rtl8192eu-linux-driver/hal/rtl8192e/rtl8192e_mp.c
Magnus Bergmark 1387cf623d
The official RTL8192EU linux driver from D-Link Australia
Version information: 20140812_rtl8192EU_linux_v4.3.1.1_11320
  2014-08-12
  version 4.3.1.1_11320
Source:
  ftp://files.dlink.com.au/products/DWA-131/REV_E/Drivers/DWA-131_Linux_driver_v4.3.1.1.zip

This version does not currently work on newer kernels, but it does
contain USB ID 2001:3319, which a lot of other repos in GitHub does not.
2015-08-18 21:03:11 +02:00

1084 lines
34 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _RTL8192E_MP_C_
#ifdef CONFIG_MP_INCLUDED
//#include <drv_types.h>
#include <rtl8192e_hal.h>
s32 Hal_SetPowerTracking(PADAPTER padapter, u8 enable)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct dm_priv *pdmpriv = &pHalData->dmpriv;
PDM_ODM_T pDM_Odm = &(pHalData->odmpriv);
if (!netif_running(padapter->pnetdev)) {
RT_TRACE(_module_mp_, _drv_warning_, ("SetPowerTracking! Fail: interface not opened!\n"));
return _FAIL;
}
if (check_fwstate(&padapter->mlmepriv, WIFI_MP_STATE) == _FALSE) {
RT_TRACE(_module_mp_, _drv_warning_, ("SetPowerTracking! Fail: not in MP mode!\n"));
return _FAIL;
}
if (enable)
{
pDM_Odm->RFCalibrateInfo.bTXPowerTracking = _TRUE;
}
else
pDM_Odm->RFCalibrateInfo.bTXPowerTrackingInit= _FALSE;
return _SUCCESS;
}
void Hal_GetPowerTracking(PADAPTER padapter, u8 *enable)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct dm_priv *pdmpriv = &pHalData->dmpriv;
PDM_ODM_T pDM_Odm = &(pHalData->odmpriv);
*enable = pDM_Odm->RFCalibrateInfo.TxPowerTrackControl;
}
static void Hal_disable_dm(PADAPTER padapter)
{
u8 v8;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct dm_priv *pdmpriv = &pHalData->dmpriv;
PDM_ODM_T pDM_Odm = &(pHalData->odmpriv);
//3 1. disable firmware dynamic mechanism
// disable Power Training, Rate Adaptive
v8 = rtw_read8(padapter, REG_BCN_CTRL);
v8 &= ~EN_BCN_FUNCTION;
rtw_write8(padapter, REG_BCN_CTRL, v8);
//3 2. disable driver dynamic mechanism
// disable Dynamic Initial Gain
// disable High Power
// disable Power Tracking
Switch_DM_Func(padapter, DYNAMIC_FUNC_DISABLE, _FALSE);
// enable APK, LCK and IQK but disable power tracking
pDM_Odm->RFCalibrateInfo.TxPowerTrackControl = _FALSE;
Switch_DM_Func(padapter, DYNAMIC_FUNC_DISABLE, _TRUE);
}
/*-----------------------------------------------------------------------------
* Function: mpt_SwitchRfSetting
*
* Overview: Change RF Setting when we siwthc channel/rate/BW for MP.
*
* Input: IN PADAPTER pAdapter
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 01/08/2009 MHC Suggestion from SD3 Willis for 92S series.
* 01/09/2009 MHC Add CCK modification for 40MHZ. Suggestion from SD3.
*
*---------------------------------------------------------------------------*/
void Hal_mpt_SwitchRfSetting(PADAPTER pAdapter)
{
//HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
struct mp_priv *pmp = &pAdapter->mppriv;
u1Byte ChannelToSw = pmp->channel;
ULONG ulRateIdx = pmp->rateidx;
ULONG ulbandwidth = pmp->bandwidth;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
#if 0
// <20120525, Kordan> Dynamic mechanism for APK, asked by Dennis.
pmp->MptCtx.backup0x52_RF_A = (u1Byte)PHY_QueryRFReg(pAdapter, RF_PATH_A, RF_0x52, 0x000F0);
pmp->MptCtx.backup0x52_RF_B = (u1Byte)PHY_QueryRFReg(pAdapter, RF_PATH_B, RF_0x52, 0x000F0);
PHY_SetRFReg(pAdapter, RF_PATH_A, RF_0x52, 0x000F0, 0xD);
PHY_SetRFReg(pAdapter, RF_PATH_B, RF_0x52, 0x000F0, 0xD);
#endif
return ;
}
/*---------------------------hal\rtl8192c\MPT_Phy.c---------------------------*/
/*---------------------------hal\rtl8192c\MPT_HelperFunc.c---------------------------*/
void Hal_MPT_CCKTxPowerAdjust(PADAPTER Adapter, BOOLEAN bInCH14)
{
u32 TempVal = 0, TempVal2 = 0, TempVal3 = 0;
u32 CurrCCKSwingVal = 0, CCKSwingIndex = 12;
u8 i;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
// get current cck swing value and check 0xa22 & 0xa23 later to match the table.
CurrCCKSwingVal = read_bbreg(Adapter, rCCK0_TxFilter1, bMaskHWord);
if (!bInCH14)
{
// Readback the current bb cck swing value and compare with the table to
// get the current swing index
for (i = 0; i < CCK_TABLE_SIZE; i++)
{
if (((CurrCCKSwingVal&0xff) == (u32)CCKSwingTable_Ch1_Ch13[i][0]) &&
(((CurrCCKSwingVal&0xff00)>>8) == (u32)CCKSwingTable_Ch1_Ch13[i][1]))
{
CCKSwingIndex = i;
// RT_TRACE(COMP_INIT, DBG_LOUD,("Ch1~13, Current reg0x%x = 0x%lx, CCKSwingIndex=0x%x\n",
// (rCCK0_TxFilter1+2), CurrCCKSwingVal, CCKSwingIndex));
break;
}
}
//Write 0xa22 0xa23
TempVal = CCKSwingTable_Ch1_Ch13[CCKSwingIndex][0] +
(CCKSwingTable_Ch1_Ch13[CCKSwingIndex][1]<<8) ;
//Write 0xa24 ~ 0xa27
TempVal2 = 0;
TempVal2 = CCKSwingTable_Ch1_Ch13[CCKSwingIndex][2] +
(CCKSwingTable_Ch1_Ch13[CCKSwingIndex][3]<<8) +
(CCKSwingTable_Ch1_Ch13[CCKSwingIndex][4]<<16 )+
(CCKSwingTable_Ch1_Ch13[CCKSwingIndex][5]<<24);
//Write 0xa28 0xa29
TempVal3 = 0;
TempVal3 = CCKSwingTable_Ch1_Ch13[CCKSwingIndex][6] +
(CCKSwingTable_Ch1_Ch13[CCKSwingIndex][7]<<8) ;
}
else
{
for (i = 0; i < CCK_TABLE_SIZE; i++)
{
if (((CurrCCKSwingVal&0xff) == (u32)CCKSwingTable_Ch14[i][0]) &&
(((CurrCCKSwingVal&0xff00)>>8) == (u32)CCKSwingTable_Ch14[i][1]))
{
CCKSwingIndex = i;
// RT_TRACE(COMP_INIT, DBG_LOUD,("Ch14, Current reg0x%x = 0x%lx, CCKSwingIndex=0x%x\n",
// (rCCK0_TxFilter1+2), CurrCCKSwingVal, CCKSwingIndex));
break;
}
}
//Write 0xa22 0xa23
TempVal = CCKSwingTable_Ch14[CCKSwingIndex][0] +
(CCKSwingTable_Ch14[CCKSwingIndex][1]<<8) ;
//Write 0xa24 ~ 0xa27
TempVal2 = 0;
TempVal2 = CCKSwingTable_Ch14[CCKSwingIndex][2] +
(CCKSwingTable_Ch14[CCKSwingIndex][3]<<8) +
(CCKSwingTable_Ch14[CCKSwingIndex][4]<<16 )+
(CCKSwingTable_Ch14[CCKSwingIndex][5]<<24);
//Write 0xa28 0xa29
TempVal3 = 0;
TempVal3 = CCKSwingTable_Ch14[CCKSwingIndex][6] +
(CCKSwingTable_Ch14[CCKSwingIndex][7]<<8) ;
}
write_bbreg(Adapter, rCCK0_TxFilter1, bMaskHWord, TempVal);
write_bbreg(Adapter, rCCK0_TxFilter2, bMaskDWord, TempVal2);
write_bbreg(Adapter, rCCK0_DebugPort, bMaskLWord, TempVal3);
}
void Hal_MPT_CCKTxPowerAdjustbyIndex(PADAPTER pAdapter, BOOLEAN beven)
{
s32 TempCCk;
u8 CCK_index, CCK_index_old=0;
u8 Action = 0; //0: no action, 1: even->odd, 2:odd->even
u8 TimeOut = 100;
s32 i = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PMPT_CONTEXT pMptCtx = &pAdapter->mppriv.MptCtx;
struct dm_priv *pdmpriv = &pHalData->dmpriv;
PDM_ODM_T pDM_Odm = &(pHalData->odmpriv);
if (!IS_92C_SERIAL(pHalData->VersionID))
return;
#if 0
while(PlatformAtomicExchange(&Adapter->IntrCCKRefCount, TRUE) == TRUE)
{
PlatformSleepUs(100);
TimeOut--;
if(TimeOut <= 0)
{
RTPRINT(FINIT, INIT_TxPower,
("!!!MPT_CCKTxPowerAdjustbyIndex Wait for check CCK gain index too long!!!\n" ));
break;
}
}
#endif
if (beven && !pMptCtx->bMptIndexEven) //odd->even
{
Action = 2;
pMptCtx->bMptIndexEven = _TRUE;
}
else if (!beven && pMptCtx->bMptIndexEven) //even->odd
{
Action = 1;
pMptCtx->bMptIndexEven = _FALSE;
}
if (Action != 0)
{
//Query CCK default setting From 0xa24
TempCCk = read_bbreg(pAdapter, rCCK0_TxFilter2, bMaskDWord) & bMaskCCK;
for (i = 0; i < CCK_TABLE_SIZE; i++)
{
if (pDM_Odm->RFCalibrateInfo.bCCKinCH14)
{
if (_rtw_memcmp((void*)&TempCCk, (void*)&CCKSwingTable_Ch14[i][2], 4) == _TRUE)
{
CCK_index_old = (u8) i;
// RTPRINT(FINIT, INIT_TxPower,("MPT_CCKTxPowerAdjustbyIndex: Initial reg0x%x = 0x%lx, CCK_index=0x%x, ch 14 %d\n",
// rCCK0_TxFilter2, TempCCk, CCK_index_old, pHalData->bCCKinCH14));
break;
}
}
else
{
if (_rtw_memcmp((void*)&TempCCk, (void*)&CCKSwingTable_Ch1_Ch13[i][2], 4) == _TRUE)
{
CCK_index_old = (u8) i;
// RTPRINT(FINIT, INIT_TxPower,("MPT_CCKTxPowerAdjustbyIndex: Initial reg0x%x = 0x%lx, CCK_index=0x%x, ch14 %d\n",
// rCCK0_TxFilter2, TempCCk, CCK_index_old, pHalData->bCCKinCH14));
break;
}
}
}
if (Action == 1) {
if (CCK_index_old == 0)
CCK_index_old = 1;
CCK_index = CCK_index_old - 1;
} else {
CCK_index = CCK_index_old + 1;
}
if (CCK_index == CCK_TABLE_SIZE) {
CCK_index = CCK_TABLE_SIZE -1;
RT_TRACE(_module_mp_, _drv_info_, ("CCK_index == CCK_TABLE_SIZE\n"));
}
// RTPRINT(FINIT, INIT_TxPower,("MPT_CCKTxPowerAdjustbyIndex: new CCK_index=0x%x\n",
// CCK_index));
//Adjust CCK according to gain index
if (!pDM_Odm->RFCalibrateInfo.bCCKinCH14) {
rtw_write8(pAdapter, 0xa22, CCKSwingTable_Ch1_Ch13[CCK_index][0]);
rtw_write8(pAdapter, 0xa23, CCKSwingTable_Ch1_Ch13[CCK_index][1]);
rtw_write8(pAdapter, 0xa24, CCKSwingTable_Ch1_Ch13[CCK_index][2]);
rtw_write8(pAdapter, 0xa25, CCKSwingTable_Ch1_Ch13[CCK_index][3]);
rtw_write8(pAdapter, 0xa26, CCKSwingTable_Ch1_Ch13[CCK_index][4]);
rtw_write8(pAdapter, 0xa27, CCKSwingTable_Ch1_Ch13[CCK_index][5]);
rtw_write8(pAdapter, 0xa28, CCKSwingTable_Ch1_Ch13[CCK_index][6]);
rtw_write8(pAdapter, 0xa29, CCKSwingTable_Ch1_Ch13[CCK_index][7]);
} else {
rtw_write8(pAdapter, 0xa22, CCKSwingTable_Ch14[CCK_index][0]);
rtw_write8(pAdapter, 0xa23, CCKSwingTable_Ch14[CCK_index][1]);
rtw_write8(pAdapter, 0xa24, CCKSwingTable_Ch14[CCK_index][2]);
rtw_write8(pAdapter, 0xa25, CCKSwingTable_Ch14[CCK_index][3]);
rtw_write8(pAdapter, 0xa26, CCKSwingTable_Ch14[CCK_index][4]);
rtw_write8(pAdapter, 0xa27, CCKSwingTable_Ch14[CCK_index][5]);
rtw_write8(pAdapter, 0xa28, CCKSwingTable_Ch14[CCK_index][6]);
rtw_write8(pAdapter, 0xa29, CCKSwingTable_Ch14[CCK_index][7]);
}
}
#if 0
RTPRINT(FINIT, INIT_TxPower,
("MPT_CCKTxPowerAdjustbyIndex 0xa20=%x\n", PlatformEFIORead4Byte(Adapter, 0xa20)));
PlatformAtomicExchange(&Adapter->IntrCCKRefCount, FALSE);
#endif
}
/*---------------------------hal\rtl8192c\MPT_HelperFunc.c---------------------------*/
/*
* SetChannel
* Description
* Use H2C command to change channel,
* not only modify rf register, but also other setting need to be done.
*/
void Hal_SetChannel(PADAPTER pAdapter)
{
#if 0
struct mp_priv *pmp = &pAdapter->mppriv;
// SelectChannel(pAdapter, pmp->channel);
set_channel_bwmode(pAdapter, pmp->channel, pmp->channel_offset, pmp->bandwidth);
#else
u8 eRFPath;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
struct mp_priv *pmp = &pAdapter->mppriv;
struct dm_priv *pdmpriv = &pHalData->dmpriv;
PDM_ODM_T pDM_Odm = &(pHalData->odmpriv);
u8 channel = pmp->channel;
u8 bandwidth = pmp->bandwidth;
u8 rate = pmp->rateidx;
// set RF channel register
for (eRFPath = 0; eRFPath < pHalData->NumTotalRFPath; eRFPath++)
{
if(IS_HARDWARE_TYPE_8192D(pAdapter))
_write_rfreg(pAdapter, eRFPath, ODM_CHANNEL, 0xFF, channel);
else
_write_rfreg(pAdapter, eRFPath, ODM_CHANNEL, 0x3FF, channel);
}
Hal_mpt_SwitchRfSetting(pAdapter);
SelectChannel(pAdapter, channel);
if (pHalData->CurrentChannel == 14 && !pDM_Odm->RFCalibrateInfo.bCCKinCH14) {
pDM_Odm->RFCalibrateInfo.bCCKinCH14 = _TRUE;
Hal_MPT_CCKTxPowerAdjust(pAdapter, pDM_Odm->RFCalibrateInfo.bCCKinCH14);
}
else if (pHalData->CurrentChannel != 14 && pDM_Odm->RFCalibrateInfo.bCCKinCH14) {
pDM_Odm->RFCalibrateInfo.bCCKinCH14 = _FALSE;
Hal_MPT_CCKTxPowerAdjust(pAdapter, pDM_Odm->RFCalibrateInfo.bCCKinCH14);
}
#endif
}
/*
* Notice
* Switch bandwitdth may change center frequency(channel)
*/
void Hal_SetBandwidth(PADAPTER pAdapter)
{
struct mp_priv *pmp = &pAdapter->mppriv;
SetBWMode(pAdapter, pmp->bandwidth, pmp->prime_channel_offset);
//Hal_mpt_SwitchRfSetting(pAdapter);
}
void Hal_SetCCKTxPower(PADAPTER pAdapter, u8 *TxPower)
{
u32 tmpval = 0;
// rf-A cck tx power
write_bbreg(pAdapter, rTxAGC_A_CCK1_Mcs32, bMaskByte1, TxPower[RF_PATH_A]);
tmpval = (TxPower[RF_PATH_A]<<16) | (TxPower[RF_PATH_A]<<8) | TxPower[RF_PATH_A];
write_bbreg(pAdapter, rTxAGC_B_CCK11_A_CCK2_11, 0xffffff00, tmpval);
// rf-B cck tx power
write_bbreg(pAdapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte0, TxPower[RF_PATH_B]);
tmpval = (TxPower[RF_PATH_B]<<16) | (TxPower[RF_PATH_B]<<8) | TxPower[RF_PATH_B];
write_bbreg(pAdapter, rTxAGC_B_CCK1_55_Mcs32, 0xffffff00, tmpval);
RT_TRACE(_module_mp_, _drv_notice_,
("-SetCCKTxPower: A[0x%02x] B[0x%02x]\n",
TxPower[RF_PATH_A], TxPower[RF_PATH_B]));
}
void Hal_SetOFDMTxPower(PADAPTER pAdapter, u8 *TxPower)
{
u32 TxAGC = 0;
u8 tmpval = 0;
PMPT_CONTEXT pMptCtx = &pAdapter->mppriv.MptCtx;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
// HT Tx-rf(A)
tmpval = TxPower[RF_PATH_A];
TxAGC = (tmpval<<24) | (tmpval<<16) | (tmpval<<8) | tmpval;
write_bbreg(pAdapter, rTxAGC_A_Rate18_06, bMaskDWord, TxAGC);
write_bbreg(pAdapter, rTxAGC_A_Rate54_24, bMaskDWord, TxAGC);
write_bbreg(pAdapter, rTxAGC_A_Mcs03_Mcs00, bMaskDWord, TxAGC);
write_bbreg(pAdapter, rTxAGC_A_Mcs07_Mcs04, bMaskDWord, TxAGC);
write_bbreg(pAdapter, rTxAGC_A_Mcs11_Mcs08, bMaskDWord, TxAGC);
write_bbreg(pAdapter, rTxAGC_A_Mcs15_Mcs12, bMaskDWord, TxAGC);
// HT Tx-rf(B)
tmpval = TxPower[RF_PATH_B];
TxAGC = (tmpval<<24) | (tmpval<<16) | (tmpval<<8) | tmpval;
write_bbreg(pAdapter, rTxAGC_B_Rate18_06, bMaskDWord, TxAGC);
write_bbreg(pAdapter, rTxAGC_B_Rate54_24, bMaskDWord, TxAGC);
write_bbreg(pAdapter, rTxAGC_B_Mcs03_Mcs00, bMaskDWord, TxAGC);
write_bbreg(pAdapter, rTxAGC_B_Mcs07_Mcs04, bMaskDWord, TxAGC);
write_bbreg(pAdapter, rTxAGC_B_Mcs11_Mcs08, bMaskDWord, TxAGC);
write_bbreg(pAdapter, rTxAGC_B_Mcs15_Mcs12, bMaskDWord, TxAGC);
}
void Hal_SetAntennaPathPower(PADAPTER pAdapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
u8 TxPowerLevel[MAX_RF_PATH];
u8 rfPath;
TxPowerLevel[RF_PATH_A] = pAdapter->mppriv.txpoweridx;
TxPowerLevel[RF_PATH_B] = pAdapter->mppriv.txpoweridx_b;
switch (pAdapter->mppriv.antenna_tx)
{
case ANTENNA_A:
default:
rfPath = RF_PATH_A;
break;
case ANTENNA_B:
rfPath = RF_PATH_B;
break;
case ANTENNA_C:
rfPath = RF_PATH_C;
break;
}
switch (pHalData->rf_chip)
{
case RF_8225:
case RF_8256:
case RF_6052:
Hal_SetCCKTxPower(pAdapter, TxPowerLevel);
if (pAdapter->mppriv.rateidx < MPT_RATE_6M) // CCK rate
Hal_MPT_CCKTxPowerAdjustbyIndex(pAdapter, TxPowerLevel[rfPath]%2 == 0);
Hal_SetOFDMTxPower(pAdapter, TxPowerLevel);
break;
default:
break;
}
}
void Hal_SetTxPower(PADAPTER pAdapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
u8 TxPower = pAdapter->mppriv.txpoweridx;
u8 TxPowerLevel[MAX_RF_PATH];
u8 rf, rfPath;
for (rf = 0; rf < pHalData->NumTotalRFPath; rf++) {
TxPowerLevel[rf] = TxPower;
}
switch (pAdapter->mppriv.antenna_tx)
{
case ANTENNA_A:
default:
rfPath = RF_PATH_A;
break;
case ANTENNA_B:
rfPath = RF_PATH_B;
break;
case ANTENNA_C:
rfPath = RF_PATH_C;
break;
}
switch (pHalData->rf_chip)
{
// 2008/09/12 MH Test only !! We enable the TX power tracking for MP!!!!!
// We should call normal driver API later!!
case RF_8225:
case RF_8256:
case RF_6052:
Hal_SetCCKTxPower(pAdapter, TxPowerLevel);
if (pAdapter->mppriv.rateidx < MPT_RATE_6M) // CCK rate
Hal_MPT_CCKTxPowerAdjustbyIndex(pAdapter, TxPowerLevel[rfPath]%2 == 0);
Hal_SetOFDMTxPower(pAdapter, TxPowerLevel);
break;
default:
break;
}
// SetCCKTxPower(pAdapter, TxPower);
// SetOFDMTxPower(pAdapter, TxPower);
}
void Hal_SetTxAGCOffset(PADAPTER pAdapter, u32 ulTxAGCOffset)
{
u32 TxAGCOffset_B, TxAGCOffset_C, TxAGCOffset_D,tmpAGC;
TxAGCOffset_B = (ulTxAGCOffset&0x000000ff);
TxAGCOffset_C = ((ulTxAGCOffset&0x0000ff00)>>8);
TxAGCOffset_D = ((ulTxAGCOffset&0x00ff0000)>>16);
tmpAGC = (TxAGCOffset_D<<8 | TxAGCOffset_C<<4 | TxAGCOffset_B);
write_bbreg(pAdapter, rFPGA0_TxGainStage,
(bXBTxAGC|bXCTxAGC|bXDTxAGC), tmpAGC);
}
void Hal_SetDataRate(PADAPTER pAdapter)
{
Hal_mpt_SwitchRfSetting(pAdapter);
}
void Hal_SetAntenna(PADAPTER pAdapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
R_ANTENNA_SELECT_OFDM *p_ofdm_tx; /* OFDM Tx register */
R_ANTENNA_SELECT_CCK *p_cck_txrx;
u8 r_rx_antenna_ofdm = 0, r_ant_select_cck_val = 0;
u8 chgTx = 0, chgRx = 0;
u32 r_ant_sel_cck_val = 0, r_ant_select_ofdm_val = 0, r_ofdm_tx_en_val = 0;
p_ofdm_tx = (R_ANTENNA_SELECT_OFDM *)&r_ant_select_ofdm_val;
p_cck_txrx = (R_ANTENNA_SELECT_CCK *)&r_ant_select_cck_val;
p_ofdm_tx->r_ant_ht1 = 0x1;
p_ofdm_tx->r_ant_ht2 = 0x2; // Second TX RF path is A
p_ofdm_tx->r_ant_non_ht = 0x3; // 0x1+0x2=0x3
switch (pAdapter->mppriv.antenna_tx)
{
case ANTENNA_A:
p_ofdm_tx->r_tx_antenna = 0x1;
r_ofdm_tx_en_val = 0x1;
p_ofdm_tx->r_ant_l = 0x1;
p_ofdm_tx->r_ant_ht_s1 = 0x1;
p_ofdm_tx->r_ant_non_ht_s1 = 0x1;
p_cck_txrx->r_ccktx_enable = 0x8;
chgTx = 1;
// From SD3 Willis suggestion !!! Set RF A=TX and B as standby
// if (IS_HARDWARE_TYPE_8192S(pAdapter))
{
write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter2, 0xe, 2);
write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter2, 0xe, 1);
r_ofdm_tx_en_val = 0x3;
// Power save
//cosa r_ant_select_ofdm_val = 0x11111111;
// We need to close RFB by SW control
if (pHalData->rf_type == RF_2T2R)
{
PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT10, 0);
PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT26, 1);
PHY_SetBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT10, 0);
PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT1, 1);
PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT17, 0);
}
}
break;
case ANTENNA_B:
p_ofdm_tx->r_tx_antenna = 0x2;
r_ofdm_tx_en_val = 0x2;
p_ofdm_tx->r_ant_l = 0x2;
p_ofdm_tx->r_ant_ht_s1 = 0x2;
p_ofdm_tx->r_ant_non_ht_s1 = 0x2;
p_cck_txrx->r_ccktx_enable = 0x4;
chgTx = 1;
// From SD3 Willis suggestion !!! Set RF A as standby
//if (IS_HARDWARE_TYPE_8192S(pAdapter))
{
PHY_SetBBReg(pAdapter, rFPGA0_XA_HSSIParameter2, 0xe, 1);
PHY_SetBBReg(pAdapter, rFPGA0_XB_HSSIParameter2, 0xe, 2);
// r_ofdm_tx_en_val = 0x3;
// Power save
//cosa r_ant_select_ofdm_val = 0x22222222;
// 2008/10/31 MH From SD3 Willi's suggestion. We must read RF 1T table.
// 2009/01/08 MH From Sd3 Willis. We need to close RFA by SW control
if (pHalData->rf_type == RF_2T2R || pHalData->rf_type == RF_1T2R)
{
PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT10, 1);
PHY_SetBBReg(pAdapter, rFPGA0_XA_RFInterfaceOE, BIT10, 0);
PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT26, 0);
// PHY_SetBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT10, 0);
PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT1, 0);
PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT17, 1);
}
}
break;
case ANTENNA_AB: // For 8192S
p_ofdm_tx->r_tx_antenna = 0x3;
r_ofdm_tx_en_val = 0x3;
p_ofdm_tx->r_ant_l = 0x3;
p_ofdm_tx->r_ant_ht_s1 = 0x3;
p_ofdm_tx->r_ant_non_ht_s1 = 0x3;
p_cck_txrx->r_ccktx_enable = 0xC;
chgTx = 1;
// From SD3 Willis suggestion !!! Set RF B as standby
//if (IS_HARDWARE_TYPE_8192S(pAdapter))
{
PHY_SetBBReg(pAdapter, rFPGA0_XA_HSSIParameter2, 0xe, 2);
PHY_SetBBReg(pAdapter, rFPGA0_XB_HSSIParameter2, 0xe, 2);
// Disable Power save
//cosa r_ant_select_ofdm_val = 0x3321333;
#if 0
// 2008/10/31 MH From SD3 Willi's suggestion. We must read RFA 2T table.
if ((pHalData->VersionID == VERSION_8192S_ACUT)) // For RTL8192SU A-Cut only, by Roger, 2008.11.07.
{
mpt_RFConfigFromPreParaArrary(pAdapter, 1, RF_PATH_A);
}
#endif
// 2009/01/08 MH From Sd3 Willis. We need to enable RFA/B by SW control
if (pHalData->rf_type == RF_2T2R)
{
PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT10, 0);
PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT26, 0);
// PHY_SetBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT10, 0);
PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT1, 1);
PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT17, 1);
}
}
break;
default:
break;
}
//
// r_rx_antenna_ofdm, bit0=A, bit1=B, bit2=C, bit3=D
// r_cckrx_enable : CCK default, 0=A, 1=B, 2=C, 3=D
// r_cckrx_enable_2 : CCK option, 0=A, 1=B, 2=C, 3=D
//
switch (pAdapter->mppriv.antenna_rx)
{
case ANTENNA_A:
r_rx_antenna_ofdm = 0x1; // A
p_cck_txrx->r_cckrx_enable = 0x0; // default: A
p_cck_txrx->r_cckrx_enable_2 = 0x0; // option: A
chgRx = 1;
break;
case ANTENNA_B:
r_rx_antenna_ofdm = 0x2; // B
p_cck_txrx->r_cckrx_enable = 0x1; // default: B
p_cck_txrx->r_cckrx_enable_2 = 0x1; // option: B
chgRx = 1;
break;
case ANTENNA_AB:
r_rx_antenna_ofdm = 0x3; // AB
p_cck_txrx->r_cckrx_enable = 0x0; // default:A
p_cck_txrx->r_cckrx_enable_2 = 0x1; // option:B
chgRx = 1;
break;
default:
break;
}
if (chgTx && chgRx)
{
switch(pHalData->rf_chip)
{
case RF_8225:
case RF_8256:
case RF_6052:
//r_ant_sel_cck_val = r_ant_select_cck_val;
PHY_SetBBReg(pAdapter, rFPGA1_TxInfo, 0x7fffffff, r_ant_select_ofdm_val); //OFDM Tx
PHY_SetBBReg(pAdapter, rFPGA0_TxInfo, 0x0000000f, r_ofdm_tx_en_val); //OFDM Tx
PHY_SetBBReg(pAdapter, rOFDM0_TRxPathEnable, 0x000000ff, ((r_rx_antenna_ofdm<<4)|r_rx_antenna_ofdm)); //OFDM Rx
PHY_SetBBReg(pAdapter, rOFDM1_TRxPathEnable, 0x0000000f, r_rx_antenna_ofdm); //OFDM Rx
PHY_SetBBReg(pAdapter, rCCK0_AFESetting, bMaskByte3, r_ant_select_cck_val);//r_ant_sel_cck_val); //CCK TxRx
break;
default:
break;
}
}
RT_TRACE(_module_mp_, _drv_notice_, ("-SwitchAntenna: finished\n"));
}
s32 Hal_SetThermalMeter(PADAPTER pAdapter, u8 target_ther)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
if (!netif_running(pAdapter->pnetdev)) {
RT_TRACE(_module_mp_, _drv_warning_, ("SetThermalMeter! Fail: interface not opened!\n"));
return _FAIL;
}
if (check_fwstate(&pAdapter->mlmepriv, WIFI_MP_STATE) == _FALSE) {
RT_TRACE(_module_mp_, _drv_warning_, ("SetThermalMeter: Fail! not in MP mode!\n"));
return _FAIL;
}
target_ther &= 0xff;
if (target_ther < 0x07)
target_ther = 0x07;
else if (target_ther > 0x1d)
target_ther = 0x1d;
pHalData->EEPROMThermalMeter = target_ther;
return _SUCCESS;
}
void Hal_TriggerRFThermalMeter(PADAPTER pAdapter)
{
PHY_SetRFReg(pAdapter, ODM_RF_PATH_A, RF_T_METER_8192E, BIT17 | BIT16, 0x03);
// RT_TRACE(_module_mp_,_drv_alert_, ("TriggerRFThermalMeter() finished.\n" ));
}
u8 Hal_ReadRFThermalMeter(PADAPTER pAdapter)
{
u32 ThermalValue = 0;
//ThermalValue = _read_rfreg(pAdapter, RF_PATH_A, RF_T_METER, 0x1F); // 0x24: RF Reg[4:0]
ThermalValue = (u1Byte)PHY_QueryRFReg(pAdapter, ODM_RF_PATH_A, RF_T_METER_8192E, 0xfc00); // 0x42: RF Reg[15:10]
DBG_871X("%s ThermalValue = 0x%x\n", __FUNCTION__,ThermalValue);
printk("%s ### REG_C80:0x%08x,REG_C88:0x%08x ####\n",__FUNCTION__,
rtw_read32(pAdapter,0xc80),rtw_read32(pAdapter,0xc88));
return (u8)ThermalValue;
}
void Hal_GetThermalMeter(PADAPTER pAdapter, u8 *value)
{
#if 0
fw_cmd(pAdapter, IOCMD_GET_THERMAL_METER);
rtw_msleep_os(1000);
fw_cmd_data(pAdapter, value, 1);
*value &= 0xFF;
#else
Hal_TriggerRFThermalMeter(pAdapter);
rtw_msleep_os(1000);
*value = Hal_ReadRFThermalMeter(pAdapter);
#endif
}
void Hal_SetSingleCarrierTx(PADAPTER pAdapter, u8 bStart)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
pAdapter->mppriv.MptCtx.bSingleCarrier = bStart;
if (bStart)// Start Single Carrier.
{
RT_TRACE(_module_mp_,_drv_alert_, ("SetSingleCarrierTx: test start\n"));
// 1. if OFDM block on?
if(!read_bbreg(pAdapter, rFPGA0_RFMOD, bOFDMEn))
write_bbreg(pAdapter, rFPGA0_RFMOD, bOFDMEn, bEnable);//set OFDM block on
{
// 2. set CCK test mode off, set to CCK normal mode
write_bbreg(pAdapter, rCCK0_System, bCCKBBMode, bDisable);
// 3. turn on scramble setting
write_bbreg(pAdapter, rCCK0_System, bCCKScramble, bEnable);
}
// 4. Turn On Single Carrier Tx and turn off the other test modes.
write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable);
write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bEnable);
write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable);
#ifdef CONFIG_RTL8192C
// 5. Disable TX power saving at STF & LLTF
write_bbreg(pAdapter, rOFDM1_LSTF, BIT22, 1);
#endif
//for dynamic set Power index.
write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000500);
write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000500);
}
else// Stop Single Carrier.
{
RT_TRACE(_module_mp_,_drv_alert_, ("SetSingleCarrierTx: test stop\n"));
// Turn off all test modes.
write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable);
write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bDisable);
write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable);
#ifdef CONFIG_RTL8192C
// Cancel disable TX power saving at STF&LLTF
write_bbreg(pAdapter, rOFDM1_LSTF, BIT22, 0);
#endif
//Delay 10 ms //delay_ms(10);
rtw_msleep_os(10);
//BB Reset
write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x0);
write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x1);
//Stop for dynamic set Power index.
write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000100);
write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000100);
}
}
void Hal_SetSingleToneTx(PADAPTER pAdapter, u8 bStart)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PMPT_CONTEXT pMptCtx = &(pAdapter->mppriv.MptCtx);
switch (pAdapter->mppriv.antenna_tx)
{
case ANTENNA_A:
default:
pMptCtx->MptRfPath = RF_PATH_A;
break;
case ANTENNA_B:
pMptCtx->MptRfPath = RF_PATH_B;
break;
}
pAdapter->mppriv.MptCtx.bSingleTone = bStart;
if (bStart)// Start Single Tone.
{
//Set MAC REG 88C: Prevent SingleTone Fail
//rtw_write32(pAdapter,0x88C,0xCCF000C0);
PHY_SetMacReg(pAdapter, 0x88C, 0xF00000, 0xF);
PHY_SetRFReg(pAdapter, pMptCtx->MptRfPath, LNA_Low_Gain_3, BIT1, 0x1); // RF LO disabled
PHY_SetRFReg(pAdapter, pMptCtx->MptRfPath, RF_AC, 0xF0000, 0x2); // Tx mode
}
else// Stop Single Tone.
{
PHY_SetRFReg(pAdapter, pMptCtx->MptRfPath, RF_AC, 0xF0000, 0x3); // Tx mode
PHY_SetRFReg(pAdapter, pMptCtx->MptRfPath, LNA_Low_Gain_3, BIT1, 0x0); // RF LO disabled
//rtw_write32(pAdapter,0x88C,0xCC0000C0);
PHY_SetMacReg(pAdapter, 0x88C, 0xF00000, 0x0);
}
}
void Hal_SetCarrierSuppressionTx(PADAPTER pAdapter, u8 bStart)
{
pAdapter->mppriv.MptCtx.bCarrierSuppression = bStart;
if (bStart) // Start Carrier Suppression.
{
RT_TRACE(_module_mp_,_drv_alert_, ("SetCarrierSuppressionTx: test start\n"));
//if(pMgntInfo->dot11CurrentWirelessMode == WIRELESS_MODE_B)
if (pAdapter->mppriv.rateidx <= MPT_RATE_11M)
{
// 1. if CCK block on?
if(!read_bbreg(pAdapter, rFPGA0_RFMOD, bCCKEn))
write_bbreg(pAdapter, rFPGA0_RFMOD, bCCKEn, bEnable);//set CCK block on
//Turn Off All Test Mode
write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable);
write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bDisable);
write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable);
write_bbreg(pAdapter, rCCK0_System, bCCKBBMode, 0x2); //transmit mode
write_bbreg(pAdapter, rCCK0_System, bCCKScramble, 0x0); //turn off scramble setting
//Set CCK Tx Test Rate
//PHY_SetBBReg(pAdapter, rCCK0_System, bCCKTxRate, pMgntInfo->ForcedDataRate);
write_bbreg(pAdapter, rCCK0_System, bCCKTxRate, 0x0); //Set FTxRate to 1Mbps
}
//for dynamic set Power index.
write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000500);
write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000500);
}
else// Stop Carrier Suppression.
{
RT_TRACE(_module_mp_,_drv_alert_, ("SetCarrierSuppressionTx: test stop\n"));
//if(pMgntInfo->dot11CurrentWirelessMode == WIRELESS_MODE_B)
if (pAdapter->mppriv.rateidx <= MPT_RATE_11M ) {
write_bbreg(pAdapter, rCCK0_System, bCCKBBMode, 0x0); //normal mode
write_bbreg(pAdapter, rCCK0_System, bCCKScramble, 0x1); //turn on scramble setting
//BB Reset
write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x0);
write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x1);
}
//Stop for dynamic set Power index.
write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000100);
write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000100);
}
//DbgPrint("\n MPT_ProSetCarrierSupp() is finished. \n");
}
void Hal_SetCCKContinuousTx(PADAPTER pAdapter, u8 bStart)
{
u32 cckrate;
if (bStart)
{
RT_TRACE(_module_mp_, _drv_alert_,
("SetCCKContinuousTx: test start\n"));
// 1. if CCK block on?
if(!read_bbreg(pAdapter, rFPGA0_RFMOD, bCCKEn))
write_bbreg(pAdapter, rFPGA0_RFMOD, bCCKEn, bEnable);//set CCK block on
//Turn Off All Test Mode
write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable);
write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bDisable);
write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable);
//Set CCK Tx Test Rate
#if 0
switch(pAdapter->mppriv.rateidx)
{
case 2:
cckrate = 0;
break;
case 4:
cckrate = 1;
break;
case 11:
cckrate = 2;
break;
case 22:
cckrate = 3;
break;
default:
cckrate = 0;
break;
}
#else
cckrate = pAdapter->mppriv.rateidx;
#endif
write_bbreg(pAdapter, rCCK0_System, bCCKTxRate, cckrate);
write_bbreg(pAdapter, rCCK0_System, bCCKBBMode, 0x2); //transmit mode
write_bbreg(pAdapter, rCCK0_System, bCCKScramble, bEnable); //turn on scramble setting
#ifdef CONFIG_RTL8192C
// Patch for CCK 11M waveform
if (cckrate == MPT_RATE_1M)
write_bbreg(pAdapter, 0xA71, BIT(6), bDisable);
else
write_bbreg(pAdapter, 0xA71, BIT(6), bEnable);
#endif
//for dynamic set Power index.
write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000500);
write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000500);
}
else {
RT_TRACE(_module_mp_, _drv_info_,
("SetCCKContinuousTx: test stop\n"));
write_bbreg(pAdapter, rCCK0_System, bCCKBBMode, 0x0); //normal mode
write_bbreg(pAdapter, rCCK0_System, bCCKScramble, bEnable); //turn on scramble setting
//BB Reset
write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x0);
write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x1);
//Stop for dynamic set Power index.
write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000100);
write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000100);
}
pAdapter->mppriv.MptCtx.bCckContTx = bStart;
pAdapter->mppriv.MptCtx.bOfdmContTx = _FALSE;
}/* mpt_StartCckContTx */
void Hal_SetOFDMContinuousTx(PADAPTER pAdapter, u8 bStart)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
if (bStart) {
RT_TRACE(_module_mp_, _drv_info_, ("SetOFDMContinuousTx: test start\n"));
// 1. if OFDM block on?
if(!read_bbreg(pAdapter, rFPGA0_RFMOD, bOFDMEn))
write_bbreg(pAdapter, rFPGA0_RFMOD, bOFDMEn, bEnable);//set OFDM block on
{
// 2. set CCK test mode off, set to CCK normal mode
write_bbreg(pAdapter, rCCK0_System, bCCKBBMode, bDisable);
// 3. turn on scramble setting
write_bbreg(pAdapter, rCCK0_System, bCCKScramble, bEnable);
}
// 4. Turn On Continue Tx and turn off the other test modes.
write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bEnable);
write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bDisable);
write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable);
//for dynamic set Power index.
write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000500);
write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000500);
} else {
RT_TRACE(_module_mp_,_drv_info_, ("SetOFDMContinuousTx: test stop\n"));
write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable);
write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bDisable);
write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable);
//Delay 10 ms
rtw_msleep_os(10);
//BB Reset
write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x0);
write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x1);
//Stop for dynamic set Power index.
write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000100);
write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000100);
}
pAdapter->mppriv.MptCtx.bCckContTx = _FALSE;
pAdapter->mppriv.MptCtx.bOfdmContTx = bStart;
}/* mpt_StartOfdmContTx */
void Hal_SetContinuousTx(PADAPTER pAdapter, u8 bStart)
{
#if 0
// ADC turn off [bit24-21] adc port0 ~ port1
if (bStart) {
write_bbreg(pAdapter, rRx_Wait_CCCA, read_bbreg(pAdapter, rRx_Wait_CCCA) & 0xFE1FFFFF);
rtw_usleep_os(100);
}
#endif
RT_TRACE(_module_mp_, _drv_info_,
("SetContinuousTx: rate:%d\n", pAdapter->mppriv.rateidx));
pAdapter->mppriv.MptCtx.bStartContTx = bStart;
if (pAdapter->mppriv.rateidx <= MPT_RATE_11M)
{
Hal_SetCCKContinuousTx(pAdapter, bStart);
}
else if ((pAdapter->mppriv.rateidx >= MPT_RATE_6M) &&
(pAdapter->mppriv.rateidx <= MPT_RATE_MCS15))
{
Hal_SetOFDMContinuousTx(pAdapter, bStart);
}
#if 0
// ADC turn on [bit24-21] adc port0 ~ port1
if (!bStart) {
write_bbreg(pAdapter, rRx_Wait_CCCA, read_bbreg(pAdapter, rRx_Wait_CCCA) | 0x01E00000);
}
#endif
}
#endif // CONFIG_MP_INCLUDE