEST + 3, (tempval | 0x80));
}
} else {
rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF_8192E);
if (bWrite == _TRUE) {
/* Disable LDO 2.5V after read/write action */
tempval = rtw_read8(pAdapter, EFUSE_TEST + 3);
rtw_write8(pAdapter, EFUSE_TEST + 3, (tempval & 0x7F));
}
}
}
static VOID
rtl8192E_EfusePowerSwitch(
IN PADAPTER pAdapter,
IN u8 bWrite,
IN u8 PwrState)
{
Hal_EfusePowerSwitch8192E(pAdapter, bWrite, PwrState);
}
static VOID
Hal_EfuseReadEFuse8192E(
PADAPTER Adapter,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
IN BOOLEAN bPseudoTest
)
{
u8 *efuseTbl = NULL;
u8 rtemp8[1];
u16 eFuse_Addr = 0;
u8 offset, wren;
u16 i, j;
u16 **eFuseWord = NULL;
u16 efuse_utilized = 0;
u8 efuse_usage = 0;
u8 u1temp = 0;
/* */
/* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
/* */
if ((_offset + _size_byte) > EFUSE_MAP_LEN_8192E) {
/* total E-Fuse table is 512bytes */
RTW_INFO("Hal_EfuseReadEFuse8812A(): Invalid offset(%#x) with read bytes(%#x)!!\n", _offset, _size_byte);
goto exit;
}
efuseTbl = (u8 *)rtw_zmalloc(EFUSE_MAP_LEN_8192E);
if (efuseTbl == NULL) {
RTW_INFO("%s: alloc efuseTbl fail!\n", __FUNCTION__);
goto exit;
}
eFuseWord = (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_8192E, EFUSE_MAX_WORD_UNIT, 2);
if (eFuseWord == NULL) {
RTW_INFO("%s: alloc eFuseWord fail!\n", __FUNCTION__);
goto exit;
}
/* 0. Refresh efuse init map as all oxFF. */
for (i = 0; i < EFUSE_MAX_SECTION_8192E; i++)
for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
eFuseWord[i][j] = 0xFFFF;
/* */
/* 1. Read the first byte to check if efuse is empty!!! */
/* */
/* */
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
if (*rtemp8 != 0xFF) {
efuse_utilized++;
/* RTW_INFO("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8); */
eFuse_Addr++;
} else {
RTW_INFO("EFUSE is empty efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8);
goto exit;
}
/* */
/* 2. Read real efuse content. Filter PG header and every section data. */
/* */
while ((*rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_8192E)) {
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr-1, *rtemp8)); */
/* Check PG header for section num. */
if ((*rtemp8 & 0x1F) == 0x0F) { /* extended header */
u1temp = ((*rtemp8 & 0xE0) >> 5);
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x *rtemp&0xE0 0x%x\n", u1temp, *rtemp8 & 0xE0)); */
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x\n", u1temp)); */
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8)); */
if ((*rtemp8 & 0x0F) == 0x0F && (*rtemp8 != 0xFF)) {
eFuse_Addr++;
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_8192E))
eFuse_Addr++;
continue;
} else {
if (*rtemp8 == 0xFF) {
*rtemp8 = 0x0F;
efuse_OneByteWrite(Adapter, eFuse_Addr, *rtemp8, bPseudoTest);
continue;
}
offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
wren = (*rtemp8 & 0x0F);
eFuse_Addr++;
}
} else {
offset = ((*rtemp8 >> 4) & 0x0f);
wren = (*rtemp8 & 0x0f);
}
if (offset < EFUSE_MAX_SECTION_8192E) {
/* Get word enable value from PG header */
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Offset-%d Worden=%x\n", offset, wren)); */
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
/* Check word enable condition in the section */
if (!(wren & 0x01)) {
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d\n", eFuse_Addr)); */
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
eFuse_Addr++;
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8)); */
efuse_utilized++;
eFuseWord[offset][i] = (*rtemp8 & 0xff);
if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_8192E)
break;
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d", eFuse_Addr)); */
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
eFuse_Addr++;
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8)); */
efuse_utilized++;
eFuseWord[offset][i] |= (((u2Byte)*rtemp8 << 8) & 0xff00);
if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_8192E)
break;
}
wren >>= 1;
}
} else { /* deal with error offset,skip error data */
RTW_PRINT("invalid offset:0x%02x\n", offset);
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
/* Check word enable condition in the section */
if (!(wren & 0x01)) {
eFuse_Addr++;
efuse_utilized++;
if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_8192E)
break;
eFuse_Addr++;
efuse_utilized++;
if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_8192E)
break;
}
}
}
/* Read next PG header */
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d rtemp 0x%x\n", eFuse_Addr, *rtemp8)); */
if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_8192E)) {
efuse_utilized++;
eFuse_Addr++;
}
}
/* */
/* 3. Collect 16 sections and 4 word unit into Efuse map. */
/* */
for (i = 0; i < EFUSE_MAX_SECTION_8192E; i++) {
for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
efuseTbl[(i * 8) + (j * 2)] = (eFuseWord[i][j] & 0xff);
efuseTbl[(i * 8) + ((j * 2) + 1)] = ((eFuseWord[i][j] >> 8) & 0xff);
}
}
/* */
/* 4. Copy from Efuse map to output pointer memory!!! */
/* */
for (i = 0; i < _size_byte; i++)
pbuf[i] = efuseTbl[_offset + i];
/* */
/* 5. Calculate Efuse utilization. */
/* */
efuse_usage = (u1Byte)((eFuse_Addr * 100) / EFUSE_REAL_CONTENT_LEN_8192E);
rtw_hal_set_hwreg(Adapter, HW_VAR_EFUSE_BYTES, (u8 *)&eFuse_Addr);
exit:
if (efuseTbl)
rtw_mfree(efuseTbl, EFUSE_MAP_LEN_8192E);
kfree(eFuseWord);
}
static VOID
rtl8192E_ReadEFuse(
PADAPTER Adapter,
u8 efuseType,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
IN BOOLEAN bPseudoTest
)
{
Hal_EfuseReadEFuse8192E(Adapter, _offset, _size_byte, pbuf, bPseudoTest);
}
/* Do not support BT */
VOID
Hal_EFUSEGetEfuseDefinition8192E(
IN PADAPTER pAdapter,
IN u1Byte efuseType,
IN u1Byte type,
OUT PVOID pOut
)
{
switch (type) {
case TYPE_EFUSE_MAX_SECTION: {
pu1Byte pMax_section;
pMax_section = (pu1Byte)pOut;
if (efuseType == EFUSE_WIFI)
*pMax_section = EFUSE_MAX_SECTION_8192E;
else
*pMax_section = EFUSE_BT_MAX_SECTION_8192E;
}
break;
case TYPE_EFUSE_REAL_CONTENT_LEN: {
pu2Byte pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8192E;
else
*pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN_8192E;
}
break;
case TYPE_EFUSE_CONTENT_LEN_BANK: {
pu2Byte pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8192E;
else
*pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN_8192E;
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_BANK: {
pu2Byte pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E);
else
*pu2Tmp = (u2Byte)(EFUSE_BT_REAL_BANK_CONTENT_LEN_8192E-EFUSE_PROTECT_BYTES_BANK_8192E);
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL: {
pu2Byte pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E);
else
*pu2Tmp = (u2Byte)(EFUSE_BT_REAL_CONTENT_LEN_8192E-(EFUSE_PROTECT_BYTES_BANK_8192E * 3));
}
break;
case TYPE_EFUSE_MAP_LEN: {
pu2Byte pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = (u2Byte)EFUSE_MAP_LEN_8192E;
else
*pu2Tmp = (u2Byte)EFUSE_BT_MAP_LEN_8192E;
}
break;
case TYPE_EFUSE_PROTECT_BYTES_BANK: {
pu1Byte pu1Tmp;
pu1Tmp = (pu1Byte)pOut;
if (efuseType == EFUSE_WIFI)
*pu1Tmp = (u1Byte)(EFUSE_OOB_PROTECT_BYTES_8192E);
else
*pu1Tmp = (u1Byte)(EFUSE_PROTECT_BYTES_BANK_8192E);
}
break;
default: {
pu1Byte pu1Tmp;
pu1Tmp = (pu1Byte)pOut;
*pu1Tmp = 0;
}
break;
}
}
VOID
Hal_EFUSEGetEfuseDefinition_Pseudo8192E(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN u8 type,
OUT PVOID pOut
)
{
switch (type) {
case TYPE_EFUSE_MAX_SECTION: {
pu1Byte pMax_section;
pMax_section = (pu1Byte)pOut;
if (efuseType == EFUSE_WIFI)
*pMax_section = EFUSE_MAX_SECTION_8192E;
else
*pMax_section = EFUSE_BT_MAX_SECTION_8192E;
}
break;
case TYPE_EFUSE_REAL_CONTENT_LEN: {
pu2Byte pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8192E;
else
*pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN_8192E;
}
break;
case TYPE_EFUSE_CONTENT_LEN_BANK: {
pu2Byte pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8192E;
else
*pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN_8192E;
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_BANK: {
pu2Byte pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E);
else
*pu2Tmp = (u2Byte)(EFUSE_BT_REAL_BANK_CONTENT_LEN_8192E-EFUSE_PROTECT_BYTES_BANK_8192E);
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL: {
pu2Byte pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E);
else
*pu2Tmp = (u2Byte)(EFUSE_BT_REAL_CONTENT_LEN_8192E-(EFUSE_PROTECT_BYTES_BANK_8192E * 3));
}
break;
case TYPE_EFUSE_MAP_LEN: {
pu2Byte pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = (u2Byte)EFUSE_MAP_LEN_8192E;
else
*pu2Tmp = (u2Byte)EFUSE_BT_MAP_LEN_8192E;
}
break;
case TYPE_EFUSE_PROTECT_BYTES_BANK: {
pu1Byte pu1Tmp;
pu1Tmp = (pu1Byte)pOut;
if (efuseType == EFUSE_WIFI)
*pu1Tmp = (u1Byte)(EFUSE_OOB_PROTECT_BYTES_8192E);
else
*pu1Tmp = (u1Byte)(EFUSE_PROTECT_BYTES_BANK_8192E);
}
break;
default: {
pu1Byte pu1Tmp;
pu1Tmp = (pu1Byte)pOut;
*pu1Tmp = 0;
}
break;
}
}
static VOID
rtl8192E_EFUSE_GetEfuseDefinition(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN u8 type,
OUT void *pOut,
IN BOOLEAN bPseudoTest
)
{
if (bPseudoTest)
Hal_EFUSEGetEfuseDefinition_Pseudo8192E(pAdapter, efuseType, type, pOut);
else
Hal_EFUSEGetEfuseDefinition8192E(pAdapter, efuseType, type, pOut);
}
static u8
Hal_EfuseWordEnableDataWrite8192E(IN PADAPTER pAdapter,
IN u16 efuse_addr,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
u16 tmpaddr = 0;
u16 start_addr = efuse_addr;
u8 badworden = 0x0F;
u8 tmpdata[8];
memset((PVOID)tmpdata, 0xff, PGPKT_DATA_SIZE);
if (!(word_en & BIT0)) {
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter, start_addr++, data[0], bPseudoTest);
efuse_OneByteWrite(pAdapter, start_addr++, data[1], bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0);
efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[0], bPseudoTest);
efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[1], bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1);
if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
badworden &= (~BIT0);
}
if (!(word_en & BIT1)) {
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter, start_addr++, data[2], bPseudoTest);
efuse_OneByteWrite(pAdapter, start_addr++, data[3], bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0);
efuse_OneByteRead(pAdapter, tmpaddr , &tmpdata[2], bPseudoTest);
efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[3], bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1);
if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
badworden &= (~BIT1);
}
if (!(word_en & BIT2)) {
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter, start_addr++, data[4], bPseudoTest);
efuse_OneByteWrite(pAdapter, start_addr++, data[5], bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0);
efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[4], bPseudoTest);
efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[5], bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1);
if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
badworden &= (~BIT2);
}
if (!(word_en & BIT3)) {
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter, start_addr++, data[6], bPseudoTest);
efuse_OneByteWrite(pAdapter, start_addr++, data[7], bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0);
efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[6], bPseudoTest);
efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[7], bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1);
if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
badworden &= (~BIT3);
}
return badworden;
}
static u8
rtl8192E_Efuse_WordEnableDataWrite(IN PADAPTER pAdapter,
IN u16 efuse_addr,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
u8 ret = 0;
ret = Hal_EfuseWordEnableDataWrite8192E(pAdapter, efuse_addr, word_en, data, bPseudoTest);
return ret;
}
static u16
hal_EfuseGetCurrentSize_8192E(IN PADAPTER pAdapter,
IN BOOLEAN bPseudoTest)
{
int bContinual = _TRUE;
u16 efuse_addr = 0;
u8 hoffset = 0, hworden = 0;
u8 efuse_data, word_cnts = 0;
if (bPseudoTest)
efuse_addr = (u16)(fakeEfuseUsedBytes);
else
rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
/* RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), start_efuse_addr = %d\n", efuse_addr)); */
while (bContinual &&
efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest) &&
(efuse_addr < EFUSE_REAL_CONTENT_LEN_8192E)) {
if (efuse_data != 0xFF) {
if ((efuse_data & 0x1F) == 0x0F) { /* extended header */
hoffset = efuse_data;
efuse_addr++;
efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest);
if ((efuse_data & 0x0F) == 0x0F && (efuse_data != 0xFF)) {
efuse_addr++;
continue;
} else {
hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
}
} else {
hoffset = (efuse_data >> 4) & 0x0F;
hworden = efuse_data & 0x0F;
}
word_cnts = Efuse_CalculateWordCnts(hworden);
/* read next header */
efuse_addr = efuse_addr + (word_cnts * 2) + 1;
} else
bContinual = _FALSE ;
}
if (bPseudoTest) {
fakeEfuseUsedBytes = efuse_addr;
/* RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), return %d\n", fakeEfuseUsedBytes)); */
} else {
rtw_hal_set_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
RTW_INFO("%s(), return %d\n", __func__, efuse_addr);
}
return efuse_addr;
}
static u16
rtl8192E_EfuseGetCurrentSize(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN BOOLEAN bPseudoTest)
{
u16 ret = 0;
ret = hal_EfuseGetCurrentSize_8192E(pAdapter, bPseudoTest);
return ret;
}
static int
hal_EfusePgPacketRead_8192E(
IN PADAPTER pAdapter,
IN u8 offset,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
u8 ReadState = PG_STATE_HEADER;
int bContinual = _TRUE;
int bDataEmpty = _TRUE ;
u8 efuse_data, word_cnts = 0;
u16 efuse_addr = 0;
u8 hoffset = 0, hworden = 0;
u8 tmpidx = 0;
u8 tmpdata[8];
u8 max_section = 0;
u8 tmp_header = 0;
if (data == NULL)
return _FALSE;
if (offset > EFUSE_MAX_SECTION_8192E)
return _FALSE;
memset((PVOID)data, 0xff, sizeof(u8) * PGPKT_DATA_SIZE);
memset((PVOID)tmpdata, 0xff, sizeof(u8) * PGPKT_DATA_SIZE);
/* */
/* <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
/* Skip dummy parts to prevent unexpected data read from Efuse. */
/* By pass right now. 2009.02.19. */
/* */
while (bContinual && (efuse_addr < EFUSE_REAL_CONTENT_LEN_8192E)) {
/* ------- Header Read ------------- */
if (ReadState & PG_STATE_HEADER) {
if (efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
if (EXT_HEADER(efuse_data)) {
tmp_header = efuse_data;
efuse_addr++;
efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest);
if (!ALL_WORDS_DISABLED(efuse_data)) {
hoffset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
} else {
RTW_INFO("Error, All words disabled\n");
efuse_addr++;
continue;
}
} else {
hoffset = (efuse_data >> 4) & 0x0F;
hworden = efuse_data & 0x0F;
}
word_cnts = Efuse_CalculateWordCnts(hworden);
bDataEmpty = _TRUE ;
if (hoffset == offset) {
for (tmpidx = 0; tmpidx < word_cnts * 2 ; tmpidx++) {
if (efuse_OneByteRead(pAdapter, efuse_addr + 1 + tmpidx , &efuse_data, bPseudoTest)) {
tmpdata[tmpidx] = efuse_data;
if (efuse_data != 0xff)
bDataEmpty = _FALSE;
}
}
if (bDataEmpty == _FALSE)
ReadState = PG_STATE_DATA;
else { /* read next header */
efuse_addr = efuse_addr + (word_cnts * 2) + 1;
ReadState = PG_STATE_HEADER;
}
} else { /* read next header */
efuse_addr = efuse_addr + (word_cnts * 2) + 1;
ReadState = PG_STATE_HEADER;
}
} else
bContinual = _FALSE ;
}
/* ------- Data section Read ------------- */
else if (ReadState & PG_STATE_DATA) {
efuse_WordEnableDataRead(hworden, tmpdata, data);
efuse_addr = efuse_addr + (word_cnts * 2) + 1;
ReadState = PG_STATE_HEADER;
}
}
if ((data[0] == 0xff) && (data[1] == 0xff) && (data[2] == 0xff) && (data[3] == 0xff) &&
(data[4] == 0xff) && (data[5] == 0xff) && (data[6] == 0xff) && (data[7] == 0xff))
return _FALSE;
else
return _TRUE;
}
static int
rtl8192E_Efuse_PgPacketRead(IN PADAPTER pAdapter,
IN u8 offset,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
int ret = 0;
ret = hal_EfusePgPacketRead_8192E(pAdapter, offset, data, bPseudoTest);
return ret;
}
#if 0
int
hal_EfusePgPacketWrite_8192E(IN PADAPTER pAdapter,
IN u8 offset,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
u8 WriteState = PG_STATE_HEADER;
int bContinual = _TRUE, bDataEmpty = _TRUE;
/* int bResult = _TRUE; */
u16 efuse_addr = 0;
u8 efuse_data;
u8 pg_header = 0, pg_header_temp = 0;
u8 tmp_word_cnts = 0, target_word_cnts = 0;
u8 tmp_header, match_word_en, tmp_word_en;
PGPKT_STRUCT target_pkt;
PGPKT_STRUCT tmp_pkt;
u8 originaldata[sizeof(u8) * 8];
u8 tmpindex = 0, badworden = 0x0F;
static int repeat_times = 0;
BOOLEAN bExtendedHeader = _FALSE;
u8 efuseType = EFUSE_WIFI;
/* */
/* <Roger_Notes> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
/* So we have to prevent unexpected data string connection, which will cause */
/* incorrect data auto-load from HW. The total size is equal or smaller than 498bytes */
/* (i.e., offset 0~497, and dummy 1bytes) expected after CP test. */
/* 2009.02.19. */
/* */
if (Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest) >= (EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E)) {
RTW_INFO("hal_EfusePgPacketWrite_8812A() error: %x >= %x\n", Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest), (EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E));
return _FALSE;
}
/* Init the 8 bytes content as 0xff */
target_pkt.offset = offset;
target_pkt.word_en = word_en;
/* Initial the value to avoid compile warning */
tmp_pkt.offset = 0;
tmp_pkt.word_en = 0;
/* RTW_INFO("hal_EfusePgPacketWrite_8812A target offset 0x%x word_en 0x%x\n", target_pkt.offset, target_pkt.word_en); */
memset((PVOID)target_pkt.data, 0xFF, sizeof(u8) * 8);
efuse_WordEnableDataRead(word_en, data, target_pkt.data);
target_word_cnts = Efuse_CalculateWordCnts(target_pkt.word_en);
/* efuse_reg_ctrl(pAdapter,_TRUE); */ /* power on */
/* RTW_INFO("EFUSE Power ON\n"); */
/* */
/* <Roger_Notes> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
/* So we have to prevent unexpected data string connection, which will cause */
/* incorrect data auto-load from HW. Dummy 1bytes is additional. */
/* 2009.02.19. */
/* */
while (bContinual && (efuse_addr < (EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E))) {
if (WriteState == PG_STATE_HEADER) {
bDataEmpty = _TRUE;
badworden = 0x0F;
/* ************ so ******************* */
/* RTW_INFO("EFUSE PG_STATE_HEADER\n"); */
if (efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest) &&
(efuse_data != 0xFF)) {
if ((efuse_data & 0x1F) == 0x0F) { /* extended header */
tmp_header = efuse_data;
efuse_addr++;
efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest);
if ((efuse_data & 0x0F) == 0x0F) { /* wren fail */
efuse_addr++;
continue;
} else {
tmp_pkt.offset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
tmp_pkt.word_en = efuse_data & 0x0F;
}
} else {
tmp_header = efuse_data;
tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
tmp_pkt.word_en = tmp_header & 0x0F;
}
tmp_word_cnts = Efuse_CalculateWordCnts(tmp_pkt.word_en);
/* RTW_INFO("section offset 0x%x worden 0x%x\n", tmp_pkt.offset, tmp_pkt.word_en); */
/* ************ so-1 ******************* */
if (tmp_pkt.offset != target_pkt.offset) {
efuse_addr = efuse_addr + (tmp_word_cnts * 2) + 1; /* Next pg_packet */
#if (EFUSE_ERROE_HANDLE == 1)
WriteState = PG_STATE_HEADER;
#endif
} else { /* write the same offset */
/* RTW_INFO("hal_EfusePgPacketWrite_8812A section offset the same\n"); */
/* ************ so-2 ******************* */
for (tmpindex = 0 ; tmpindex < (tmp_word_cnts * 2) ; tmpindex++) {
if (efuse_OneByteRead(pAdapter, (efuse_addr + 1 + tmpindex) , &efuse_data, bPseudoTest) && (efuse_data != 0xFF))
bDataEmpty = _FALSE;
}
/* ************ so-2-1 ******************* */
if (bDataEmpty == _FALSE) {
/* RTW_INFO("hal_EfusePgPacketWrite_8812A section offset the same and data is NOT empty\n"); */
efuse_addr = efuse_addr + (tmp_word_cnts * 2) + 1; /* Next pg_packet */
#if (EFUSE_ERROE_HANDLE == 1)
WriteState = PG_STATE_HEADER;
#endif
} else {
/* ************ so-2-2 ******************* */
/* RTW_INFO("hal_EfusePgPacketWrite_8812A section data empty\n"); */
match_word_en = 0x0F; /* same bit as original wren */
if (!((target_pkt.word_en & BIT0) | (tmp_pkt.word_en & BIT0)))
match_word_en &= (~BIT0);
if (!((target_pkt.word_en & BIT1) | (tmp_pkt.word_en & BIT1)))
match_word_en &= (~BIT1);
if (!((target_pkt.word_en & BIT2) | (tmp_pkt.word_en & BIT2)))
match_word_en &= (~BIT2);
if (!((target_pkt.word_en & BIT3) | (tmp_pkt.word_en & BIT3)))
match_word_en &= (~BIT3);
/* ************ so-2-2-A ******************* */
if ((match_word_en & 0x0F) != 0x0F) {
badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, tmp_pkt.word_en , target_pkt.data, bPseudoTest);
/* ************ so-2-2-A-1 ******************* */
/* ############################ */
if (0x0F != (badworden & 0x0F)) {
u8 reorg_offset = offset;
u8 reorg_worden = badworden;
Efuse_PgPacketWrite(pAdapter, reorg_offset, reorg_worden, target_pkt.data, bPseudoTest);
}
/* ############################ */
tmp_word_en = 0x0F; /* not the same bit as original wren */
if ((target_pkt.word_en & BIT0) ^ (match_word_en & BIT0))
tmp_word_en &= (~BIT0);
if ((target_pkt.word_en & BIT1) ^ (match_word_en & BIT1))
tmp_word_en &= (~BIT1);
if ((target_pkt.word_en & BIT2) ^ (match_word_en & BIT2))
tmp_word_en &= (~BIT2);
if ((target_pkt.word_en & BIT3) ^ (match_word_en & BIT3))
tmp_word_en &= (~BIT3);
/* ************ so-2-2-A-2 ******************* */
if ((tmp_word_en & 0x0F) != 0x0F) {
/* reorganize other pg packet
* efuse_addr = efuse_addr + (2*tmp_word_cnts) +1; */ /* next pg packet addr */
efuse_addr = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest);
/* =========================== */
target_pkt.offset = offset;
target_pkt.word_en = tmp_word_en;
/* =========================== */
} else
bContinual = _FALSE;
#if (EFUSE_ERROE_HANDLE == 1)
WriteState = PG_STATE_HEADER;
repeat_times++;
if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
bContinual = _FALSE;
/* bResult = _FALSE; */
}
#endif
} else { /* ************ so-2-2-B ******************* */
/* reorganize other pg packet */
efuse_addr = efuse_addr + (2 * tmp_word_cnts) + 1; /* next pg packet addr */
/* =========================== */
target_pkt.offset = offset;
target_pkt.word_en = target_pkt.word_en;
/* =========================== */
#if (EFUSE_ERROE_HANDLE == 1)
WriteState = PG_STATE_HEADER;
#endif
}
}
}
RTW_INFO("EFUSE PG_STATE_HEADER-1\n");
} else { /* ************ s1: header == oxff ******************* */
bExtendedHeader = _FALSE;
if (target_pkt.offset >= EFUSE_MAX_SECTION_BASE) {
pg_header = ((target_pkt.offset & 0x07) << 5) | 0x0F;
/* RTW_INFO("hal_EfusePgPacketWrite_8812A extended pg_header[2:0] |0x0F 0x%x\n", pg_header); */
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1);
while (tmp_header == 0xFF) {
/* RTW_INFO("hal_EfusePgPacketWrite_8812A extended pg_header[2:0] wirte fail\n"); */
repeat_times++;
if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
bContinual = _FALSE;
/* bResult = _FALSE; */
efuse_addr++;
break;
}
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
}
if (!bContinual)
break;
if (tmp_header == pg_header) {
efuse_addr++;
pg_header_temp = pg_header;
pg_header = ((target_pkt.offset & 0x78) << 1) | target_pkt.word_en;
/* RTW_INFO("hal_EfusePgPacketWrite_8812A extended pg_header[6:3] | worden 0x%x word_en 0x%x\n", pg_header, target_pkt.word_en); */
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1);
while (tmp_header == 0xFF) {
repeat_times++;
if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
bContinual = _FALSE;
/* bResult = _FALSE; */
break;
}
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
}
if (!bContinual)
break;
if ((tmp_header & 0x0F) == 0x0F) { /* wren PG fail */
repeat_times++;
if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
bContinual = _FALSE;
/* bResult = _FALSE; */
break;
} else {
efuse_addr++;
continue;
}
} else if (pg_header != tmp_header) { /* offset PG fail */
bExtendedHeader = _TRUE;
tmp_pkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1);
tmp_pkt.word_en = tmp_header & 0x0F;
tmp_word_cnts = Efuse_CalculateWordCnts(tmp_pkt.word_en);
}
} else if ((tmp_header & 0x1F) == 0x0F) { /* wrong extended header */
efuse_addr += 2;
continue;
}
} else {
pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
}
if (tmp_header == pg_header) {
/* ************ s1-1******************* */
WriteState = PG_STATE_DATA;
}
#if (EFUSE_ERROE_HANDLE == 1)
else if (tmp_header == 0xFF) { /* ************ s1-3: if Write or read func doesn't work ******************* */
/* efuse_addr doesn't change */
WriteState = PG_STATE_HEADER;
repeat_times++;
if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
bContinual = _FALSE;
/* bResult = _FALSE; */
}
}
#endif
else {
/* ************ s1-2 : fixed the header procedure ******************* */
if (!bExtendedHeader) {
tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
tmp_pkt.word_en = tmp_header & 0x0F;
tmp_word_cnts = Efuse_CalculateWordCnts(tmp_pkt.word_en);
}
/* ************ s1-2-A :cover the exist data ******************* */
memset(originaldata, 0xff, sizeof(u8) * 8);
if (Efuse_PgPacketRead(pAdapter, tmp_pkt.offset, originaldata, bPseudoTest)) {
/* check if data exist */
/* efuse_reg_ctrl(pAdapter,_TRUE); */ /* power on */
badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, tmp_pkt.word_en, originaldata, bPseudoTest);
/* ############################ */
if (0x0F != (badworden & 0x0F)) {
u8 reorg_offset = tmp_pkt.offset;
u8 reorg_worden = badworden;
Efuse_PgPacketWrite(pAdapter, reorg_offset, reorg_worden, originaldata, bPseudoTest);
efuse_addr = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest);
}
/* ############################ */
else {
efuse_addr = efuse_addr + (tmp_word_cnts * 2) + 1; /* Next pg_packet */
}
}
/* ************ s1-2-B: wrong address******************* */
else {
efuse_addr = efuse_addr + (tmp_word_cnts * 2) + 1; /* Next pg_packet */
}
#if (EFUSE_ERROE_HANDLE == 1)
WriteState = PG_STATE_HEADER;
repeat_times++;
if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
bContinual = _FALSE;
/* bResult = _FALSE; */
}
#endif
/* RTW_INFO("EFUSE PG_STATE_HEADER-2\n"); */
}
}
}
/* write data state */
else if (WriteState == PG_STATE_DATA) {
/* ************ s1-1 ******************* */
/* RTW_INFO("EFUSE PG_STATE_DATA\n"); */
badworden = 0x0f;
badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, target_pkt.word_en, target_pkt.data, bPseudoTest);
if ((badworden & 0x0F) == 0x0F) {
/* ************ s1-1-A ******************* */
bContinual = _FALSE;
} else {
/* reorganize other pg packet */ /* ************ s1-1-B ******************* */
efuse_addr = efuse_addr + (2 * target_word_cnts) + 1; /* next pg packet addr */
/* =========================== */
target_pkt.offset = offset;
target_pkt.word_en = badworden;
target_word_cnts = Efuse_CalculateWordCnts(target_pkt.word_en);
/* =========================== */
#if (EFUSE_ERROE_HANDLE == 1)
WriteState = PG_STATE_HEADER;
repeat_times++;
if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
bContinual = _FALSE;
/* bResult = _FALSE; */
}
#endif
/* RTW_INFO("EFUSE PG_STATE_HEADER-3\n"); */
}
}
}
if (efuse_addr >= (EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E))
RTW_INFO("hal_EfusePgPacketWrite_8812A(): efuse_addr(%#x) Out of size!!\n", efuse_addr);
/* efuse_reg_ctrl(pAdapter,_FALSE); */ /* power off */
return _TRUE;
}
#else
BOOLEAN efuse_PgPacketCheck(
PADAPTER pAdapter,
u8 efuseType,
BOOLEAN bPseudoTest
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
if (Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest) >= (EFUSE_REAL_CONTENT_LEN_8192E - EFUSE_OOB_PROTECT_BYTES_8192E)) {
RTW_INFO("%s()error: %x >= %x\n", __func__, Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest), (EFUSE_REAL_CONTENT_LEN_8192E - EFUSE_OOB_PROTECT_BYTES_8192E));
return _FALSE;
}
return _TRUE;
}
VOID
efuse_PgPacketConstruct(
IN u8 offset,
IN u8 word_en,
IN u8 *pData,
IN OUT PPGPKT_STRUCT pTargetPkt
)
{
memset((PVOID)pTargetPkt->data, 0xFF, sizeof(u8) * 8);
pTargetPkt->offset = offset;
pTargetPkt->word_en = word_en;
efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
RTW_INFO("efuse_PgPacketConstruct(), targetPkt, offset=%d, word_en=0x%x, word_cnts=%d\n", pTargetPkt->offset, pTargetPkt->word_en, pTargetPkt->word_cnts);
}
u2Byte Hal_EfusePgPacketExceptionHandle_8192E(
PADAPTER pAdapter,
u2Byte ErrOffset
)
{
BOOLEAN bPseudoTest = FALSE;
u8 next = 0, next_next = 0, data = 0, i = 0, header = 0;
u8 s = 0;
u2Byte offset = ErrOffset;
efuse_OneByteRead(pAdapter, offset, &header, bPseudoTest);
if (EXT_HEADER(header)) {
s = ((header & 0xF0) >> 4);
/* Skip bad word enable to look two bytes ahead and determine if recoverable.*/
offset += 1;
efuse_OneByteRead(pAdapter, offset+1, &next, bPseudoTest);
efuse_OneByteRead(pAdapter, offset+2, &next_next, bPseudoTest);
if (next == 0xFF && next_next == 0xFF) {/* Have enough space to make fake data to recover bad header.*/
switch (s) {
case 0x0: case 0x2: case 0x4: case 0x6:
case 0x8: case 0xA: case 0xC:
for (i = 0; i < 3; ++i) {
efuse_OneByteWrite(pAdapter, offset, 0x27, bPseudoTest);
efuse_OneByteRead(pAdapter, offset, &data, bPseudoTest);
if (data == 0x27)
break;
}
break;
case 0xE:
for (i = 0; i < 3; ++i) {
efuse_OneByteWrite(pAdapter, offset, 0x17, bPseudoTest);
efuse_OneByteRead(pAdapter, offset, &data, bPseudoTest);
if (data == 0x17)
break;
break;
default:
break;
}
efuse_OneByteWrite(pAdapter, offset+1, 0xFF, bPseudoTest);
efuse_OneByteWrite(pAdapter, offset+2, 0xFF, bPseudoTest);
offset += 3;
ErrOffset = offset;
}
} else {/* 1-Byte header*/
if (ALL_WORDS_DISABLED(header)) {
u8 next = 0;
efuse_OneByteRead(pAdapter, offset+1, &next, bPseudoTest);
if (next == 0xFF) {/* Have enough space to make fake data to recover bad header.*/
header = (header & 0xF0) | 0x7;
for (i = 0; i < 3; ++i) {
efuse_OneByteWrite(pAdapter, offset, header, bPseudoTest);
efuse_OneByteRead(pAdapter, offset, &data, bPseudoTest);
if (data == header)
break;
}
efuse_OneByteWrite(pAdapter, offset+1, 0xFF, bPseudoTest);
efuse_OneByteWrite(pAdapter, offset+2, 0xFF, bPseudoTest);
offset += 2;
ErrOffset = offset;
}
}
}
}
return ErrOffset;
}
BOOLEAN hal_EfuseCheckIfDatafollowed(
IN PADAPTER pAdapter,
IN u8 word_cnts,
IN u16 startAddr,
IN BOOLEAN bPseudoTest
)
{
BOOLEAN bRet = FALSE;
u8 i, efuse_data;
for (i = 0; i < (word_cnts * 2) ; i++) {
if (efuse_OneByteRead(pAdapter, (startAddr + i), &efuse_data, bPseudoTest) && (efuse_data != 0xFF))
bRet = TRUE;
}
return bRet;
}
BOOLEAN
hal_EfuseWordEnMatched(
IN PPGPKT_STRUCT pTargetPkt,
IN PPGPKT_STRUCT pCurPkt,
IN u8 *pWden
)
{
u8 match_word_en = 0x0F; /* default all words are disabled */
/* check if the same words are enabled both target and current PG packet */
if (((pTargetPkt->word_en & BIT0) == 0) &&
((pCurPkt->word_en & BIT0) == 0)) {
match_word_en &= ~BIT0; /* enable word 0 */
}
if (((pTargetPkt->word_en & BIT1) == 0) &&
((pCurPkt->word_en & BIT1) == 0)) {
match_word_en &= ~BIT1; /* enable word 1 */
}
if (((pTargetPkt->word_en & BIT2) == 0) &&
((pCurPkt->word_en & BIT2) == 0)) {
match_word_en &= ~BIT2; /* enable word 2 */
}
if (((pTargetPkt->word_en & BIT3) == 0) &&
((pCurPkt->word_en & BIT3) == 0)) {
match_word_en &= ~BIT3; /* enable word 3 */
}
*pWden = match_word_en;
if (match_word_en != 0xf)
return TRUE;
else
return FALSE;
}
BOOLEAN
efuse_PgPacketPartialWrite(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN OUT u16 *pAddr,
IN PPGPKT_STRUCT pTargetPkt,
IN BOOLEAN bPseudoTest
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PEFUSE_HAL pEfuseHal = &(pHalData->EfuseHal);
BOOLEAN bRet = _FALSE;
u8 i, efuse_data = 0, cur_header = 0;
u8 matched_wden = 0, badworden = 0;
u16 startAddr = 0;
PGPKT_STRUCT curPkt;
u16 max_sec_num = (efuseType == EFUSE_WIFI) ? pEfuseHal->MaxSecNum_WiFi : pEfuseHal->MaxSecNum_BT;
u16 efuse_max = pEfuseHal->BankSize;
u16 efuse_max_available_len =
(efuseType == EFUSE_WIFI) ? pEfuseHal->TotalAvailBytes_WiFi : pEfuseHal->TotalAvailBytes_BT;
RTW_INFO("efuse_PgPacketPartialWrite()\n");
if (bPseudoTest) {
pEfuseHal->fakeEfuseBank = (efuseType == EFUSE_WIFI) ? 0 : pEfuseHal->fakeEfuseBank;
Efuse_GetCurrentSize(pAdapter, efuseType, _TRUE);
}
EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest);
EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest);
if (efuseType == EFUSE_WIFI) {
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes;
#else
startAddr = (u16)fakeEfuseUsedBytes;
#endif
} else
rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
} else {
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes;
#else
startAddr = (u16)fakeBTEfuseUsedBytes;
#endif
} else
rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&startAddr);
}
startAddr %= efuse_max;
RTW_INFO("%s: startAddr=%#X\n", __FUNCTION__, startAddr);
RTW_INFO("efuse_PgPacketPartialWrite(), startAddr = 0x%X\n", startAddr);
while (1) {
if (startAddr >= efuse_max_available_len) {
bRet = _FALSE;
RTW_INFO("startAddr(%d) >= efuse_max_available_len(%d)\n",
startAddr, efuse_max_available_len);
break;
}
if (efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
if (EXT_HEADER(efuse_data)) {
cur_header = efuse_data;
startAddr++;
efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest);
if (ALL_WORDS_DISABLED(efuse_data)) {
u16 recoveredAddr = startAddr;
recoveredAddr = Hal_EfusePgPacketExceptionHandle_8192E(pAdapter, startAddr - 1);
if (recoveredAddr == (startAddr - 1)) {
RTW_INFO("Error! All words disabled and the recovery failed, (Addr, Data) = (0x%X, 0x%X)\n",
startAddr, efuse_data);
pAdapter->LastError = ERR_INVALID_DATA;
break;
} else {
startAddr = recoveredAddr;
RTW_INFO("Bad extension header but recovered => Keep going.\n");
continue;
}
} else {
curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
curPkt.word_en = efuse_data & 0x0F;
}
} else {
if (ALL_WORDS_DISABLED(efuse_data)) {
u16 recoveredAddr = startAddr;
recoveredAddr = Hal_EfusePgPacketExceptionHandle_8192E(pAdapter, startAddr);
if (recoveredAddr != startAddr) {
efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest);
RTW_INFO("Bad header but recovered => Read header again.\n");
}
}
cur_header = efuse_data;
curPkt.offset = (cur_header >> 4) & 0x0F;
curPkt.word_en = cur_header & 0x0F;
}
if (curPkt.offset > max_sec_num) {
pAdapter->LastError = ERR_OUT_OF_RANGE;
pEfuseHal->Status = ERR_OUT_OF_RANGE;
bRet = _FALSE;
break;
}
curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
/* if same header is found but no data followed */
/* write some part of data followed by the header. */
if ((curPkt.offset == pTargetPkt->offset) &&
(!hal_EfuseCheckIfDatafollowed(pAdapter, curPkt.word_cnts, startAddr + 1, bPseudoTest)) &&
hal_EfuseWordEnMatched(pTargetPkt, &curPkt, &matched_wden)) {
RTW_INFO("Need to partial write data by the previous wrote header\n");
/* RT_ASSERT(_FALSE, ("Error, Need to partial write data by the previous wrote header!!\n")); */
/* Here to write partial data */
badworden = Efuse_WordEnableDataWrite(pAdapter, startAddr + 1, matched_wden, pTargetPkt->data, bPseudoTest);
if (badworden != 0x0F) {
u32 PgWriteSuccess = 0;
/* if write fail on some words, write these bad words again */
PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
if (!PgWriteSuccess) {
bRet = _FALSE; /* write fail, return */
break;
}
}
/* partial write ok, update the target packet for later use */
for (i = 0; i < 4; i++) {
if ((matched_wden & (0x1 << i)) == 0) { /* this word has been written */
pTargetPkt->word_en |= (0x1 << i); /* disable the word */
}
}
pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
}
/* read from next header */
startAddr = startAddr + (curPkt.word_cnts * 2) + 1;
} else {
/* not used header, 0xff */
*pAddr = startAddr;
RTW_INFO("Started from unused header offset=%d\n", startAddr);
bRet = _TRUE;
break;
}
}
return bRet;
}
BOOLEAN
hal_EfuseFixHeaderProcess(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN PPGPKT_STRUCT pFixPkt,
IN u16 *pAddr,
IN BOOLEAN bPseudoTest
)
{
u8 originaldata[8], badworden = 0;
u16 efuse_addr = *pAddr;
u32 PgWriteSuccess = 0;
memset((PVOID)originaldata, 0xff, 8);
if (Efuse_PgPacketRead(pAdapter, pFixPkt->offset, originaldata, bPseudoTest)) {
/* check if data exist */
badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, pFixPkt->word_en, originaldata, bPseudoTest);
if (badworden != 0xf) { /* write fail */
PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pFixPkt->offset, badworden, originaldata, bPseudoTest);
if (!PgWriteSuccess)
return _FALSE;
else
efuse_addr = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest);
} else
efuse_addr = efuse_addr + (pFixPkt->word_cnts * 2) + 1;
} else
efuse_addr = efuse_addr + (pFixPkt->word_cnts * 2) + 1;
*pAddr = efuse_addr;
return _TRUE;
}
static u8
hal_EfusePgPacketWrite2ByteHeader(
PADAPTER padapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u16 efuse_addr, efuse_max_available_len = 0;
u8 pg_header = 0, tmp_header = 0, pg_header_temp = 0;
u8 repeatcnt = 0;
/* RTW_INFO("%s\n", __FUNCTION__); */
EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &efuse_max_available_len, bPseudoTest);
efuse_addr = *pAddr;
if (efuse_addr >= efuse_max_available_len) {
RTW_INFO("%s: addr(%d) over available(%d)!!\n", __FUNCTION__, efuse_addr, efuse_max_available_len);
return _FALSE;
}
while (efuse_addr < efuse_max_available_len) {
pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 0);
efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 1);
while (tmp_header == 0xFF || pg_header != tmp_header) {
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
RTW_INFO("%s, Repeat over limit for pg_header!!\n", __FUNCTION__);
return _FALSE;
}
efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
}
/*to write ext_header*/
if (tmp_header == pg_header) {
efuse_addr++;
pg_header_temp = pg_header;
pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 0);
efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 1);
while (tmp_header == 0xFF || pg_header != tmp_header) {
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
RTW_INFO("%s, Repeat over limit for ext_header!!\n", __FUNCTION__);
return _FALSE;
}
efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
}
if ((tmp_header & 0x0F) == 0x0F) {
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
RTW_INFO("Repeat over limit for word_en!!\n");
return _FALSE;
} else {
if (tmp_header == 0xFF) {
RTW_INFO("wrong word_en empty!!\n");
return _FALSE;
}
efuse_addr++;
continue;
}
} else if (pg_header != tmp_header) {
PGPKT_STRUCT fixPkt;
RTW_INFO("Error, efuse_PgPacketWrite2ByteHeader(), offset PG fail, need to cover the existed data!!\n");
RTW_INFO("Error condition for offset PG fail, need to cover the existed data\n");
fixPkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1);
fixPkt.word_en = tmp_header & 0x0F;
fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
if (!hal_EfuseFixHeaderProcess(padapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest))
return _FALSE;
} else
break;
} else if ((tmp_header & 0x1F) == 0x0F) {/*wrong extended header*/
if (tmp_header == 0xFF) {
RTW_INFO("wrong word_en empty!!\n");
return _FALSE;
}
efuse_addr += 2;
continue;
}
}
*pAddr = efuse_addr;
return _TRUE;
}
static u8
hal_EfusePgPacketWrite1ByteHeader(
PADAPTER pAdapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u8 bRet = _FALSE;
u8 pg_header = 0, tmp_header = 0;
u16 efuse_addr = *pAddr;
u8 repeatcnt = 0;
pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1);
while (tmp_header == 0xFF || pg_header != tmp_header) {
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
RTW_INFO("retry %d times fail!!\n", repeatcnt);
return FALSE;
}
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
RTW_INFO("===> %s: Keep %d-th retrying, tmp_header = 0x%X\n", __func__, repeatcnt, tmp_header);
}
if (tmp_header != pg_header) {
PGPKT_STRUCT fixPkt;
RTW_INFO("Error, %s(), offset PG fail, need to cover the existed data!!\n", __func__);
RTW_INFO("pg_header(0x%X) != tmp_header(0x%X)\n", pg_header, tmp_header);
RTW_INFO("Error condition for fixed PG packet, need to cover the existed data: (Addr, Data) = (0x%X, 0x%X)\n",
efuse_addr, tmp_header);
fixPkt.offset = (tmp_header>>4) & 0x0F;
fixPkt.word_en = tmp_header & 0x0F;
fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest))
return FALSE;
}
*pAddr = efuse_addr;
return _TRUE;
}
BOOLEAN efuse_PgPacketWriteHeader(
PADAPTER pAdapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
BOOLEAN bPseudoTest)
{
BOOLEAN bRet = _FALSE;
if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
bRet = hal_EfusePgPacketWrite2ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
else
bRet = hal_EfusePgPacketWrite1ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
return bRet;
}
static u8
hal_EfusePgPacketWriteData(
PADAPTER pAdapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u16 efuse_addr;
u8 badworden;
efuse_addr = *pAddr;
badworden = rtl8192E_Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
if (badworden != 0x0F) {
RTW_INFO("%s: Fail!!\n", __FUNCTION__);
return _FALSE;
}
/* RTW_INFO("%s: ok\n", __FUNCTION__); */
return _TRUE;
}
int
hal_EfusePgPacketWrite_8192E(IN PADAPTER pAdapter,
u8 offset,
u8 word_en,
u8 *pData,
BOOLEAN bPseudoTest)
{
u8 efuseType = EFUSE_WIFI;
PGPKT_STRUCT targetPkt;
u16 startAddr = 0;
RTW_INFO("===> efuse_PgPacketWrite[%s], offset: 0x%X\n", (efuseType == EFUSE_WIFI) ? "WIFI" : "BT", offset);
/* 4 [1] Check if the remaining space is available to write. */
if (!efuse_PgPacketCheck(pAdapter, efuseType, bPseudoTest)) {
pAdapter->LastError = ERR_WRITE_PROTECT;
RTW_INFO("efuse_PgPacketCheck(), fail!!\n");
return _FALSE;
}
/* 4 [2] Construct a packet to write: (Data, Offset, and WordEnable) */
efuse_PgPacketConstruct(offset, word_en, pData, &targetPkt);
/* 4 [3] Fix headers without data or fix bad headers, and then return the address where to get started. */
if (!efuse_PgPacketPartialWrite(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) {
pAdapter->LastError = ERR_INVALID_DATA;
RTW_INFO("efuse_PgPacketPartialWrite(), fail!!\n");
return _FALSE;
}
/* 4 [4] Write the (extension) header. */
if (!efuse_PgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) {
pAdapter->LastError = ERR_IO_FAILURE;
RTW_INFO("efuse_PgPacketWriteHeader(), fail!!\n");
return _FALSE;
}
/* 4 [5] Write the data. */
if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) {
pAdapter->LastError = ERR_IO_FAILURE;
RTW_INFO("efuse_PgPacketWriteData(), fail!!\n");
return _FALSE;
}
RTW_INFO("<=== efuse_PgPacketWrite\n");
return _TRUE;
}
#endif
static int
rtl8192E_Efuse_PgPacketWrite(IN PADAPTER pAdapter,
IN u8 offset,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
int ret;
ret = hal_EfusePgPacketWrite_8192E(pAdapter, offset, word_en, data, bPseudoTest);
return ret;
}
u8
GetEEPROMSize8192E(
IN PADAPTER Adapter
)
{
u8 size = 0;
u32 curRCR;
curRCR = rtw_read16(Adapter, REG_SYS_EEPROM_CTRL);
size = (curRCR & EEPROMSEL) ? 6 : 4; /* 6: EEPROM used is 93C46, 4: boot from E-Fuse. */
RTW_INFO("EEPROM type is %s\n", size == 4 ? "E-FUSE" : "93C46");
/* return size; */
return 4; /* <20120713, Kordan> The default value of HW is 6 ?!! */
}
/* ***********************************************************
* Efuse related code
* *********************************************************** */
static void hw_var_set_monitor(PADAPTER Adapter, u8 variable, u8 *val)
{
u32 rcr_bits;
u16 value_rxfltmap2;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct mlme_priv *pmlmepriv = &(Adapter->mlmepriv);
if (*((u8 *)val) == _HW_STATE_MONITOR_) {
#ifdef CONFIG_CUSTOMER_ALIBABA_GENERAL
/* Remove control frame, Dont Append FCS */
rcr_bits = RCR_AAP | RCR_APM | RCR_AM | RCR_AB | RCR_APWRMGT | RCR_ADF | RCR_AMF | RCR_APP_PHYST_RXFF;
#else
/* Receive all type */
rcr_bits = RCR_AAP | RCR_APM | RCR_AM | RCR_AB | RCR_APWRMGT | RCR_ADF | RCR_ACF | RCR_AMF | RCR_APP_PHYST_RXFF;
/* Append FCS */
rcr_bits |= RCR_APPFCS;
#endif
#if 0
/*
CRC and ICV packet will drop in recvbuf2recvframe()
We no turn on it.
*/
rcr_bits |= (RCR_ACRC32 | RCR_AICV);
#endif
rtw_hal_get_hwreg(Adapter, HW_VAR_RCR, (u8 *)&pHalData->rcr_backup);
rtw_hal_set_hwreg(Adapter, HW_VAR_RCR, (u8 *)&rcr_bits);
/* Receive all data frames */
value_rxfltmap2 = 0xFFFF;
rtw_write16(Adapter, REG_RXFLTMAP2, value_rxfltmap2);
#if 0
/* tx pause */
rtw_write8(padapter, REG_TXPAUSE, 0xFF);
#endif
} else {
/* do nothing */
}
}
static void hw_var_set_opmode(PADAPTER Adapter, u8 variable, u8 *val)
{
u8 val8;
u32 val32;
u8 mode = *((u8 *)val);
static u8 isMonitor = _FALSE;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if (isMonitor == _TRUE) {
/* reset RCR from backup */
rtw_hal_set_hwreg(Adapter, HW_VAR_RCR, (u8 *)&pHalData->rcr_backup);
rtw_hal_rcr_set_chk_bssid(Adapter, MLME_ACTION_NONE);
isMonitor = _FALSE;
}
RTW_INFO(ADPT_FMT "- Port-%d set opmode = %d\n", ADPT_ARG(Adapter),
get_hw_port(Adapter), mode);
if (mode == _HW_STATE_MONITOR_) {
isMonitor = _TRUE;
/* set net_type */
Set_MSR(Adapter, _HW_STATE_NOLINK_);
hw_var_set_monitor(Adapter, variable, val);
return;
}
rtw_hal_set_hwreg(Adapter, HW_VAR_MAC_ADDR, adapter_mac_addr(Adapter)); /* set mac addr to mac register */
#ifdef CONFIG_CONCURRENT_MODE
if (Adapter->hw_port == HW_PORT1) {
/* disable Port1 TSF update */
rtw_iface_disable_tsf_update(Adapter);
Set_MSR(Adapter, mode);
/*RTW_INFO("#### %s() -%d hw_port(%d) mode = %d ####\n", __FUNCTION__, __LINE__, Adapter->hw_port,mode);*/
if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
if (!rtw_mi_get_ap_num(Adapter) && !rtw_mi_get_mesh_num(Adapter)) {
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
rtw_write8(Adapter, REG_DRVERLYINT, 0x05);/* restore early int time to 5ms */
#if defined(CONFIG_USB_HCI)
UpdateInterruptMask8192EU(Adapter, _TRUE, 0, IMR_BCNDMAINT1_8192E);
#elif defined(CONFIG_SDIO_HCI)
UpdateInterruptMask8192ESdio(Adapter, 0, SDIO_HIMR_BCNERLY_INT_MSK);
#endif
#endif /* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#if defined(CONFIG_USB_HCI)
UpdateInterruptMask8192EU(Adapter, _TRUE , 0, (IMR_TXBCN0ERR_8192E | IMR_TXBCN0OK_8192E));
#elif defined(CONFIG_SDIO_HCI)
UpdateInterruptMask8192ESdio(Adapter, 0, (SDIO_HIMR_TXBCNOK_MSK | SDIO_HIMR_TXBCNERR_MSK));
#endif
#endif/* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
#endif /* CONFIG_INTERRUPT_BASED_TXBCN */
StopTxBeacon(Adapter);
}
rtw_write8(Adapter, REG_BCN_CTRL_1, DIS_TSF_UDT | DIS_ATIM); /* disable atim wnd and disable beacon function */
/* rtw_write8(Adapter,REG_BCN_CTRL_1, DIS_TSF_UDT | EN_BCN_FUNCTION); */
} else if (mode == _HW_STATE_ADHOC_) {
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL_1, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
} else if (mode == _HW_STATE_AP_) {
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#if defined(CONFIG_USB_HCI)
UpdateInterruptMask8192EU(Adapter, _TRUE , IMR_BCNDMAINT1_8192E, 0);
#elif defined(CONFIG_SDIO_HCI)
UpdateInterruptMask8192ESdio(Adapter, SDIO_HIMR_BCNERLY_INT_MSK, 0);
#endif
#endif/* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#if defined(CONFIG_USB_HCI)
UpdateInterruptMask8192EU(Adapter, _TRUE , (IMR_TXBCN0ERR_8192E | IMR_TXBCN0OK_8192E), 0);
#elif defined(CONFIG_SDIO_HCI)
UpdateInterruptMask8192ESdio(Adapter, (SDIO_HIMR_TXBCNOK_MSK | SDIO_HIMR_TXBCNERR_MSK), 0);
#endif
#endif/* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
#endif /* CONFIG_INTERRUPT_BASED_TXBCN */
rtw_write8(Adapter, REG_BCN_CTRL_1, DIS_TSF_UDT | DIS_BCNQ_SUB);
/* enable to rx data frame */
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
/* enable to rx ps-poll */
rtw_write16(Adapter, REG_RXFLTMAP1, 0x0400);
/* Beacon Control related register for first time */
rtw_write8(Adapter, REG_BCNDMATIM, 0x02); /* 2ms */
/* rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF); */
rtw_write8(Adapter, REG_ATIMWND_1, 0x0a); /* 10ms for port1 */
rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */
/* reset TSF2 */
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1));
/* enable BCN1 Function for if2 */
/* don't enable update TSF1 for if2 (due to TSF update when beacon/probe rsp are received) */
rtw_write8(Adapter, REG_BCN_CTRL_1, (DIS_TSF_UDT | EN_BCN_FUNCTION | EN_TXBCN_RPT | DIS_RX_BSSID_FIT));
/* SW_BCN_SEL - Port1 */
/* rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2)|BIT4); */
rtw_hal_set_hwreg(Adapter, HW_VAR_DL_BCN_SEL, NULL);
/* select BCN on port 1 */
rtw_write8(Adapter, REG_CCK_CHECK_8192E,
(rtw_read8(Adapter, REG_CCK_CHECK_8192E) | BIT_BCN_PORT_SEL));
if (!rtw_mi_buddy_check_mlmeinfo_state(Adapter, WIFI_FW_ASSOC_SUCCESS))
rtw_write8(Adapter, REG_BCN_CTRL,
rtw_read8(Adapter, REG_BCN_CTRL) & ~EN_BCN_FUNCTION);
/* dis BCN0 ATIM WND if if1 is station */
/* rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|DIS_ATIM); */
#ifdef CONFIG_TSF_RESET_OFFLOAD
/* Reset TSF for STA+AP concurrent mode */
if (DEV_STA_LD_NUM(adapter_to_dvobj(Adapter))) {
if (rtw_hal_reset_tsf(Adapter, HW_PORT1) == _FAIL)
RTW_INFO("ERROR! %s()-%d: Reset port1 TSF fail\n",
__FUNCTION__, __LINE__);
}
#endif /* CONFIG_TSF_RESET_OFFLOAD */
}
} else
#endif /* CONFIG_CONCURRENT_MODE */
{
#ifdef CONFIG_MI_WITH_MBSSID_CAM /*For Port0 - MBSS CAM*/
hw_var_set_opmode_mbid(Adapter, mode);
#else
/* disable Port0 TSF update */
rtw_iface_disable_tsf_update(Adapter);
Set_MSR(Adapter, mode);
/*RTW_INFO("#### %s() -%d hw_port(0) mode = %d ####\n", __FUNCTION__, __LINE__, mode);*/
if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
#ifdef CONFIG_CONCURRENT_MODE
if (!rtw_mi_get_ap_num(Adapter) && !rtw_mi_get_mesh_num(Adapter))
#endif /*CONFIG_CONCURRENT_MODE*/
{
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
rtw_write8(Adapter, REG_DRVERLYINT, 0x05);/* restore early int time to 5ms */
#if defined(CONFIG_USB_HCI)
UpdateInterruptMask8192EU(Adapter, _TRUE, 0, IMR_BCNDMAINT0_8192E);
#elif defined(CONFIG_SDIO_HCI)
UpdateInterruptMask8192ESdio(Adapter, 0, SDIO_HIMR_BCNERLY_INT_MSK);
#endif
#endif/* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#if defined(CONFIG_USB_HCI)
UpdateInterruptMask8192EU(Adapter, _TRUE , 0, (IMR_TXBCN0ERR_8192E | IMR_TXBCN0OK_8192E));
#elif defined(CONFIG_SDIO_HCI)
UpdateInterruptMask8192ESdio(Adapter, 0, (SDIO_HIMR_TXBCNOK_MSK | SDIO_HIMR_TXBCNERR_MSK));
#endif
#endif /* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
#endif /* CONFIG_INTERRUPT_BASED_TXBCN */
StopTxBeacon(Adapter);
}
rtw_write8(Adapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_ATIM); /* disable atim wnd */
/* rtw_write8(Adapter,REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION); */
} else if (mode == _HW_STATE_ADHOC_) {
/*Beacon is polled to TXBUF*/
rtw_write16(Adapter, REG_CR, rtw_read16(Adapter, REG_CR) | BIT(8));
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
} else if (mode == _HW_STATE_AP_) {
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#if defined(CONFIG_USB_HCI)
UpdateInterruptMask8192EU(Adapter, _TRUE , IMR_BCNDMAINT0_8192E, 0);
#elif defined(CONFIG_SDIO_HCI)
UpdateInterruptMask8192ESdio(Adapter, SDIO_HIMR_BCNERLY_INT_MSK, 0);
#endif
#endif/* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#if defined(CONFIG_USB_HCI)
UpdateInterruptMask8192EU(Adapter, _TRUE , (IMR_TXBCN0ERR_8192E | IMR_TXBCN0OK_8192E), 0);
#elif defined(CONFIG_SDIO_HCI)
UpdateInterruptMask8192ESdio(Adapter, (SDIO_HIMR_TXBCNOK_MSK | SDIO_HIMR_TXBCNERR_MSK), 0);
#endif
#endif/* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
#endif /* CONFIG_INTERRUPT_BASED_TXBCN */
rtw_write8(Adapter, REG_BCN_CTRL, DIS_TSF_UDT | DIS_BCNQ_SUB);
/*Beacon is polled to TXBUF*/
rtw_write16(Adapter, REG_CR, rtw_read16(Adapter, REG_CR) | BIT(8));
/* enable to rx data frame */
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
/* enable to rx ps-poll */
rtw_write16(Adapter, REG_RXFLTMAP1, 0x0400);
/* Beacon Control related register for first time */
rtw_write8(Adapter, REG_BCNDMATIM, 0x02); /* 2ms */
/* rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF); */
rtw_write8(Adapter, REG_ATIMWND, 0x0c); /* 12ms */
rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */
/* reset TSF */
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
/* enable BCN0 Function for if1 */
/* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT | EN_BCN_FUNCTION | EN_TXBCN_RPT | DIS_RX_BSSID_FIT));
/* SW_BCN_SEL - Port0 */
/* rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) & ~BIT4); */
rtw_hal_set_hwreg(Adapter, HW_VAR_DL_BCN_SEL, NULL);
/* select BCN on port 0 */
rtw_write8(Adapter, REG_CCK_CHECK_8192E,
(rtw_read8(Adapter, REG_CCK_CHECK_8192E) & ~BIT_BCN_PORT_SEL));
#ifdef CONFIG_CONCURRENT_MODE
if (!rtw_mi_buddy_check_mlmeinfo_state(Adapter, WIFI_FW_ASSOC_SUCCESS))
rtw_write8(Adapter, REG_BCN_CTRL_1,
rtw_read8(Adapter, REG_BCN_CTRL_1) & ~EN_BCN_FUNCTION);
#endif
/* dis BCN1 ATIM WND if if2 is station */
/* rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|DIS_ATIM); */
#ifdef CONFIG_TSF_RESET_OFFLOAD
/* Reset TSF for STA+AP concurrent mode */
if (DEV_STA_LD_NUM(adapter_to_dvobj(Adapter))) {
if (rtw_hal_reset_tsf(Adapter, HW_PORT0) == _FAIL)
RTW_INFO("ERROR! %s()-%d: Reset port0 TSF fail\n", __FUNCTION__, __LINE__);
}
#endif /* CONFIG_TSF_RESET_OFFLOAD */
}
#endif
}
}
/***********************************************************/
/* RTL8192E-MAC Setting */
VOID
_InitTxBufferBoundary_8192E(
IN PADAPTER Adapter,
IN u8 txpktbuf_bndy
)
{
struct registry_priv *pregistrypriv = &Adapter->registrypriv;
rtw_write8(Adapter, REG_BCNQ_BDNY, txpktbuf_bndy);
rtw_write8(Adapter, REG_MGQ_BDNY, txpktbuf_bndy);
rtw_write8(Adapter, REG_WMAC_LBK_BF_HD, txpktbuf_bndy);
rtw_write8(Adapter, REG_TRXFF_BNDY, txpktbuf_bndy);
rtw_write8(Adapter, REG_DWBCN0_CTRL_8192E+1, txpktbuf_bndy);/* BCN_HEAD */
#ifdef CONFIG_CONCURRENT_MODE
rtw_write8(Adapter, REG_BCNQ1_BDNY, txpktbuf_bndy + 8);
rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+1, txpktbuf_bndy + 8); /* BCN1_HEAD */
/* BIT1- BIT_SW_BCN_SEL_EN */
rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) | BIT1);
#endif
}
VOID
_InitQueueReservedPage_8192E(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct registry_priv *pregistrypriv = &Adapter->registrypriv;
u32 numHQ = 0;
u32 numLQ = 0;
u32 numNQ = 0;
u32 numEQ = 0;
u32 numPubQ = 0;
u32 value32;
if (!pregistrypriv->wifi_spec) { /* Typical setting */
if (pHalData->OutEpQueueSel & TX_SELE_HQ)
numHQ = NORMAL_PAGE_NUM_HPQ_8192E;
if (pHalData->OutEpQueueSel & TX_SELE_LQ)
numLQ = NORMAL_PAGE_NUM_LPQ_8192E;
/* NOTE: This step shall be proceed before writting REG_RQPN. */
if (pHalData->OutEpQueueSel & TX_SELE_NQ)
numNQ = NORMAL_PAGE_NUM_NPQ_8192E;
if (pHalData->OutEpQueueSel & TX_SELE_EQ)
numEQ = NORMAL_PAGE_NUM_EPQ_8192E;
} else {
/* WMM */
if (pHalData->OutEpQueueSel & TX_SELE_HQ)
numHQ = WMM_NORMAL_PAGE_NUM_HPQ_8192E;
if (pHalData->OutEpQueueSel & TX_SELE_LQ)
numLQ = WMM_NORMAL_PAGE_NUM_LPQ_8192E;
/* NOTE: This step shall be proceed before writting REG_RQPN. */
if (pHalData->OutEpQueueSel & TX_SELE_NQ)
numNQ = WMM_NORMAL_PAGE_NUM_NPQ_8192E;
if (pHalData->OutEpQueueSel & TX_SELE_EQ)
numEQ = NORMAL_PAGE_NUM_EPQ_8192E;
}
/*
Reserve 1 page at the boundary for safety
*/
numPubQ = TX_TOTAL_PAGE_NUMBER_8192E - numHQ - numLQ - numNQ - numEQ - 1;
value32 = _NPQ(numNQ) | _EPQ(numEQ);
rtw_write32(Adapter, REG_RQPN_NPQ, value32);
/* TX DMA */
value32 = _HPQ(numHQ) | _LPQ(numLQ) | _PUBQ(numPubQ) | LD_RQPN;
rtw_write32(Adapter, REG_RQPN, value32);
#ifdef CONFIG_SDIO_HCI
rtw_hal_set_sdio_tx_max_length(Adapter, numHQ, numNQ, numLQ, numPubQ, SDIO_TX_DIV_NUM);
#ifdef CONFIG_SDIO_TX_ENABLE_AVAL_INT
_init_available_page_threshold(Adapter, numHQ, numNQ, numLQ, numPubQ);
#endif
#endif
}
static VOID
_InitNormalChipRegPriority_8192E(
IN PADAPTER Adapter,
IN u16 beQ,
IN u16 bkQ,
IN u16 viQ,
IN u16 voQ,
IN u16 mgtQ,
IN u16 hiQ
)
{
u16 value16 = (rtw_read16(Adapter, REG_TRXDMA_CTRL) & 0x7);
value16 |= _TXDMA_BEQ_MAP(beQ) | _TXDMA_BKQ_MAP(bkQ) |
_TXDMA_VIQ_MAP(viQ) | _TXDMA_VOQ_MAP(voQ) |
_TXDMA_MGQ_MAP(mgtQ) | _TXDMA_HIQ_MAP(hiQ);
rtw_write16(Adapter, REG_TRXDMA_CTRL, value16);
}
static VOID
_InitNormalChipTwoOutEpPriority_8192E(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct registry_priv *pregistrypriv = &Adapter->registrypriv;
u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
u16 valueHi = 0;
u16 valueLow = 0;
switch (pHalData->OutEpQueueSel) {
case (TX_SELE_HQ | TX_SELE_LQ):
valueHi = QUEUE_HIGH;
valueLow = QUEUE_LOW;
break;
case (TX_SELE_NQ | TX_SELE_LQ):
valueHi = QUEUE_NORMAL;
valueLow = QUEUE_LOW;
break;
case (TX_SELE_HQ | TX_SELE_NQ):
valueHi = QUEUE_HIGH;
valueLow = QUEUE_NORMAL;
break;
default:
valueHi = QUEUE_HIGH;
valueLow = QUEUE_NORMAL;
break;
}
if (!pregistrypriv->wifi_spec) {
beQ = valueLow;
bkQ = valueLow;
viQ = valueHi;
voQ = valueHi;
mgtQ = valueHi;
hiQ = valueHi;
} else { /* for WMM ,CONFIG_OUT_EP_WIFI_MODE */
beQ = valueLow;
bkQ = valueHi;
viQ = valueHi;
voQ = valueLow;
mgtQ = valueHi;
hiQ = valueHi;
}
_InitNormalChipRegPriority_8192E(Adapter, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
}
static VOID
_InitNormalChipThreeOutEpPriority_8192E(
IN PADAPTER Adapter
)
{
struct registry_priv *pregistrypriv = &Adapter->registrypriv;
u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
if (!pregistrypriv->wifi_spec) { /* typical setting */
beQ = QUEUE_LOW;
bkQ = QUEUE_LOW;
viQ = QUEUE_NORMAL;
voQ = QUEUE_HIGH;
mgtQ = QUEUE_HIGH;
hiQ = QUEUE_HIGH;
} else { /* for WMM */
beQ = QUEUE_LOW;
bkQ = QUEUE_NORMAL;
viQ = QUEUE_NORMAL;
voQ = QUEUE_HIGH;
mgtQ = QUEUE_HIGH;
hiQ = QUEUE_HIGH;
}
_InitNormalChipRegPriority_8192E(Adapter, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
}
static VOID
_InitNormalChipFourOutEpPriority_8192E(
IN PADAPTER Adapter
)
{
struct registry_priv *pregistrypriv = &Adapter->registrypriv;
u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
if (!pregistrypriv->wifi_spec) { /* typical setting */
beQ = QUEUE_LOW;
bkQ = QUEUE_LOW;
viQ = QUEUE_NORMAL;
voQ = QUEUE_HIGH;
mgtQ = QUEUE_HIGH;
hiQ = QUEUE_EXTRA;
} else { /* for WMM */
beQ = QUEUE_LOW;
bkQ = QUEUE_NORMAL;
viQ = QUEUE_NORMAL;
voQ = QUEUE_HIGH;
mgtQ = QUEUE_HIGH;
hiQ = QUEUE_EXTRA;
}
_InitNormalChipRegPriority_8192E(Adapter, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
}
VOID
_InitQueuePriority_8192E(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
switch (pHalData->OutEpNumber) {
case 2:
_InitNormalChipTwoOutEpPriority_8192E(Adapter);
break;
case 3:
_InitNormalChipThreeOutEpPriority_8192E(Adapter);
break;
case 4:
/* TBD - for AP mode ,extra-Q */
_InitNormalChipFourOutEpPriority_8192E(Adapter);
break;
default:
RTW_INFO("_InitQueuePriority_8192E(): Shall not reach here!\n");
break;
}
}
VOID
_InitPageBoundary_8192E(
IN PADAPTER Adapter
)
{
u16 rxff_bndy = 0;
rxff_bndy = MAX_RX_DMA_BUFFER_SIZE_8192E - 1;
rtw_write16(Adapter, (REG_TRXFF_BNDY + 2), rxff_bndy);
}
VOID
_InitDriverInfoSize_8192E(
IN PADAPTER Adapter,
IN u8 drvInfoSize
)
{
rtw_write8(Adapter, REG_RX_DRVINFO_SZ, drvInfoSize);
}
VOID _InitRDGSetting_8192E(PADAPTER Adapter)
{
rtw_write8(Adapter, REG_RD_CTRL, 0xFF);
rtw_write16(Adapter, REG_RD_NAV_NXT, 0x200);
rtw_write8(Adapter, REG_RD_RESP_PKT_TH, 0x05);
}
VOID
_InitNetworkType_8192E(
IN PADAPTER Adapter
)
{
u32 value32;
value32 = rtw_read32(Adapter, REG_CR);
/* TODO: use the other function to set network type */
value32 = (value32 & ~MASK_NETTYPE) | _NETTYPE(NT_LINK_AP);
rtw_write32(Adapter, REG_CR, value32);
}
VOID
_InitWMACSetting_8192E(
IN PADAPTER Adapter
)
{
/* u4Byte value32; */
/* u16 value16; */
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u32 rcr;
/* rcr = AAP | APM | AM | AB | APP_ICV | ADF | AMF | APP_FCS | HTC_LOC_CTRL | APP_MIC | APP_PHYSTS; */
/* rcr = */
/* RCR_AAP | RCR_APM | RCR_AM | RCR_AB |RCR_CBSSID_DATA| RCR_CBSSID_BCN| RCR_APP_ICV | RCR_AMF | RCR_HTC_LOC_CTRL | RCR_APP_MIC | RCR_APP_PHYST_RXFF; */
/* don't turn on AAP, it will allow all packets to driver */
rcr = RCR_APM | RCR_AM | RCR_AB | RCR_CBSSID_DATA | RCR_CBSSID_BCN | RCR_APP_ICV | RCR_AMF | RCR_HTC_LOC_CTRL | RCR_APP_MIC | RCR_APP_PHYST_RXFF;
#if (1 == RTL8192E_RX_PACKET_INCLUDE_CRC)
rcr |= ACRC32;
#endif
rtw_hal_set_hwreg(Adapter, HW_VAR_RCR, (u8 *)&rcr);
/* Accept all multicast address */
rtw_write32(Adapter, REG_MAR, 0xFFFFFFFF);
rtw_write32(Adapter, REG_MAR + 4, 0xFFFFFFFF);
/* Accept all data frames */
/* value16 = 0xFFFF; */
/* rtw_write16(Adapter, REG_RXFLTMAP2, value16); */
/* 2010.09.08 hpfan */
/* Since ADF is removed from RCR, ps-poll will not be indicate to driver, */
/* RxFilterMap should mask ps-poll to gurantee AP mode can rx ps-poll. */
/* value16 = 0x400; */
/* rtw_write16(Adapter, REG_RXFLTMAP1, value16); */
/* Accept all management frames */
/* value16 = 0xFFFF; */
/* rtw_write16(Adapter, REG_RXFLTMAP0, value16); */
/* enable RX_SHIFT bits */
/* rtw_write8(Adapter, REG_TRXDMA_CTRL, rtw_read8(Adapter, REG_TRXDMA_CTRL)|BIT(1)); */
}
VOID _InitAdaptiveCtrl_8192E(IN PADAPTER Adapter)
{
u16 value16;
u32 value32;
/* Response Rate Set */
value32 = rtw_read32(Adapter, REG_RRSR);
value32 &= ~RATE_BITMAP_ALL;
value32 |= RATE_RRSR_CCK_ONLY_1M;
rtw_write32(Adapter, REG_RRSR, value32);
/* CF-END Threshold */
/* m_spIoBase->rtw_write8(REG_CFEND_TH, 0x1); */
/* SIFS (used in NAV) */
value16 = _SPEC_SIFS_CCK(0x10) | _SPEC_SIFS_OFDM(0x10);
rtw_write16(Adapter, REG_SPEC_SIFS, value16);
/* Retry Limit */
value16 = BIT_LRL(RL_VAL_STA) | BIT_SRL(RL_VAL_STA);
rtw_write16(Adapter, REG_RETRY_LIMIT, value16);
}
VOID _InitEDCA_8192E(IN PADAPTER Adapter)
{
/* Set Spec SIFS (used in NAV) */
rtw_write16(Adapter, REG_SPEC_SIFS, 0x100a);
rtw_write16(Adapter, REG_MAC_SPEC_SIFS, 0x100a);
/* Set SIFS for CCK */
rtw_write16(Adapter, REG_SIFS_CTX, 0x100a);
/* Set SIFS for OFDM */
rtw_write16(Adapter, REG_SIFS_TRX, 0x100a);
/* TXOP */
rtw_write32(Adapter, REG_EDCA_BE_PARAM, 0x005EA42B);
rtw_write32(Adapter, REG_EDCA_BK_PARAM, 0x0000A44F);
rtw_write32(Adapter, REG_EDCA_VI_PARAM, 0x005EA324);
rtw_write32(Adapter, REG_EDCA_VO_PARAM, 0x002FA226);
}
VOID _InitRetryFunction_8192E(IN PADAPTER Adapter)
{
u8 value8;
value8 = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL);
value8 |= EN_AMPDU_RTY_NEW;
rtw_write8(Adapter, REG_FWHW_TXQ_CTRL, value8);
/* Set ACK timeout */
rtw_write8(Adapter, REG_ACKTO, 0x40); /* masked by page for BCM IOT issue temporally */
/* rtw_write8(Adapter, REG_ACKTO, 0x80); */
}
VOID
_BeaconFunctionEnable(
IN PADAPTER Adapter,
IN BOOLEAN Enable,
IN BOOLEAN Linked
)
{
rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT | EN_BCN_FUNCTION));
rtw_write8(Adapter, REG_RD_CTRL + 1, 0x6F);
}
VOID _InitBeaconParameters_8192E(IN PADAPTER Adapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u16 val16;
u8 val8;
val8 = DIS_TSF_UDT;
val16 = val8 | (val8 << 8); /* port0 and port1 */
#ifdef CONFIG_BT_COEXIST
if (pHalData->EEPROMBluetoothCoexist == 1) {
/* Enable prot0 beacon function for PSTDMA */
val16 |= EN_BCN_FUNCTION;
}
#endif
rtw_write16(Adapter, REG_BCN_CTRL, val16);
/* TBTT setup time */
rtw_write8(Adapter, REG_TBTT_PROHIBIT, TBTT_PROHIBIT_SETUP_TIME);
/* TBTT hold time: 0x540[19:8] */
rtw_write8(Adapter, REG_TBTT_PROHIBIT + 1, TBTT_PROHIBIT_HOLD_TIME_STOP_BCN & 0xFF);
rtw_write8(Adapter, REG_TBTT_PROHIBIT + 2,
(rtw_read8(Adapter, REG_TBTT_PROHIBIT + 2) & 0xF0) | (TBTT_PROHIBIT_HOLD_TIME_STOP_BCN >> 8));
rtw_write8(Adapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8192E);/* 5ms */
rtw_write8(Adapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8192E); /* 2ms */
/* Suggested by designer timchen. Change beacon AIFS to the largest number */
/* beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */
rtw_write16(Adapter, REG_BCNTCFG, 0x4413);
}
void SetBeaconRelatedRegisters8192E(PADAPTER padapter)
{
u32 value32;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
u32 bcn_ctrl_reg = REG_BCN_CTRL;
/* reset TSF, enable update TSF, correcting TSF On Beacon */
/* REG_MBSSID_BCN_SPACE */
/* REG_BCNDMATIM */
/* REG_ATIMWND */
/* REG_TBTT_PROHIBIT */
/* REG_DRVERLYINT */
/* REG_BCN_MAX_ERR */
/* REG_BCNTCFG */ /* (0x510) */
/* REG_DUAL_TSF_RST */
/* REG_BCN_CTRL */ /* (0x550) */
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->hw_port == HW_PORT1)
bcn_ctrl_reg = REG_BCN_CTRL_1;
#endif
/* BCN interval */
rtw_hal_set_hwreg(padapter, HW_VAR_BEACON_INTERVAL, (u8 *)&pmlmeinfo->bcn_interval);
rtw_write8(padapter, REG_ATIMWND, 0x02);/* 2ms */
_InitBeaconParameters_8192E(padapter);
rtw_write8(padapter, REG_SLOT, 0x09);
value32 = rtw_read32(padapter, REG_TCR);
value32 &= ~TSFRST;
rtw_write32(padapter, REG_TCR, value32);
value32 |= TSFRST;
rtw_write32(padapter, REG_TCR, value32);
/* NOTE: Fix test chip's bug (about contention windows's randomness) */
rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
_BeaconFunctionEnable(padapter, _TRUE, _TRUE);
ResumeTxBeacon(padapter);
/* rtw_write8(padapter, 0x422, rtw_read8(padapter, 0x422)|BIT(6)); */
/* rtw_write8(padapter, 0x541, 0xff); */
/* rtw_write8(padapter, 0x542, rtw_read8(padapter, 0x541)|BIT(0)); */
rtw_write8(padapter, bcn_ctrl_reg, rtw_read8(padapter, bcn_ctrl_reg) | DIS_BCNQ_SUB);
}
VOID _InitBeaconMaxError_8192E(
IN PADAPTER Adapter,
IN BOOLEAN InfraMode
)
{
#ifdef CONFIG_ADHOC_WORKAROUND_SETTING
rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF);
#else
/* rtw_write8(Adapter, REG_BCN_MAX_ERR, (InfraMode ? 0xFF : 0x10)); */
#endif
}
/* Set CCK and OFDM Block "ON" */
void _BBTurnOnBlock_8192E(PADAPTER padapter)
{
#if (DISABLE_BB_RF)
return;
#endif
phy_set_bb_reg(padapter, rFPGA0_RFMOD, bCCKEn, 0x1);
phy_set_bb_reg(padapter, rFPGA0_RFMOD, bOFDMEn, 0x1);
}
VOID
hal_ReadRFType_8192E(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
#if DISABLE_BB_RF
pHalData->rf_chip = RF_PSEUDO_11N;
#else
pHalData->rf_chip = RF_6052;
#endif
pHalData->BandSet = BAND_ON_2_4G;
}
u8 Hal_CrystalAFEAdjust(_adapter *Adapter)
{
u8 val8;
u32 val32;
/* 40Mhz crystal source,MAC 0x28[2]=0 */
val8 = rtw_read8(Adapter, REG_AFE_CTRL2_8192E);
val8 &= 0xfb;
rtw_write8(Adapter, REG_AFE_CTRL2_8192E, val8);
val32 = rtw_read32(Adapter, REG_AFE_CTRL4_8192E);
val32 &= 0xfffffc7f;
rtw_write32(Adapter, REG_AFE_CTRL4_8192E, val32);
/* 92E AFE parameter */
/* AFE PLL KVCO selection, MAC 0x28[6]=1 */
val8 = rtw_read8(Adapter, REG_AFE_CTRL2_8192E);
val8 &= 0xBF;
rtw_write8(Adapter, REG_AFE_CTRL2_8192E, val8);
/* AFE PLL KVCO selection, MAC 0x78[21]=0 */
val32 = rtw_read32(Adapter, REG_AFE_CTRL4_8192E);
val32 &= 0xffdfffff;
rtw_write32(Adapter, REG_AFE_CTRL4_8192E, val32);
return _SUCCESS;
}
/* RTL8192E-MAC Setting
***********************************************************/
u8 SetHwReg8192E(PADAPTER Adapter, u8 variable, u8 *val)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct dm_struct *podmpriv = &pHalData->odmpriv;
u8 ret = _SUCCESS;
switch (variable) {
case HW_VAR_SET_OPMODE:
hw_var_set_opmode(Adapter, variable, val);
break;
case HW_VAR_BASIC_RATE: {
struct mlme_ext_info *mlmext_info = &Adapter->mlmeextpriv.mlmext_info;
u16 input_b = 0, masked = 0, ioted = 0, BrateCfg = 0;
u16 rrsr_2g_force_mask = RRSR_CCK_RATES;
u16 rrsr_2g_allow_mask = (RRSR_24M | RRSR_12M | RRSR_6M | RRSR_CCK_RATES);
HalSetBrateCfg(Adapter, val, &BrateCfg);
input_b = BrateCfg;
/* apply force and allow mask */
BrateCfg |= rrsr_2g_force_mask;
BrateCfg &= rrsr_2g_allow_mask;
masked = BrateCfg;
/* IOT consideration */
if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) {
/* if peer is cisco and didn't use ofdm rate, we enable 6M ack */
if ((BrateCfg & (RRSR_24M | RRSR_12M | RRSR_6M)) == 0)
BrateCfg |= RRSR_6M;
}
ioted = BrateCfg;
pHalData->BasicRateSet = BrateCfg;
RTW_INFO("HW_VAR_BASIC_RATE: %#x->%#x->%#x\n", input_b, masked, ioted);
/* Set RRSR rate table. */
rtw_write16(Adapter, REG_RRSR, BrateCfg);
rtw_write8(Adapter, REG_RRSR + 2, rtw_read8(Adapter, REG_RRSR + 2) & 0xf0);
}
break;
case HW_VAR_TXPAUSE:
rtw_write8(Adapter, REG_TXPAUSE, *((u8 *)val));
break;
case HW_VAR_SLOT_TIME: {
rtw_write8(Adapter, REG_SLOT, val[0]);
}
break;
case HW_VAR_RESP_SIFS: {
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
if ((pmlmeext->cur_wireless_mode == WIRELESS_11G) ||
(pmlmeext->cur_wireless_mode == WIRELESS_11BG)) { /* WIRELESS_MODE_G){ */
val[0] = 0x0a;
val[1] = 0x0a;
} else {
val[0] = 0x0e;
val[1] = 0x0e;
}
/* SIFS for OFDM Data ACK */
PlatformEFIOWrite1Byte(Adapter, REG_SIFS_CTX_8192E+1, val[0]);
/* SIFS for OFDM consecutive tx like CTS data! */
PlatformEFIOWrite1Byte(Adapter, REG_SIFS_TRX_8192E+1, val[1]);
PlatformEFIOWrite1Byte(Adapter, REG_SPEC_SIFS_8192E+1, val[0]);
PlatformEFIOWrite1Byte(Adapter, REG_MAC_SPEC_SIFS_8192E+1, val[0]);
/* Revise SIFS setting due to Hardware register definition change. */
PlatformEFIOWrite1Byte(Adapter, REG_RESP_SIFS_OFDM_8192E+1, val[0]);
PlatformEFIOWrite1Byte(Adapter, REG_RESP_SIFS_OFDM_8192E, val[0]);
}
#if 0
{
/* SIFS_Timer = 0x0a0a0808; */
/* RESP_SIFS for CCK */
rtw_write8(Adapter, REG_RESP_SIFS_CCK, val[0]); /* SIFS_T2T_CCK (0x08) */
rtw_write8(Adapter, REG_RESP_SIFS_CCK + 1, val[1]); /* SIFS_R2T_CCK(0x08) */
/* RESP_SIFS for OFDM */
rtw_write8(Adapter, REG_RESP_SIFS_OFDM, val[2]); /* SIFS_T2T_OFDM (0x0a) */
rtw_write8(Adapter, REG_RESP_SIFS_OFDM + 1, val[3]); /* SIFS_R2T_OFDM(0x0a) */
}
#endif
break;
case HW_VAR_ACK_PREAMBLE: {
u8 regTmp;
u8 bShortPreamble = *((PBOOLEAN)val);
/* Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
regTmp = (pHalData->nCur40MhzPrimeSC) << 5;
rtw_write8(Adapter, REG_RRSR + 2, regTmp);
regTmp = BIT(4) | BIT(5);
if (bShortPreamble)
regTmp |= BIT1;
else
regTmp &= (~BIT1);
rtw_write8(Adapter, REG_TRXPTCL_CTL_8192E+2, regTmp);
}
break;
case HW_VAR_CAM_EMPTY_ENTRY: {
u8 ucIndex = *((u8 *)val);
u8 i;
u32 ulCommand = 0;
u32 ulContent = 0;
u32 ulEncAlgo = CAM_AES;
for (i = 0; i < CAM_CONTENT_COUNT; i++) {
/* filled id in CAM config 2 byte */
if (i == 0) {
ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo) << 2);
/* ulContent |= CAM_VALID; */
} else
ulContent = 0;
/* polling bit, and No Write enable, and address */
ulCommand = CAM_CONTENT_COUNT * ucIndex + i;
ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
/* write content 0 is equall to mark invalid */
rtw_write32(Adapter, WCAMI, ulContent); /* mdelay(40); */
rtw_write32(Adapter, RWCAM, ulCommand); /* mdelay(40); */
}
}
break;
case HW_VAR_CAM_INVALID_ALL:
rtw_write32(Adapter, RWCAM, BIT(31) | BIT(30));
break;
case HW_VAR_AC_PARAM_VO:
rtw_write32(Adapter, REG_EDCA_VO_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_AC_PARAM_VI:
rtw_write32(Adapter, REG_EDCA_VI_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_AC_PARAM_BE:
pHalData->ac_param_be = ((u32 *)(val))[0];
rtw_write32(Adapter, REG_EDCA_BE_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_AC_PARAM_BK:
rtw_write32(Adapter, REG_EDCA_BK_PARAM, ((u32 *)(val))[0]);
break;
case HW_VAR_ACM_CTRL: {
u8 acm_ctrl = *((u8 *)val);
u8 AcmCtrl = rtw_read8(Adapter, REG_ACMHWCTRL);
if (acm_ctrl > 1)
AcmCtrl = AcmCtrl | 0x1;
if (acm_ctrl & BIT(1))
AcmCtrl |= AcmHw_VoqEn;
else
AcmCtrl &= (~AcmHw_VoqEn);
if (acm_ctrl & BIT(2))
AcmCtrl |= AcmHw_ViqEn;
else
AcmCtrl &= (~AcmHw_ViqEn);
if (acm_ctrl & BIT(3))
AcmCtrl |= AcmHw_BeqEn;
else
AcmCtrl &= (~AcmHw_BeqEn);
RTW_INFO("[HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl);
rtw_write8(Adapter, REG_ACMHWCTRL, AcmCtrl);
}
break;
#ifdef CONFIG_80211N_HT
case HW_VAR_AMPDU_FACTOR: {
u32 AMPDULen = (*(u8 *)val);
if (AMPDULen < HT_AGG_SIZE_64K)
AMPDULen = (0x2000 << (*(u8 *)val)) - 1;
else
AMPDULen = 0xffff;
rtw_write16(Adapter, REG_AMPDU_MAX_LENGTH_8192E, AMPDULen);
}
break;
#endif /* CONFIG_80211N_HT */
case HW_VAR_H2C_FW_PWRMODE: {
u8 psmode = (*(u8 *)val);
rtl8192e_set_FwPwrMode_cmd(Adapter, psmode);
}
break;
case HW_VAR_H2C_FW_JOINBSSRPT: {
u8 mstatus = (*(u8 *)val);
rtl8192e_set_FwJoinBssReport_cmd(Adapter, mstatus);
}
break;
case HW_VAR_DL_RSVD_PAGE:
#ifdef CONFIG_BT_COEXIST
if (pHalData->EEPROMBluetoothCoexist == 1) {
if (check_fwstate(&Adapter->mlmepriv, WIFI_AP_STATE) == _TRUE)
rtl8192e_download_BTCoex_AP_mode_rsvd_page(Adapter);
}
#endif /* CONFIG_BT_COEXIST */
break;
#ifdef CONFIG_P2P_PS
case HW_VAR_H2C_FW_P2P_PS_OFFLOAD: {
u8 p2p_ps_state = (*(u8 *)val);
rtl8192e_set_p2p_ps_offload_cmd(Adapter, p2p_ps_state);
}
break;
#endif /* CONFIG_P2P */
case HW_VAR_TRIGGER_GPIO_0:
break;
case HW_VAR_EFUSE_BYTES: /* To set EFUE total used bytes, added by Roger, 2008.12.22. */
pHalData->EfuseUsedBytes = *((u16 *)val);
break;
case HW_VAR_FIFO_CLEARN_UP: {
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(Adapter);
u8 trycnt = 100;
u32 reg_hw_ssn;
/* pause tx */
rtw_write8(Adapter, REG_TXPAUSE, 0xff);
if (Adapter->xmitpriv.hw_ssn_seq_no == 1)
reg_hw_ssn = REG_HW_SEQ1;
else if (Adapter->xmitpriv.hw_ssn_seq_no == 2)
reg_hw_ssn = REG_HW_SEQ2;
else if (Adapter->xmitpriv.hw_ssn_seq_no == 3)
reg_hw_ssn = REG_HW_SEQ3;
else
reg_hw_ssn = REG_HW_SEQ0;
/* keep sn */
Adapter->xmitpriv.nqos_ssn = rtw_read16(Adapter, reg_hw_ssn);
if (pwrpriv->bkeepfwalive != _TRUE) {
/* RX DMA stop */
rtw_write32(Adapter, REG_RXPKT_NUM, (rtw_read32(Adapter, REG_RXPKT_NUM) | RW_RELEASE_EN));
do {
if (!(rtw_read32(Adapter, REG_RXPKT_NUM) & RXDMA_IDLE))
break;
} while (trycnt--);
if (trycnt == 0)
RTW_INFO("Stop RX DMA failed......\n");
/* RQPN Load 0 */
rtw_write16(Adapter, REG_RQPN_NPQ, 0x0);
rtw_write32(Adapter, REG_RQPN, 0x80000000);
mdelay(10);
}
}
break;
case HW_VAR_RESTORE_HW_SEQ:
{
/* restore Sequence No. */
u32 reg_hw_ssn;
if (Adapter->xmitpriv.hw_ssn_seq_no == 1)
reg_hw_ssn = REG_HW_SEQ1;
else if (Adapter->xmitpriv.hw_ssn_seq_no == 2)
reg_hw_ssn = REG_HW_SEQ2;
else if (Adapter->xmitpriv.hw_ssn_seq_no == 3)
reg_hw_ssn = REG_HW_SEQ3;
else
reg_hw_ssn = REG_HW_SEQ0;
rtw_write8(Adapter, reg_hw_ssn, Adapter->xmitpriv.nqos_ssn);
}
break;
case HW_VAR_CHECK_TXBUF:
#ifdef CONFIG_CONCURRENT_MODE
{
u8 RetryLimit = 0x01;
u16 val16;
u32 reg_200 = 0, reg_204 = 0, reg_214 = 0;
u32 init_reg_200 = 0, init_reg_204 = 0, init_reg_214 = 0;
systime start = rtw_get_current_time();
u32 pass_ms;
int i = 0;
/* Shorten TX packet retry limit to save flush time */
rtw_write16(Adapter, REG_RETRY_LIMIT, BIT_SRL(RetryLimit) | BIT_LRL(RetryLimit));
init_reg_200 = rtw_read32(Adapter, REG_RQPN); /* PUBQ/LQ/HQ */
init_reg_204 = rtw_read32(Adapter, REG_FIFOPAGE);
init_reg_214 = rtw_read32(Adapter, REG_RQPN_NPQ);
while (rtw_get_passing_time_ms(start) < 2000
&& !RTW_CANNOT_RUN(Adapter)
) {
reg_200 = rtw_read32(Adapter, REG_RQPN);
reg_204 = rtw_read32(Adapter, REG_FIFOPAGE);
reg_214 = rtw_read32(Adapter, REG_RQPN_NPQ);
/* Make sure all reserve pages are returned */
if (((reg_200 & 0x00ffffff) == (reg_204 & 0x00ffffff)) && /* PUBQ/LQ/HQ */
((reg_214 & 0x00ff00ff) == ((reg_214 >> 8) & 0x00ff00ff))) /* EXQ/NQ */
break;
i++;
/* wait MAC to flush out reserve pages */
msleep(10);
}
pass_ms = rtw_get_passing_time_ms(start);
if (RTW_CANNOT_RUN(Adapter)) {
; /* do nothing */
} else if (pass_ms >= 2000 || (reg_200 & 0x00ffffff) != (reg_204 & 0x00ffffff)) {
RTW_PRINT("%s:(HW_VAR_CHECK_TXBUF)NOT empty(%d) in %d ms\n", __FUNCTION__, i, pass_ms);
RTW_PRINT("%s:(HW_VAR_CHECK_TXBUF)0x200=0x%08x, 0x204=0x%08x 0x214=0x%08x (0x%08x, 0x%08x, 0x%08x)\n",
__FUNCTION__, reg_200, reg_204, reg_214, init_reg_200, init_reg_204, init_reg_214);
/* rtw_warn_on(1); */
} else
RTW_INFO("%s:(HW_VAR_CHECK_TXBUF)TXBUF Empty(%d) in %d ms\n", __FUNCTION__, i, pass_ms);
/* Restore TX packet retry limit */
RetryLimit = RL_VAL_STA;
rtw_write16(Adapter, REG_RETRY_LIMIT, BIT_SRL(RetryLimit) | BIT_LRL(RetryLimit));
}
#endif
break;
case HW_VAR_BCN_VALID:
#ifdef CONFIG_CONCURRENT_MODE
if (Adapter->hw_port == HW_PORT1)
rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) | BIT0);
else
#endif
/* BCN_VALID, BIT16 of REG_DWBCN0_CTRL_8192E = BIT0 of REG_DWBCN0_CTRL_8192E+2, write 1 to clear, Clear by sw */
rtw_write8(Adapter, REG_DWBCN0_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN0_CTRL_8192E+2) | BIT0);
break;
case HW_VAR_DL_BCN_SEL:
#ifdef CONFIG_CONCURRENT_MODE
if (Adapter->hw_port == HW_PORT1)
/*SW_BCN_SEL - Port1*/
rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) | BIT4);
else
#endif
/*SW_BCN_SEL - Port0*/
rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) & ~BIT4);
break;
#ifdef CONFIG_GPIO_WAKEUP
case HW_SET_GPIO_WL_CTRL: {
u8 enable = *val;
u8 value = rtw_read8(Adapter, 0x4e);
if (enable && (value & BIT(6))) {
value &= ~BIT(6);
rtw_write8(Adapter, 0x4e, value);
} else if (enable == _FALSE) {
value |= BIT(6);
rtw_write8(Adapter, 0x4e, value);
}
RTW_INFO("%s: set WL control, 0x4E=0x%02X\n",
__func__, rtw_read8(Adapter, 0x4e));
}
break;
#endif
#ifdef CONFIG_BEAMFORMING
#if (BEAMFORMING_SUPPORT == 1)
case HW_VAR_HW_REG_TIMER_INIT: {
HAL_HW_TIMER_TYPE TimerType = (*(PHAL_HW_TIMER_TYPE)val) >> 16;
rtw_write8(Adapter, 0x164, 1);
if (TimerType == HAL_TIMER_TXBF)
rtw_write16(Adapter, 0x15C, (*(pu2Byte)val));
else if (TimerType == HAL_TIMER_EARLYMODE)
rtw_write32(Adapter, 0x160, 0x05000190);
}
break;
case HW_VAR_HW_REG_TIMER_START: {
HAL_HW_TIMER_TYPE TimerType = *(PHAL_HW_TIMER_TYPE)val;
if (TimerType == HAL_TIMER_TXBF)
rtw_write8(Adapter, 0x15F, 0x5);
else if (TimerType == HAL_TIMER_EARLYMODE)
rtw_write8(Adapter, 0x163, 0x5);
}
break;
case HW_VAR_HW_REG_TIMER_RESTART: {
HAL_HW_TIMER_TYPE TimerType = *(PHAL_HW_TIMER_TYPE)val & 0xffff;
if (TimerType == HAL_TIMER_TXBF) {
u4Byte Reg15C = (*(pu4Byte)val) >> 16 | BIT24 | BIT26;
rtw_write8(Adapter, 0x15F, 0x0);
rtw_write32(Adapter, 0x15F, Reg15C);
} else if (TimerType == HAL_TIMER_EARLYMODE) {
rtw_write8(Adapter, 0x163, 0x0);
rtw_write8(Adapter, 0x163, 0x5);
}
}
break;
case HW_VAR_HW_REG_TIMER_STOP: {
HAL_HW_TIMER_TYPE TimerType = *(PHAL_HW_TIMER_TYPE)val;
if (TimerType == HAL_TIMER_TXBF)
rtw_write8(Adapter, 0x15F, 0);
else if (TimerType == HAL_TIMER_EARLYMODE)
rtw_write8(Adapter, 0x163, 0x0);
}
break;
#endif/*(BEAMFORMING_SUPPORT ==1)*/
#endif/*CONFIG_BEAMFORMING*/
#if defined(CONFIG_TDLS) && defined(CONFIG_TDLS_CH_SW)
case HW_VAR_TDLS_BCN_EARLY_C2H_RPT:
rtl8192e_set_BcnEarly_C2H_Rpt_cmd(Adapter, *val);
break;
#endif
default:
ret = SetHwReg(Adapter, variable, val);
break;
}
return ret;
}
struct qinfo_92e {
u32 head:8;
u32 pkt_num:7;
u32 tail:8;
u32 ac:2;
u32 macid:7;
};
struct bcn_qinfo_92e {
u16 head:8;
u16 pkt_num:8;
};
void dump_qinfo_92e(void *sel, struct qinfo_92e *info, const char *tag)
{
/* if (info->pkt_num) */
RTW_PRINT_SEL(sel, "%shead:0x%02x, tail:0x%02x, pkt_num:%u, macid:%u, ac:%u\n"
, tag ? tag : "", info->head, info->tail, info->pkt_num, info->macid, info->ac
);
}
void dump_bcn_qinfo_92e(void *sel, struct bcn_qinfo_92e *info, const char *tag)
{
/* if (info->pkt_num) */
RTW_PRINT_SEL(sel, "%shead:0x%02x, pkt_num:%u\n"
, tag ? tag : "", info->head, info->pkt_num
);
}
void dump_mac_qinfo_92e(void *sel, _adapter *adapter)
{
u32 q0_info;
u32 q1_info;
u32 q2_info;
u32 q3_info;
u32 q4_info;
u32 q5_info;
u32 q6_info;
u32 q7_info;
u32 mg_q_info;
u32 hi_q_info;
u16 bcn_q_info;
q0_info = rtw_read32(adapter, REG_Q0_INFO);
q1_info = rtw_read32(adapter, REG_Q1_INFO);
q2_info = rtw_read32(adapter, REG_Q2_INFO);
q3_info = rtw_read32(adapter, REG_Q3_INFO);
q4_info = rtw_read32(adapter, REG_Q4_INFO);
q5_info = rtw_read32(adapter, REG_Q5_INFO);
q6_info = rtw_read32(adapter, REG_Q6_INFO);
q7_info = rtw_read32(adapter, REG_Q7_INFO);
mg_q_info = rtw_read32(adapter, REG_MGQ_INFO);
hi_q_info = rtw_read32(adapter, REG_HGQ_INFO);
bcn_q_info = rtw_read16(adapter, REG_BCNQ_INFO);
dump_qinfo_92e(sel, (struct qinfo_92e *)&q0_info, "Q0 ");
dump_qinfo_92e(sel, (struct qinfo_92e *)&q1_info, "Q1 ");
dump_qinfo_92e(sel, (struct qinfo_92e *)&q2_info, "Q2 ");
dump_qinfo_92e(sel, (struct qinfo_92e *)&q3_info, "Q3 ");
dump_qinfo_92e(sel, (struct qinfo_92e *)&q4_info, "Q4 ");
dump_qinfo_92e(sel, (struct qinfo_92e *)&q5_info, "Q5 ");
dump_qinfo_92e(sel, (struct qinfo_92e *)&q6_info, "Q6 ");
dump_qinfo_92e(sel, (struct qinfo_92e *)&q7_info, "Q7 ");
dump_qinfo_92e(sel, (struct qinfo_92e *)&mg_q_info, "MG ");
dump_qinfo_92e(sel, (struct qinfo_92e *)&hi_q_info, "HI ");
dump_bcn_qinfo_92e(sel, (struct bcn_qinfo_92e *)&bcn_q_info, "BCN ");
}
static void dump_mac_txfifo_92e(void *sel, _adapter *adapter)
{
u32 rqpn, rqpn_npq;
u32 hpq, lpq, npq, epq, pubq;
rqpn = rtw_read32(adapter, REG_FIFOPAGE);
rqpn_npq = rtw_read32(adapter, REG_RQPN_NPQ);
hpq = (rqpn & 0xFF);
lpq = ((rqpn & 0xFF00)>>8);
pubq = ((rqpn & 0xFF0000)>>16);
npq = ((rqpn_npq & 0xFF00)>>8);
epq = ((rqpn_npq & 0xFF000000)>>24);
RTW_PRINT_SEL(sel, "Tx: available page num: ");
if ((hpq == 0xEA) && (hpq == lpq) && (hpq == pubq))
RTW_PRINT_SEL(sel, "N/A (reg val = 0xea)\n");
else
RTW_PRINT_SEL(sel, "HPQ: %d, LPQ: %d, NPQ: %d, EPQ: %d, PUBQ: %d\n"
, hpq, lpq, npq, epq, pubq);
}
void rtl8192e_read_wmmedca_reg(PADAPTER adapter, u16 *vo_params, u16 *vi_params, u16 *be_params, u16 *bk_params)
{
u8 vo_reg_params[4];
u8 vi_reg_params[4];
u8 be_reg_params[4];
u8 bk_reg_params[4];
GetHwReg8192E(adapter, HW_VAR_AC_PARAM_VO, vo_reg_params);
GetHwReg8192E(adapter, HW_VAR_AC_PARAM_VI, vi_reg_params);
GetHwReg8192E(adapter, HW_VAR_AC_PARAM_BE, be_reg_params);
GetHwReg8192E(adapter, HW_VAR_AC_PARAM_BK, bk_reg_params);
vo_params[0] = vo_reg_params[0];
vo_params[1] = vo_reg_params[1] & 0x0F;
vo_params[2] = (vo_reg_params[1] & 0xF0) >> 4;
vo_params[3] = ((vo_reg_params[3] << 8) | (vo_reg_params[2])) * 32;
vi_params[0] = vi_reg_params[0];
vi_params[1] = vi_reg_params[1] & 0x0F;
vi_params[2] = (vi_reg_params[1] & 0xF0) >> 4;
vi_params[3] = ((vi_reg_params[3] << 8) | (vi_reg_params[2])) * 32;
be_params[0] = be_reg_params[0];
be_params[1] = be_reg_params[1] & 0x0F;
be_params[2] = (be_reg_params[1] & 0xF0) >> 4;
be_params[3] = ((be_reg_params[3] << 8) | (be_reg_params[2])) * 32;
bk_params[0] = bk_reg_params[0];
bk_params[1] = bk_reg_params[1] & 0x0F;
bk_params[2] = (bk_reg_params[1] & 0xF0) >> 4;
bk_params[3] = ((bk_reg_params[3] << 8) | (bk_reg_params[2])) * 32;
vo_params[1] = (1 << vo_params[1]) - 1;
vo_params[2] = (1 << vo_params[2]) - 1;
vi_params[1] = (1 << vi_params[1]) - 1;
vi_params[2] = (1 << vi_params[2]) - 1;
be_params[1] = (1 << be_params[1]) - 1;
be_params[2] = (1 << be_params[2]) - 1;
bk_params[1] = (1 << bk_params[1]) - 1;
bk_params[2] = (1 << bk_params[2]) - 1;
}
void GetHwReg8192E(PADAPTER Adapter, u8 variable, u8 *val)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct dm_struct *podmpriv = &pHalData->odmpriv;
u32 val32;
switch (variable) {
case HW_VAR_TXPAUSE:
val[0] = rtw_read8(Adapter, REG_TXPAUSE);
break;
case HW_VAR_BCN_VALID:
#ifdef CONFIG_CONCURRENT_MODE
if (Adapter->hw_port == HW_PORT1)
val[0] = (BIT0 & rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2)) ? _TRUE : _FALSE;
else
#endif
/*BCN_VALID, BIT16 of REG_DWBCN0_CTRL_8192E = BIT0 of REG_DWBCN0_CTRL_8192E+2*/
val[0] = (BIT0 & rtw_read8(Adapter, REG_DWBCN0_CTRL_8192E+2)) ? _TRUE : _FALSE;
break;
case HW_VAR_AC_PARAM_VO:
val32 = rtw_read32(Adapter, REG_EDCA_VO_PARAM);
val[0] = val32 & 0xFF;
val[1] = (val32 >> 8) & 0xFF;
val[2] = (val32 >> 16) & 0xFF;
val[3] = (val32 >> 24) & 0x07;
break;
case HW_VAR_AC_PARAM_VI:
val32 = rtw_read32(Adapter, REG_EDCA_VI_PARAM);
val[0] = val32 & 0xFF;
val[1] = (val32 >> 8) & 0xFF;
val[2] = (val32 >> 16) & 0xFF;
val[3] = (val32 >> 24) & 0x07;
break;
case HW_VAR_AC_PARAM_BE:
val32 = rtw_read32(Adapter, REG_EDCA_BE_PARAM);
val[0] = val32 & 0xFF;
val[1] = (val32 >> 8) & 0xFF;
val[2] = (val32 >> 16) & 0xFF;
val[3] = (val32 >> 24) & 0x07;
break;
case HW_VAR_AC_PARAM_BK:
val32 = rtw_read32(Adapter, REG_EDCA_BK_PARAM);
val[0] = val32 & 0xFF;
val[1] = (val32 >> 8) & 0xFF;
val[2] = (val32 >> 16) & 0xFF;
val[3] = (val32 >> 24) & 0x07;
break;
case HW_VAR_EFUSE_BYTES: /* To get EFUE total used bytes, added by Roger, 2008.12.22. */
*((u16 *)(val)) = pHalData->EfuseUsedBytes;
break;
case HW_VAR_CHK_HI_QUEUE_EMPTY:
/* *val = ((rtw_read32(Adapter, REG_HGQ_INFO)&0x00007f00)==0) ? _TRUE:_FALSE; */
*val = (rtw_read16(Adapter, REG_TXPKT_EMPTY) & BIT(10)) ? _TRUE : _FALSE;
break;
case HW_VAR_CHK_MGQ_CPU_EMPTY:
*val = (rtw_read16(Adapter, REG_TXPKT_EMPTY) & BIT(8)) ? _TRUE : _FALSE;
break;
case HW_VAR_SYS_CLKR:
*val = rtw_read8(Adapter, REG_SYS_CLKR);
break;
case HW_VAR_DUMP_MAC_QUEUE_INFO:
dump_mac_qinfo_92e(val, Adapter);
break;
case HW_VAR_DUMP_MAC_TXFIFO:
dump_mac_txfifo_92e(val, Adapter);
break;
default:
GetHwReg(Adapter, variable, val);
break;
}
}
/*
* Description:
* Change default setting of specified variable.
* */
u8
SetHalDefVar8192E(
IN PADAPTER Adapter,
IN HAL_DEF_VARIABLE eVariable,
IN PVOID pValue
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 bResult = _SUCCESS;
switch (eVariable) {
default:
bResult = SetHalDefVar(Adapter, eVariable, pValue);
break;
}
return bResult;
}
void hal_ra_info_dump(_adapter *padapter , void *sel)
{
int i;
u8 mac_id;
u32 cmd;
u32 ra_info1, ra_info2, bw_set;
u32 rate_mask1, rate_mask2;
u8 curr_tx_rate, curr_tx_sgi, hight_rate, lowest_rate;
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
HAL_DATA_TYPE *HalData = GET_HAL_DATA(padapter);
struct macid_ctl_t *macid_ctl = dvobj_to_macidctl(dvobj);
for (i = 0; i < macid_ctl->num; i++) {
if (rtw_macid_is_used(macid_ctl, i) && !rtw_macid_is_bmc(macid_ctl, i)) {
mac_id = (u8) i;
_RTW_PRINT_SEL(sel , "============ RA status check Mac_id:%d ===================\n", mac_id);
cmd = 0x40000100 | mac_id;
rtw_write32(padapter, REG_HMEBOX_E2_E3_8192E, cmd);
msleep(10);
ra_info1 = rtw_read32(padapter, REG_RSVD5_8192E);
curr_tx_sgi = rtw_get_current_tx_sgi(padapter, macid_ctl->sta[mac_id]);
curr_tx_rate = rtw_get_current_tx_rate(padapter, macid_ctl->sta[mac_id]);
_RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] =>PWRSTS = 0x%02x\n", ra_info1, (ra_info1 >> 8) & 0x07);
_RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] =>cur_tx_rate= %s, cur_sgi:%d\n", ra_info1, HDATA_RATE(curr_tx_rate), curr_tx_sgi);
cmd = 0x40000400 | mac_id;
rtw_write32(padapter, REG_HMEBOX_E2_E3_8192E, cmd);
msleep(10);
ra_info1 = rtw_read32(padapter, REG_RSVD5_8192E);
ra_info2 = rtw_read32(padapter, REG_RSVD6_8192E);
rate_mask1 = rtw_read32(padapter, REG_RSVD7_8192E);
rate_mask2 = rtw_read32(padapter, REG_RSVD8_8192E);
hight_rate = ra_info2 & 0xFF;
lowest_rate = (ra_info2 >> 8) & 0xFF;
bw_set = (ra_info1 >> 8) & 0xFF;
_RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] => VHT_EN=0x%02x, ", ra_info1, (ra_info1 >> 24) & 0xFF);
switch (bw_set) {
case CHANNEL_WIDTH_20:
_RTW_PRINT_SEL(sel , "BW_setting=20M\n");
break;
case CHANNEL_WIDTH_40:
_RTW_PRINT_SEL(sel , "BW_setting=40M\n");
break;
case CHANNEL_WIDTH_80:
_RTW_PRINT_SEL(sel , "BW_setting=80M\n");
break;
case CHANNEL_WIDTH_160:
_RTW_PRINT_SEL(sel , "BW_setting=160M\n");
break;
default:
_RTW_PRINT_SEL(sel , "BW_setting=0x%02x\n", bw_set);
break;
}
_RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] =>RSSI = %d,DISRA = 0x%02x\n",
ra_info1,
ra_info1 & 0xFF,
(ra_info1 >> 16) & 0xFF);
_RTW_PRINT_SEL(sel, "[ ra_info2:0x%08x ] =>hight_rate= %s, lowest_rate= %s, SGI = 0x%02x, RateID = %d\n",
ra_info2,
HDATA_RATE(hight_rate),
HDATA_RATE(lowest_rate),
(ra_info2 >> 16) & 0xFF,
(ra_info2 >> 24) & 0xFF);
_RTW_PRINT_SEL(sel , "rate_mask2:0x%08x , rate_mask1:0x%08x\n", rate_mask2, rate_mask1);
}
}
}
/*
* Description:
* Query setting of specified variable.
* */
u8
GetHalDefVar8192E(
IN PADAPTER Adapter,
IN HAL_DEF_VARIABLE eVariable,
IN PVOID pValue
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 bResult = _SUCCESS;
switch (eVariable) {
case HAL_DEF_IS_SUPPORT_ANT_DIV:
#ifdef CONFIG_ANTENNA_DIVERSITY
*((u8 *)pValue) = (pHalData->AntDivCfg == 0) ? _FALSE : _TRUE;
#endif
break;
case HAL_DEF_DRVINFO_SZ:
*((u32 *)pValue) = DRVINFO_SZ;
break;
case HAL_DEF_MAX_RECVBUF_SZ:
*((u32 *)pValue) = MAX_RECVBUF_SZ;
break;
case HAL_DEF_RX_PACKET_OFFSET:
*((u32 *)pValue) = RXDESC_SIZE + (DRVINFO_SZ * 8);
break;
case HAL_DEF_TX_LDPC:
if (IS_NORMAL_CHIP(pHalData->version_id))
*((PBOOLEAN)pValue) = _FALSE;
else
*((PBOOLEAN)pValue) = _FALSE;
break;
case HAL_DEF_RX_LDPC:
if (IS_NORMAL_CHIP(pHalData->version_id))
*((PBOOLEAN)pValue) = _FALSE;
else
*((PBOOLEAN)pValue) = _FALSE;
break;
case HAL_DEF_TX_STBC:
if (pHalData->rf_type == RF_1T2R || pHalData->rf_type == RF_1T1R)
*(u8 *)pValue = 0;
else
*(u8 *)pValue = 1;
break;
case HAL_DEF_RX_STBC:
*(u8 *)pValue = 1;
break;
case HAL_DEF_EXPLICIT_BEAMFORMER:
case HAL_DEF_EXPLICIT_BEAMFORMEE:
*((PBOOLEAN)pValue) = _FALSE;
break;
case HW_DEF_RA_INFO_DUMP:
hal_ra_info_dump(Adapter, pValue);
break;
case HAL_DEF_TX_PAGE_SIZE:
*((u32 *)pValue) = PAGE_SIZE_TX_92E;
break;
case HAL_DEF_TX_PAGE_BOUNDARY:
*(u8 *)pValue = TX_PAGE_BOUNDARY_8192E;
break;
case HAL_DEF_RX_DMA_SZ_WOW:
*(u32 *)pValue =
MAX_RX_DMA_BUFFER_SIZE_8192E - RESV_FMWF;
break;
case HAL_DEF_RX_DMA_SZ:
*(u32 *)pValue = MAX_RX_DMA_BUFFER_SIZE_8192E;
break;
case HAL_DEF_RX_PAGE_SIZE:
*((u32 *)pValue) = 8;
break;
case HW_VAR_BEST_AMPDU_DENSITY:
*((u32 *)pValue) = AMPDU_DENSITY_VALUE_7;
break;
default:
bResult = GetHalDefVar(Adapter, eVariable, pValue);
break;
}
return bResult;
}
void rtl8192e_start_thread(_adapter *padapter)
{
#ifdef CONFIG_SDIO_HCI
#ifndef CONFIG_SDIO_TX_TASKLET
struct xmit_priv *xmitpriv = &padapter->xmitpriv;
if (xmitpriv->SdioXmitThread == NULL) {
RTW_INFO(FUNC_ADPT_FMT " start RTWHALXT\n", FUNC_ADPT_ARG(padapter));
xmitpriv->SdioXmitThread = kthread_run(rtl8192es_xmit_thread, padapter, "RTWHALXT");
if (IS_ERR(xmitpriv->SdioXmitThread)) {
RTW_ERR("%s: start rtl8192es_xmit_thread FAIL!!\n", __func__);
xmitpriv->SdioXmitThread = NULL;
}
}
#endif
#endif
}
void rtl8192e_stop_thread(_adapter *padapter)
{
#ifdef CONFIG_SDIO_HCI
#ifndef CONFIG_SDIO_TX_TASKLET
struct xmit_priv *xmitpriv = &padapter->xmitpriv;
/* stop xmit_buf_thread */
if (xmitpriv->SdioXmitThread) {
_rtw_up_sema(&xmitpriv->SdioXmitSema);
rtw_thread_stop(xmitpriv->SdioXmitThread);
xmitpriv->SdioXmitThread = NULL;
}
#endif
#endif
}
void hal_notch_filter_8192E(_adapter *adapter, bool enable)
{
if (enable) {
RTW_INFO("Enable notch filter\n");
/* rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1); */
} else {
RTW_INFO("Disable notch filter\n");
/* rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1); */
}
}
static void read_chip_version_8192e(PADAPTER Adapter)
{
u32 value32;
HAL_DATA_TYPE *pHalData;
u8 tmpvdr;
pHalData = GET_HAL_DATA(Adapter);
value32 = rtw_read32(Adapter, REG_SYS_CFG1_8192E);
RTW_INFO("%s 0xF0 = 0x%x\n", __FUNCTION__, value32);
pHalData->version_id.ICType = CHIP_8192E;
pHalData->version_id.RFType = (value32 & RF_TYPE_ID) ? RF_2T2R : RF_1T1R;
pHalData->version_id.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
tmpvdr = (value32 & EXT_VENDOR_ID) >> EXT_VENDOR_ID_SHIFT;
if (tmpvdr == 0x00)
pHalData->version_id.VendorType = CHIP_VENDOR_TSMC;
else if (tmpvdr == 0x01)
pHalData->version_id.VendorType = CHIP_VENDOR_SMIC;
else if (tmpvdr == 0x02)
pHalData->version_id.VendorType = CHIP_VENDOR_UMC;
pHalData->version_id.CUTVersion = (value32 & CHIP_VER_RTL_MASK) >> CHIP_VER_RTL_SHIFT; /* IC version (CUT) */
pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
rtw_hal_config_rftype(Adapter);
#if 1
dump_chip_info(pHalData->version_id);
#endif
}
void init_hal_spec_8192e(_adapter *adapter)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
hal_spec->ic_name = "rtl8192e";
hal_spec->macid_num = 128;
hal_spec->sec_cam_ent_num = 64;
hal_spec->sec_cap = 0;
hal_spec->rfpath_num_2g = 2;
hal_spec->rfpath_num_5g = 0;
hal_spec->txgi_max = 63;
hal_spec->txgi_pdbm = 2;
hal_spec->max_tx_cnt = 2;
hal_spec->tx_nss_num = 2;
hal_spec->rx_nss_num = 2;
hal_spec->band_cap = BAND_CAP_2G;
hal_spec->bw_cap = BW_CAP_20M | BW_CAP_40M;
hal_spec->port_num = 2;
hal_spec->proto_cap = PROTO_CAP_11B | PROTO_CAP_11G | PROTO_CAP_11N;
hal_spec->wl_func = 0
| WL_FUNC_P2P
| WL_FUNC_MIRACAST
| WL_FUNC_TDLS
;
hal_spec->pg_txpwr_saddr = 0x10;
hal_spec->pg_txgi_diff_factor = 1;
rtw_macid_ctl_init_sleep_reg(adapter_to_macidctl(adapter)
, REG_MACID_SLEEP
, REG_MACID_SLEEP_1
, REG_MACID_SLEEP_2
, REG_MACID_SLEEP_3);
}
void rtl8192e_init_default_value(_adapter *padapter)
{
PHAL_DATA_TYPE pHalData;
struct pwrctrl_priv *pwrctrlpriv;
u8 i;
pHalData = GET_HAL_DATA(padapter);
pwrctrlpriv = adapter_to_pwrctl(padapter);
pHalData->fw_ractrl = _FALSE;
if (!pwrctrlpriv->bkeepfwalive)
pHalData->LastHMEBoxNum = 0;
/* init phydm default value */
pHalData->bIQKInitialized = _FALSE;
#if defined(CONFIG_USB_HCI) || defined(CONFIG_PCI_HCI)
pHalData->IntrMask[0] = (u32)(\
/* IMR_ROK | */
/* IMR_RDU | */
/* IMR_VODOK | */
/* IMR_VIDOK | */
/* IMR_BEDOK | */
/* IMR_BKDOK | */
/* IMR_MGNTDOK | */
/* IMR_HIGHDOK | */
/* IMR_CPWM | */
/* IMR_CPWM2 | */
/* IMR_C2HCMD | */
/* IMR_HISR1_IND_INT | */
/* IMR_ATIMEND | */
/* IMR_BCNDMAINT_E | */
/* IMR_HSISR_IND_ON_INT | */
/* IMR_BCNDOK0 | */
/* IMR_BCNDMAINT0 | */
/* IMR_TSF_BIT32_TOGGLE | */
/* IMR_TXBCN0OK | */
/* IMR_TXBCN0ERR | */
/* IMR_GTINT3 | */
/* IMR_GTINT4 | */
/* IMR_TXCCK | */
0);
pHalData->IntrMask[1] = (u32)(\
/* IMR_RXFOVW | */
/* IMR_TXFOVW | */
/* IMR_RXERR | */
/* IMR_TXERR | */
/* IMR_ATIMEND_E | */
/* IMR_BCNDOK1 | */
/* IMR_BCNDOK2 | */
/* IMR_BCNDOK3 | */
/* IMR_BCNDOK4 | */
/* IMR_BCNDOK5 | */
/* IMR_BCNDOK6 | */
/* IMR_BCNDOK7 | */
/* IMR_BCNDMAINT1 | */
/* IMR_BCNDMAINT2 | */
/* IMR_BCNDMAINT3 | */
/* IMR_BCNDMAINT4 | */
/* IMR_BCNDMAINT5 | */
/* IMR_BCNDMAINT6 | */
/* IMR_BCNDMAINT7 | */
0);
#endif
pHalData->EfuseHal.fakeEfuseBank = 0;
pHalData->EfuseHal.fakeEfuseUsedBytes = 0;
memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE);
memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN);
memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN);
}
#ifdef CONFIG_BT_COEXIST
void rtl8192e_combo_card_WifiOnlyHwInit(PADAPTER Adapter)
{
u8 u1Tmp;
u16 u2Tmp;
u32 u4Tmp;
RTW_INFO("%s !\n", __FUNCTION__);
/* antenna fixed to wifi */
rtw_write8(Adapter, 0x944, 0x24);
rtw_write32(Adapter, 0x930, 0x700700);
rtw_write8(Adapter, 0x92c, 0x04);
#ifdef CONFIG_USB_HCI
rtw_write32(Adapter, REG_PAD_CTRL1_8192E, 0x30430004);
#else
rtw_write32(Adapter, REG_PAD_CTRL1_8192E, 0x30030004);
#endif
/* 0x4c[27][24]='00', Set Antenna to BB */
u4Tmp = rtw_read32(Adapter, BIT_REG_LED_CFG_8192E);
u4Tmp &= ~BIT24;
u4Tmp &= ~BIT27;
rtw_write32(Adapter, BIT_REG_LED_CFG_8192E, u4Tmp);
/* coex. table */
rtw_write32(Adapter , REG_BT_COEX_TABLE0_8192E, 0x55555555);
rtw_write32(Adapter , REG_BT_COEX_TABLE1_8192E, 0x55555555);
rtw_write32(Adapter , REG_BT_COEX_TABLE2_8192E, 0xffffff);
rtw_write32(Adapter , REG_BT_COEX_TABLE3_8192E, 0x3);
/* coex parameters */
rtw_write8(Adapter, REG_BT_STATISTICS_OTH_CTRL_8192E, 0x3);
/* 0x790[5:0]=0x5 */
u1Tmp = rtw_read8(Adapter, REG_TDMA_TIME_AND_RPT_SAM_SET_8192E);
u1Tmp &= 0xc0;
u1Tmp |= 0x5;
rtw_write8(Adapter, REG_TDMA_TIME_AND_RPT_SAM_SET_8192E, u1Tmp);
/* enable counter statistics */
rtw_write8(Adapter, REG_BT_STATISTICS_CTRL_8192E, 0x4);
/* enable PTA */
rtw_write8(Adapter, REG_GPIO_MUXCFG_8192E, 0x20);
/* enable mailbox interface */
u2Tmp = rtw_read16(Adapter, REG_GPIO_MUXCFG_8192E);
u2Tmp |= BIT9;
rtw_write16(Adapter, REG_GPIO_MUXCFG_8192E, u2Tmp);
/* enable PTA I2C mailbox */
u1Tmp = rtw_read8(Adapter, REG_CR_8192E+1);
u1Tmp |= BIT4;
rtw_write8(Adapter, REG_CR_8192E+1, u1Tmp);
/* enable bt clock when wifi is disabled. */
u1Tmp = rtw_read8(Adapter, REG_WLLPS_CTRL_8192E+3);
u1Tmp |= BIT0;
rtw_write8(Adapter, REG_WLLPS_CTRL_8192E+3, u1Tmp);
/* enable bt clock when suspend. */
u1Tmp = rtw_read8(Adapter, REG_SYS_PW_CTRL_8192E+3);
u1Tmp |= BIT0;
rtw_write8(Adapter, REG_SYS_PW_CTRL_8192E+3, u1Tmp);
}
#endif /* CONFIG_BT_COEXIST */
void rtl8192e_set_hal_ops(struct hal_ops *pHalFunc)
{
pHalFunc->dm_init = &rtl8192e_init_dm_priv;
pHalFunc->dm_deinit = &rtl8192e_deinit_dm_priv;
pHalFunc->read_chip_version = read_chip_version_8192e;
pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8192E;
pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8192E;
pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8192E;
pHalFunc->set_tx_power_index_handler = PHY_SetTxPowerIndex_8192E;
pHalFunc->get_tx_power_index_handler = PHY_GetTxPowerIndex_8192E;
pHalFunc->hal_dm_watchdog = &rtl8192e_HalDmWatchDog;
pHalFunc->SetBeaconRelatedRegistersHandler = &SetBeaconRelatedRegisters8192E;
pHalFunc->run_thread = &rtl8192e_start_thread;
pHalFunc->cancel_thread = &rtl8192e_stop_thread;
pHalFunc->read_bbreg = &PHY_QueryBBReg8192E;
pHalFunc->write_bbreg = &PHY_SetBBReg8192E;
pHalFunc->read_rfreg = &PHY_QueryRFReg8192E;
pHalFunc->write_rfreg = &PHY_SetRFReg8192E;
pHalFunc->read_wmmedca_reg = &rtl8192e_read_wmmedca_reg;
/* Efuse related function */
pHalFunc->EfusePowerSwitch = &rtl8192E_EfusePowerSwitch;
pHalFunc->ReadEFuse = &rtl8192E_ReadEFuse;
pHalFunc->EFUSEGetEfuseDefinition = &rtl8192E_EFUSE_GetEfuseDefinition;
pHalFunc->EfuseGetCurrentSize = &rtl8192E_EfuseGetCurrentSize;
pHalFunc->Efuse_PgPacketRead = &rtl8192E_Efuse_PgPacketRead;
pHalFunc->Efuse_PgPacketWrite = &rtl8192E_Efuse_PgPacketWrite;
pHalFunc->Efuse_WordEnableDataWrite = &rtl8192E_Efuse_WordEnableDataWrite;
#ifdef DBG_CONFIG_ERROR_DETECT
pHalFunc->sreset_init_value = &sreset_init_value;
pHalFunc->sreset_reset_value = &sreset_reset_value;
pHalFunc->silentreset = &sreset_reset;
pHalFunc->sreset_xmit_status_check = &rtl8192e_sreset_xmit_status_check;
pHalFunc->sreset_linked_status_check = &rtl8192e_sreset_linked_status_check;
pHalFunc->sreset_get_wifi_status = &sreset_get_wifi_status;
pHalFunc->sreset_inprogress = &sreset_inprogress;
#endif /* DBG_CONFIG_ERROR_DETECT */
pHalFunc->GetHalODMVarHandler = GetHalODMVar;
pHalFunc->SetHalODMVarHandler = SetHalODMVar;
/* pHalFunc->hal_notch_filter = &hal_notch_filter_rtl8192E; */
pHalFunc->c2h_handler = c2h_handler_8192e;
pHalFunc->fill_h2c_cmd = &FillH2CCmd_8192E;
pHalFunc->fill_fake_txdesc = &rtl8192e_fill_fake_txdesc;
pHalFunc->fw_dl = &FirmwareDownload8192E;
pHalFunc->hal_get_tx_buff_rsvd_page_num = &GetTxBufferRsvdPageNum8192E;
}