/****************************************************************************** * * Copyright(c) 2012 - 2017 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * *****************************************************************************/ #define _RTL8192E_HAL_INIT_C_ /* #include */ #include #include "hal8192e_fw.h" /* ------------------------------------------------------------------------- * * LLT R/W/Init function * * ------------------------------------------------------------------------- */ static s32 _LLTWrite(PADAPTER padapter, u32 address, u32 data) { s32 status = _SUCCESS; s8 count = POLLING_LLT_THRESHOLD; u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS); rtw_write32(padapter, REG_LLT_INIT, value); /* polling */ do { value = rtw_read32(padapter, REG_LLT_INIT); if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) break; } while (--count); if (count <= 0) { RTW_INFO("Failed to polling write LLT done at address %d!\n", address); status = _FAIL; } return status; } u8 _LLTRead(PADAPTER padapter, u32 address) { s32 count = POLLING_LLT_THRESHOLD; u32 value = _LLT_INIT_ADDR(address) | _LLT_OP(_LLT_READ_ACCESS); u16 LLTReg = REG_LLT_INIT; rtw_write32(padapter, LLTReg, value); /* polling and get value */ do { value = rtw_read32(padapter, LLTReg); if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) return (u8)value; } while (--count); return 0xFF; } s32 InitLLTTable8192E(PADAPTER padapter, u8 txpktbuf_bndy) { s32 status = _FAIL; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); u32 value32; systime start = 0; u32 passing_time = 0; #if 1 value32 = rtw_read32(padapter, REG_AUTO_LLT); rtw_write32(padapter, REG_AUTO_LLT, value32 | BIT_AUTO_INIT_LLT); start = jiffies; while (((value32 = rtw_read32(padapter, REG_AUTO_LLT)) & BIT_AUTO_INIT_LLT) && ((passing_time = rtw_get_passing_time_ms(start)) < 1000) ) rtw_usleep_os(2); if (value32 & BIT_AUTO_INIT_LLT) { RTW_INFO("Auto %s(%08x) failed\n", __FUNCTION__, value32); status = _FAIL; } else { RTW_INFO("Auto %s success\n", __FUNCTION__); status = _SUCCESS; } #else for (i = 0; i < (txpktbuf_bndy - 1); i++) { status = _LLTWrite(padapter, i, i + 1); if (_SUCCESS != status) return status; } /* end of list */ status = _LLTWrite(padapter, (txpktbuf_bndy - 1), 0xFF); if (_SUCCESS != status) return status; /* Make the other pages as ring buffer */ /* This ring buffer is used as beacon buffer if we config this MAC as two MAC transfer. */ /* Otherwise used as local loopback buffer. */ for (i = txpktbuf_bndy; i < Last_Entry_Of_TxPktBuf; i++) { status = _LLTWrite(padapter, i, (i + 1)); if (_SUCCESS != status) return status; } /* Let last entry point to the start entry of ring buffer */ status = _LLTWrite(padapter, Last_Entry_Of_TxPktBuf, txpktbuf_bndy); if (_SUCCESS != status) return status; #endif return status; } BOOLEAN HalDetectPwrDownMode8192E(PADAPTER Adapter) { u8 tmpvalue = 0; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct pwrctrl_priv *pwrctrlpriv = adapter_to_pwrctl(Adapter); EFUSE_ShadowRead(Adapter, 1, EEPROM_RF_FEATURE_OPTION_8192E, (u32 *)&tmpvalue); /* 2010/08/25 MH INF priority > PDN Efuse value. */ if (tmpvalue & BIT(4) && pwrctrlpriv->reg_pdnmode) pHalData->pwrdown = _TRUE; else pHalData->pwrdown = _FALSE; RTW_INFO("HalDetectPwrDownMode(): PDN=%d\n", pHalData->pwrdown); return pHalData->pwrdown; } /* HalDetectPwrDownMode */ #if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN) void Hal_DetectWoWMode(PADAPTER pAdapter) { adapter_to_pwrctl(pAdapter)->bSupportRemoteWakeup = _TRUE; } #endif static VOID _FWDownloadEnable_8192E( IN PADAPTER padapter, IN BOOLEAN enable ) { u8 tmp; if (enable) { /* MCU firmware download enable. */ tmp = rtw_read8(padapter, REG_MCUFWDL); rtw_write8(padapter, REG_MCUFWDL, tmp | 0x01); /* 8051 reset */ tmp = rtw_read8(padapter, REG_MCUFWDL + 2); rtw_write8(padapter, REG_MCUFWDL + 2, tmp & 0xf7); } else { /* MCU firmware download disable. */ tmp = rtw_read8(padapter, REG_MCUFWDL); rtw_write8(padapter, REG_MCUFWDL, tmp & 0xfe); } } #ifdef CONFIG_PLATFORM_HISILICON #define MAX_REG_BOLCK_SIZE 4 #else #define MAX_REG_BOLCK_SIZE 254 #endif static int _BlockWrite_8192E( IN PADAPTER padapter, IN PVOID buffer, IN u32 buffSize ) { int ret = _SUCCESS; u32 blockSize_p1 = 4; /* (Default) Phase #1 : PCI muse use 4-byte write to download FW */ u32 blockSize_p2 = 8; /* Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */ u32 blockSize_p3 = 1; /* Phase #3 : Use 1-byte, the remnant of FW image. */ u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0; u32 remainSize_p1 = 0, remainSize_p2 = 0; u8 *bufferPtr = (u8 *)buffer; u32 i = 0, offset = 0; #ifdef CONFIG_PCI_HCI u8 remainFW[4] = {0, 0, 0, 0}; u8 *p = NULL; #endif #ifdef CONFIG_USB_HCI blockSize_p1 = MAX_REG_BOLCK_SIZE; #endif /* 3 Phase #1 */ blockCount_p1 = buffSize / blockSize_p1; remainSize_p1 = buffSize % blockSize_p1; for (i = 0; i < blockCount_p1; i++) { #ifdef CONFIG_USB_HCI ret = rtw_writeN(padapter, (FW_START_ADDRESS + i * blockSize_p1), blockSize_p1, (bufferPtr + i * blockSize_p1)); #else ret = rtw_write32(padapter, (FW_START_ADDRESS + i * blockSize_p1), le32_to_cpu(*((u32 *)(bufferPtr + i * blockSize_p1)))); #endif if (ret == _FAIL) goto exit; } #ifdef CONFIG_PCI_HCI p = (u8 *)((u32 *)(bufferPtr + blockCount_p1 * blockSize_p1)); if (remainSize_p1) { switch (remainSize_p1) { case 0: break; case 3: remainFW[2] = *(p + 2); case 2: remainFW[1] = *(p + 1); case 1: remainFW[0] = *(p); ret = rtw_write32(padapter, (FW_START_ADDRESS + blockCount_p1 * blockSize_p1), le32_to_cpu(*(u32 *)remainFW)); } return ret; } #endif /* 3 Phase #2 */ if (remainSize_p1) { offset = blockCount_p1 * blockSize_p1; blockCount_p2 = remainSize_p1 / blockSize_p2; remainSize_p2 = remainSize_p1 % blockSize_p2; #ifdef CONFIG_USB_HCI for (i = 0; i < blockCount_p2; i++) { ret = rtw_writeN(padapter, (FW_START_ADDRESS + offset + i * blockSize_p2), blockSize_p2, (bufferPtr + offset + i * blockSize_p2)); if (ret == _FAIL) goto exit; } #endif } /* 3 Phase #3 */ if (remainSize_p2) { offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2); blockCount_p3 = remainSize_p2 / blockSize_p3; for (i = 0 ; i < blockCount_p3 ; i++) { ret = rtw_write8(padapter, (FW_START_ADDRESS + offset + i), *(bufferPtr + offset + i)); if (ret == _FAIL) goto exit; } } exit: return ret; } static int _PageWrite_8192E( IN PADAPTER padapter, IN u32 page, IN PVOID buffer, IN u32 size ) { u8 value8; u8 u8Page = (u8)(page & 0x07) ; value8 = (rtw_read8(padapter, REG_MCUFWDL + 2) & 0xF8) | u8Page ; rtw_write8(padapter, REG_MCUFWDL + 2, value8); return _BlockWrite_8192E(padapter, buffer, size); } static int _WriteFW_8192E( IN PADAPTER padapter, IN PVOID buffer, IN u32 size ) { /* Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */ int ret = _SUCCESS; u32 pageNums, remainSize ; u32 page, offset; u8 *bufferPtr = (u8 *)buffer; #ifdef CONFIG_PCI_HCI /* 20100120 Joseph: Add for 88CE normal chip. */ /* Fill in zero to make firmware image to dword alignment. * _FillDummy(bufferPtr, &size); */ #endif pageNums = size / MAX_DLFW_PAGE_SIZE ; /* RT_ASSERT((pageNums <= 4), ("Page numbers should not greater then 4\n")); */ remainSize = size % MAX_DLFW_PAGE_SIZE; for (page = 0; page < pageNums; page++) { offset = page * MAX_DLFW_PAGE_SIZE; ret = _PageWrite_8192E(padapter, page, bufferPtr + offset, MAX_DLFW_PAGE_SIZE); if (ret == _FAIL) goto exit; } if (remainSize) { offset = pageNums * MAX_DLFW_PAGE_SIZE; page = pageNums; ret = _PageWrite_8192E(padapter, page, bufferPtr + offset, remainSize); if (ret == _FAIL) goto exit; } exit: return ret; } void _8051Reset8192E(PADAPTER padapter) { u8 u1bTmp, u1bTmp2; u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL); rtw_write8(padapter, REG_RSV_CTRL, (u1bTmp2 & (~BIT1))); /* Reset MCU IO Wrapper,suggested by SD1-Gimmy */ u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL + 1); rtw_write8(padapter, REG_RSV_CTRL + 1, (u1bTmp2 & (~BIT0))); /* Reset 8051 */ u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN + 1); rtw_write8(padapter, REG_SYS_FUNC_EN + 1, u1bTmp & (~BIT2)); u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL); rtw_write8(padapter, REG_RSV_CTRL, (u1bTmp2 & (~BIT1))); /* Enable MCU IO Wrapper */ u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL + 1); rtw_write8(padapter, REG_RSV_CTRL + 1, u1bTmp2 | BIT0); /* Enable 8051 */ rtw_write8(padapter, REG_SYS_FUNC_EN + 1, u1bTmp | (BIT2)); RTW_INFO("=====> _8051Reset8192E(): 8051 reset success .\n"); } static s32 polling_fwdl_chksum(_adapter *adapter, u32 min_cnt, u32 timeout_ms) { s32 ret = _FAIL; u32 value32; systime start = jiffies; u32 cnt = 0; /* polling CheckSum report */ do { cnt++; value32 = rtw_read32(adapter, REG_MCUFWDL); if (value32 & FWDL_ChkSum_rpt || RTW_CANNOT_IO(adapter)) break; yield(); } while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt); if (!(value32 & FWDL_ChkSum_rpt)) goto exit; if (rtw_fwdl_test_trigger_chksum_fail()) goto exit; ret = _SUCCESS; exit: RTW_INFO("%s: Checksum report %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __FUNCTION__ , (ret == _SUCCESS) ? "OK" : "Fail", cnt, rtw_get_passing_time_ms(start), value32); return ret; } static s32 _FWFreeToGo8192E(_adapter *adapter, u32 min_cnt, u32 timeout_ms) { s32 ret = _FAIL; u32 value32; systime start = jiffies; u32 cnt = 0; value32 = rtw_read32(adapter, REG_MCUFWDL); value32 |= MCUFWDL_RDY; value32 &= ~WINTINI_RDY; rtw_write32(adapter, REG_MCUFWDL, value32); _8051Reset8192E(adapter); /* polling for FW ready */ do { cnt++; value32 = rtw_read32(adapter, REG_MCUFWDL); if (value32 & WINTINI_RDY || RTW_CANNOT_IO(adapter)) break; yield(); } while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt); if (!(value32 & WINTINI_RDY)) goto exit; if (rtw_fwdl_test_trigger_wintint_rdy_fail()) goto exit; ret = _SUCCESS; exit: RTW_INFO("%s: Polling FW ready %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __FUNCTION__ , (ret == _SUCCESS) ? "OK" : "Fail", cnt, rtw_get_passing_time_ms(start), value32); return ret; } #ifdef CONFIG_FILE_FWIMG extern char *rtw_fw_file_path; extern char *rtw_fw_wow_file_path; u8 FwBuffer[FW_SIZE_8192E]; #endif s32 FirmwareDownload8192E( IN PADAPTER Adapter, IN BOOLEAN bUsedWoWLANFw ) { s32 rtStatus = _SUCCESS; u8 write_fw = 0; systime fwdl_start_time; PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter); u8 *pFwImageFileName; u8 *pucMappedFile = NULL; PRT_FIRMWARE_8192E pFirmware = NULL; u8 *pFwHdr = NULL; u8 *pFirmwareBuf; u32 FirmwareLen; struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(Adapter); #ifdef CONFIG_FILE_FWIMG u8 *fwfilepath; #endif pFirmware = (PRT_FIRMWARE_8192E)rtw_zmalloc(sizeof(RT_FIRMWARE_8192E)); if (!pFirmware) { rtStatus = _FAIL; goto exit; } #ifdef CONFIG_FILE_FWIMG #ifdef CONFIG_WOWLAN if (bUsedWoWLANFw) fwfilepath = rtw_fw_wow_file_path; else #endif fwfilepath = rtw_fw_file_path; if (rtw_is_file_readable(fwfilepath) == _TRUE) { RTW_INFO("%s acquire FW from file:%s\n", __func__, fwfilepath); pFirmware->eFWSource = FW_SOURCE_IMG_FILE; } else #endif /* CONFIG_FILE_FWIMG */ { #ifdef CONFIG_EMBEDDED_FWIMG pFirmware->eFWSource = FW_SOURCE_HEADER_FILE; #else pFirmware->eFWSource = FW_SOURCE_IMG_FILE; /* We should decided by Reg. */ #endif } RTW_INFO(" ===> FirmwareDownload88E() fw source from %s.\n", (pFirmware->eFWSource ? "Header" : "File")); switch (pFirmware->eFWSource) { case FW_SOURCE_IMG_FILE: #ifdef CONFIG_FILE_FWIMG rtStatus = rtw_retrieve_from_file(fwfilepath, FwBuffer, FW_SIZE_8192E); pFirmware->ulFwLength = rtStatus >= 0 ? rtStatus : 0; pFirmware->szFwBuffer = FwBuffer; #endif break; case FW_SOURCE_HEADER_FILE: if (bUsedWoWLANFw) { #ifdef CONFIG_WOWLAN if (pwrpriv->wowlan_mode) { pFirmware->szFwBuffer = array_mp_8192e_fw_wowlan; pFirmware->ulFwLength = array_length_mp_8192e_fw_wowlan; RTW_INFO("%s fw:%s, size: %d\n", __FUNCTION__, "WoWLAN", pFirmware->ulFwLength); } #endif /* CONFIG_WOWLAN */ #ifdef CONFIG_AP_WOWLAN if (pwrpriv->wowlan_ap_mode) { pFirmware->szFwBuffer = array_mp_8192e_fw_ap; pFirmware->ulFwLength = array_length_mp_8192e_fw_ap; RTW_INFO(" ===> %s fw: %s, size: %d\n", __FUNCTION__, "AP_WoWLAN", pFirmware->ulFwLength); } #endif /* CONFIG_AP_WOWLAN */ } else { pFirmware->szFwBuffer = array_mp_8192e_fw_nic; pFirmware->ulFwLength = array_length_mp_8192e_fw_nic; RTW_INFO("%s fw:%s, size: %d\n", __FUNCTION__, "NIC", pFirmware->ulFwLength); } break; } if ((pFirmware->ulFwLength - 32) > FW_SIZE_8192E) { rtStatus = _FAIL; RTW_ERR("Firmware size:%u exceed %u\n", pFirmware->ulFwLength, FW_SIZE_8192E); goto exit; } pFirmwareBuf = pFirmware->szFwBuffer; FirmwareLen = pFirmware->ulFwLength; pFwHdr = (u8 *)pFirmware->szFwBuffer; if (IS_FW_HEADER_EXIST_8192E(pFwHdr)) { /* Shift 32 bytes for FW header */ pFirmwareBuf = pFirmwareBuf + 32; FirmwareLen = FirmwareLen - 32; pHalData->firmware_version = (u16)GET_FIRMWARE_HDR_VERSION_8192E(pFwHdr); pHalData->firmware_sub_version = (u16)GET_FIRMWARE_HDR_SUB_VER_8192E(pFwHdr); pHalData->FirmwareSignature = (u16)GET_FIRMWARE_HDR_SIGNATURE_8192E(pFwHdr); RTW_INFO("%s: fw_ver=%d fw_subver=%d sig=0x%x\n", __FUNCTION__, pHalData->firmware_version, pHalData->firmware_sub_version, pHalData->FirmwareSignature); } else RTW_INFO("%s:FW header check failed .....\n", __FUNCTION__); /* Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, */ /* or it will cause download Fw fail. 2010.02.01. by tynli. */ if (rtw_read8(Adapter, REG_MCUFWDL) & BIT7) { /* 8051 RAM code */ rtw_write8(Adapter, REG_MCUFWDL, 0x00); _8051Reset8192E(Adapter); } _FWDownloadEnable_8192E(Adapter, _TRUE); fwdl_start_time = jiffies; while (!RTW_CANNOT_IO(Adapter) && (write_fw++ < 3 || rtw_get_passing_time_ms(fwdl_start_time) < 500)) { /* reset FWDL chksum */ rtw_write8(Adapter, REG_MCUFWDL, rtw_read8(Adapter, REG_MCUFWDL) | FWDL_ChkSum_rpt); rtStatus = _WriteFW_8192E(Adapter, pFirmwareBuf, FirmwareLen); if (rtStatus != _SUCCESS) continue; rtStatus = polling_fwdl_chksum(Adapter, 5, 50); if (rtStatus == _SUCCESS) break; } _FWDownloadEnable_8192E(Adapter, _FALSE); if (_SUCCESS != rtStatus) goto fwdl_stat; rtStatus = _FWFreeToGo8192E(Adapter, 10, 200); if (_SUCCESS != rtStatus) goto fwdl_stat; fwdl_stat: RTW_INFO("FWDL %s. write_fw:%u, %dms\n" , (rtStatus == _SUCCESS) ? "success" : "fail" , write_fw , rtw_get_passing_time_ms(fwdl_start_time) ); exit: if (pFirmware) rtw_mfree((u8 *)pFirmware, sizeof(RT_FIRMWARE_8192E)); InitializeFirmwareVars8192E(Adapter); return rtStatus; } void InitializeFirmwareVars8192E(PADAPTER padapter) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter); /* Init Fw LPS related. */ pwrpriv->bFwCurrentInPSMode = _FALSE; /* Init H2C counter. by tynli. 2009.12.09. */ pHalData->LastHMEBoxNum = 0; } /* *********************************************************** * Efuse related code * *********************************************************** */ void hal_InitPGData_8192E( IN PADAPTER padapter, IN OUT u8 *PROMContent ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); u32 i; u16 value16; if (_FALSE == pHalData->bautoload_fail_flag) { /* autoload OK. */ if (is_boot_from_eeprom(padapter)) { /* Read all Content from EEPROM or EFUSE. */ for (i = 0; i < HWSET_MAX_SIZE_8192E; i += 2) { /* value16 = EF2Byte(ReadEEprom(pAdapter, (u2Byte) (i>>1))); */ /* *((u16*)(&PROMContent[i])) = value16; */ } } else { /* Read EFUSE real map to shadow. */ EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE); } } else { /* autoload fail */ /* pHalData->AutoloadFailFlag = _TRUE; */ /* update to default value 0xFF */ if (!is_boot_from_eeprom(padapter)) EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE); } #ifdef CONFIG_EFUSE_CONFIG_FILE if (check_phy_efuse_tx_power_info_valid(padapter) == _FALSE) { if (Hal_readPGDataFromConfigFile(padapter) != _SUCCESS) RTW_ERR("invalid phy efuse and read from file fail, will use driver default!!\n"); } #endif } VOID Hal_EfuseParseBTCoexistInfo8192E( IN PADAPTER Adapter, IN pu1Byte hwinfo, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u1Byte tempval; if (!AutoLoadFail) { tempval = hwinfo[EEPROM_RF_BOARD_OPTION_8192E]; if (((tempval & 0xe0) >> 5) == 0x1) /* [7:5] */ pHalData->EEPROMBluetoothCoexist = 1; else pHalData->EEPROMBluetoothCoexist = 0; pHalData->EEPROMBluetoothType = BT_RTL8192E; tempval = hwinfo[EEPROM_RF_BT_SETTING_8192E]; /* pHalData->EEPROMBluetoothAntNum = (tempval&0x1); */ /* bit [0] */ pHalData->EEPROMBluetoothAntNum = Ant_x2; } else { pHalData->EEPROMBluetoothCoexist = 1; pHalData->EEPROMBluetoothType = BT_RTL8192E; pHalData->EEPROMBluetoothAntNum = Ant_x2; } #ifdef CONFIG_BT_COEXIST if (1 == pHalData->EEPROMBluetoothCoexist) { #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE if (!hal_btcoex_AntIsolationConfig_ParaFile(Adapter , PHY_FILE_WIFI_ANT_ISOLATION)) #endif hal_btcoex_SetAntIsolationType(Adapter, 0); } RTW_INFO("%s: %s BT-coex, wifi ant_num=%d\n", __FUNCTION__, pHalData->EEPROMBluetoothCoexist == _TRUE ? "Enable" : "Disable", pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1); #endif /* CONFIG_BT_COEXIST */ } void Hal_EfuseParseIDCode8192E( IN PADAPTER padapter, IN u8 *hwinfo ) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); u16 EEPROMId; /* Checl 0x8129 again for making sure autoload status!! */ EEPROMId = le16_to_cpu(*((u16 *)hwinfo)); if (EEPROMId != RTL_EEPROM_ID) { RTW_INFO("EEPROM ID(%#x) is invalid!!\n", EEPROMId); pHalData->bautoload_fail_flag = _TRUE; } else pHalData->bautoload_fail_flag = _FALSE; RTW_INFO("EEPROM ID=0x%04x\n", EEPROMId); } VOID Hal_ReadPROMVersion8192E( IN PADAPTER Adapter, IN u8 *PROMContent, IN BOOLEAN AutoloadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); if (AutoloadFail) pHalData->EEPROMVersion = EEPROM_Default_Version; else { pHalData->EEPROMVersion = *(u8 *)&PROMContent[EEPROM_VERSION_8192E]; if (pHalData->EEPROMVersion == 0xFF) pHalData->EEPROMVersion = EEPROM_Default_Version; } /* RTW_INFO("pHalData->EEPROMVersion is 0x%x\n", pHalData->EEPROMVersion); */ } void Hal_ReadPowerSavingMode8192E( PADAPTER padapter, IN u8 *hwinfo, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter); u8 tmpvalue; if (AutoLoadFail) { pwrctl->bHWPowerdown = _FALSE; pwrctl->bSupportRemoteWakeup = _FALSE; } else { /* hw power down mode selection , 0:rf-off / 1:power down */ if (padapter->registrypriv.hwpdn_mode == 2) pwrctl->bHWPowerdown = (hwinfo[EEPROM_RF_FEATURE_OPTION_8192E] & BIT4); else pwrctl->bHWPowerdown = padapter->registrypriv.hwpdn_mode; /* decide hw if support remote wakeup function */ /* if hw supported, 8051 (SIE) will generate WeakUP signal( D+/D- toggle) when autoresume */ #ifdef CONFIG_USB_HCI pwrctl->bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0] & BIT1) ? _TRUE : _FALSE; #endif /* CONFIG_USB_HCI */ RTW_INFO("%s...bHWPwrPindetect(%x)-bHWPowerdown(%x) ,bSupportRemoteWakeup(%x)\n", __FUNCTION__, pwrctl->bHWPwrPindetect, pwrctl->bHWPowerdown, pwrctl->bSupportRemoteWakeup); RTW_INFO("### PS params=> power_mgnt(%x),usbss_enable(%x) ###\n", padapter->registrypriv.power_mgnt, padapter->registrypriv.usbss_enable); } } void Hal_ReadTxPowerInfo8192E( IN PADAPTER Adapter, IN u8 *PROMContent, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); TxPowerInfo24G pwrInfo24G; hal_load_txpwr_info(Adapter, &pwrInfo24G, NULL, PROMContent); /* 2010/10/19 MH Add Regulator recognize for CU. */ if (!AutoLoadFail) { struct registry_priv *registry_par = &Adapter->registrypriv; if (PROMContent[EEPROM_RF_BOARD_OPTION_8192E] == 0xFF) pHalData->EEPROMRegulatory = 2; /* (EEPROM_DEFAULT_BOARD_OPTION&0x7); */ /* bit0~2 */ else pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8192E] & 0x7); /* bit0~2 */ } else pHalData->EEPROMRegulatory = 0; RTW_INFO("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory); } VOID Hal_ReadBoardType8192E( IN PADAPTER Adapter, IN u8 *PROMContent, IN BOOLEAN AutoloadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 board_type; /* Bit[7:5]: Board Type (PCIe) 0h: WiFi solo-mCard 1h: WiFi+BT combo-mCard */ if (!AutoloadFail) { board_type = (PROMContent[EEPROM_RF_BOARD_OPTION_8192E] & 0xE0) >> 5; if (PROMContent[EEPROM_RF_BOARD_OPTION_8192E] == 0xFF) pHalData->InterfaceSel = INTF_SEL0_USB ; else pHalData->InterfaceSel = (board_type == 1) ? INTF_SEL4_USB_Combo : INTF_SEL0_USB; } else pHalData->InterfaceSel = 0; /* RTW_INFO("Board Type: 0x%2x\n", pHalData->InterfaceSel); */ if (pHalData->InterfaceSel == INTF_SEL4_USB_Combo) RTW_INFO("Board Type: Combo Card\n"); else RTW_INFO("Board Type: Dongle or WIFI only Module\n"); } VOID Hal_ReadThermalMeter_8192E( IN PADAPTER Adapter, IN u8 *PROMContent, IN BOOLEAN AutoloadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); /* u8 tempval; */ /* */ /* ThermalMeter from EEPROM */ /* */ if (!AutoloadFail) pHalData->eeprom_thermal_meter = PROMContent[EEPROM_THERMAL_METER_8192E]; else pHalData->eeprom_thermal_meter = EEPROM_Default_ThermalMeter_8192E; /* pHalData->eeprom_thermal_meter = (tempval&0x1f); */ /* [4:0] */ if (pHalData->eeprom_thermal_meter == 0xff || AutoloadFail) { pHalData->odmpriv.rf_calibrate_info.is_apk_thermal_meter_ignore = _TRUE; pHalData->eeprom_thermal_meter = EEPROM_Default_ThermalMeter_8192E; } /* pHalData->ThermalMeter[0] = pHalData->eeprom_thermal_meter; */ RTW_INFO("ThermalMeter = 0x%x\n", pHalData->eeprom_thermal_meter); } VOID Hal_ReadChannelPlan8192E( IN PADAPTER padapter, IN u8 *hwinfo, IN BOOLEAN AutoLoadFail ) { hal_com_config_channel_plan( padapter , hwinfo ? &hwinfo[EEPROM_COUNTRY_CODE_8192E] : NULL , hwinfo ? hwinfo[EEPROM_ChannelPlan_8192E] : 0xFF , padapter->registrypriv.alpha2 , padapter->registrypriv.channel_plan , RTW_CHPLAN_WORLD_NULL , AutoLoadFail ); } VOID Hal_EfuseParseXtal_8192E( IN PADAPTER pAdapter, IN u8 *hwinfo, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); if (!AutoLoadFail) { pHalData->crystal_cap = hwinfo[EEPROM_XTAL_8192E]; if (pHalData->crystal_cap == 0xFF) pHalData->crystal_cap = EEPROM_Default_CrystalCap_8192E; /* what value should 8812 set? */ } else pHalData->crystal_cap = EEPROM_Default_CrystalCap_8192E; RTW_INFO("crystal_cap: 0x%2x\n", pHalData->crystal_cap); } VOID Hal_ReadAntennaDiversity8192E( IN PADAPTER pAdapter, IN u8 *PROMContent, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); pHalData->AntDivCfg = 0; RTW_INFO("SWAS: bHwAntDiv = %x, TRxAntDivType = %x\n", pHalData->AntDivCfg, pHalData->TRxAntDivType); } VOID Hal_ReadPAType_8192E( IN PADAPTER Adapter, IN u8 *PROMContent, IN BOOLEAN AutoloadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 PA_LNAType_2G = 0; if (!AutoloadFail) { if (GetRegAmplifierType2G(Adapter) == 0) { /* AUTO*/ /* PA & LNA Type */ PA_LNAType_2G = LE_BITS_TO_1BYTE(&PROMContent[EEPROM_RFE_OPTION_8192E], 2, 2); /* 0xCA[3:2] */ /* ePA/eLNA sel.(ePA+eLNA=0x0, ePA+iLNA enable = 0x1, iPA+eLNA enable =0x2, iPA+iLNA=0x3) */ switch (PA_LNAType_2G) { case 0: pHalData->ExternalPA_2G = 1; pHalData->ExternalLNA_2G = 1; break; case 1: pHalData->ExternalPA_2G = 1; pHalData->ExternalLNA_2G = 0; break; case 2: pHalData->ExternalPA_2G = 0; pHalData->ExternalLNA_2G = 1; break; case 3: default: pHalData->ExternalPA_2G = 0; pHalData->ExternalLNA_2G = 0; break; } } else { pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_PA) ? 1 : 0; pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_LNA) ? 1 : 0; } #if 0 if (GetRegAmplifierType5G(Adapter) == 0) { /* AUTO */ pHalData->external_pa_5g = ((pHalData->PAType_5G & BIT1) && (pHalData->PAType_5G & BIT0)) ? 1 : 0; pHalData->external_lna_5g = ((pHalData->LNAType_5G & BIT7) && (pHalData->LNAType_5G & BIT3)) ? 1 : 0; /* 5G only now. */ } else { pHalData->external_pa_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_PA_5G) ? 1 : 0; pHalData->external_lna_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_LNA_5G) ? 1 : 0; } #endif } else { pHalData->ExternalPA_2G = EEPROM_Default_PAType; pHalData->external_pa_5g = EEPROM_Default_PAType; pHalData->ExternalLNA_2G = EEPROM_Default_LNAType; pHalData->external_lna_5g = EEPROM_Default_LNAType; if (GetRegAmplifierType2G(Adapter) == 0) { /* AUTO*/ pHalData->ExternalPA_2G = EEPROM_Default_PAType; pHalData->ExternalLNA_2G = EEPROM_Default_LNAType; } else { pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_PA) ? 1 : 0; pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_LNA) ? 1 : 0; } #if 0 if (GetRegAmplifierType5G(Adapter) == 0) { /* AUTO */ pHalData->external_pa_5g = 0; pHalData->external_lna_5g = 0; } else { pHalData->external_pa_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_PA_5G) ? 1 : 0; pHalData->external_lna_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_LNA_5G) ? 1 : 0; } #endif } RTW_INFO("pHalData->ExternalPA_2G = %d , pHalData->ExternalLNA_2G = %d\n", pHalData->ExternalPA_2G, pHalData->ExternalLNA_2G); } VOID Hal_ReadAmplifierType_8192E( IN PADAPTER Adapter, IN pu1Byte PROMContent, IN BOOLEAN AutoloadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 GLNA_type = 0; if (!AutoloadFail) { if (GetRegGLNAType(Adapter) == 0) /* AUTO */ GLNA_type = LE_BITS_TO_1BYTE(&PROMContent[EEPROM_RFE_OPTION_8192E], 4, 3); /* 0xCA[6:4] */ else GLNA_type = GetRegGLNAType(Adapter) & 0x7; } else { if (GetRegGLNAType(Adapter) == 0) /* AUTO */ GLNA_type = 0; else GLNA_type = GetRegGLNAType(Adapter) & 0x7; } /* Ext-LNA Gain sel.(form 10dB to 24dB, 1table/2dB,ext: 000=10dB, 001=12dB...) */ switch (GLNA_type) { case 2: pHalData->TypeGLNA = 0xf; /* (14dB) */ break; case 3: pHalData->TypeGLNA = 0xa; /* (16dB) */ break; case 4: pHalData->TypeGLNA = 0x5;/* (18dB) */ break; case 6: default: pHalData->TypeGLNA = 0x0;/* (22dB) */ break; } RTW_INFO("pHalData->TypeGLNA is 0x%x\n", pHalData->TypeGLNA); } VOID Hal_ReadRFEType_8192E( IN PADAPTER Adapter, IN pu1Byte PROMContent, IN BOOLEAN AutoloadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); if (!AutoloadFail) { if (GetRegRFEType(Adapter) != 64) { pHalData->rfe_type = GetRegRFEType(Adapter); /* Above 3, rfe_type is filled the default value. */ if (pHalData->rfe_type > 3) pHalData->rfe_type = EEPROM_DEFAULT_RFE_OPTION_8192E; } else if ((0xFF == PROMContent[EEPROM_RFE_OPTION_8192E]) || ((pHalData->ExternalPA_2G == 0) && (pHalData->ExternalLNA_2G == 0))) pHalData->rfe_type = EEPROM_DEFAULT_RFE_OPTION_8192E; else { /* type 0:0x00 for 92EE/ER_HP RFE control type 1:0x01 for 92EU/ES_HP RFE control type 2:0x10 for 92EU/ES_HP_COMBO RFE control type 3:0x11 for 92EE_HP_COMBO RFE control */ pHalData->rfe_type = PROMContent[EEPROM_RFE_OPTION_8192E] & 0x3; /* 0xCA[1:0] */ } } else { if (GetRegRFEType(Adapter) != 64) { pHalData->rfe_type = GetRegRFEType(Adapter); /* Above 3, rfe_type is filled the default value. */ if (pHalData->rfe_type > 3) pHalData->rfe_type = EEPROM_DEFAULT_RFE_OPTION_8192E; } else pHalData->rfe_type = EEPROM_DEFAULT_RFE_OPTION_8192E; } RTW_INFO("pHalData->rfe_type is 0x%x\n", pHalData->rfe_type); } void Hal_EfuseParseKFreeData_8192E( IN PADAPTER Adapter, IN u8 *PROMContent, IN BOOLEAN AutoloadFail) { #ifdef CONFIG_RF_POWER_TRIM HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct kfree_data_t *kfree_data = &pHalData->kfree_data; u8 Efuse_BB_GAIN; u8 pg_pwrtrim = 0xFF, pg_therm = 0xFF; if ((Adapter->registrypriv.RegPwrTrimEnable == 1) || !AutoloadFail) { efuse_OneByteRead(Adapter, PPG_BB_GAIN_2G_TXA_OFFSET_8192E, &pg_pwrtrim, _FALSE); efuse_OneByteRead(Adapter, PPG_THERMAL_OFFSET_8192E, &pg_therm, _FALSE); kfree_data->bb_gain[BB_GAIN_2G][RF_PATH_A] = KFREE_BB_GAIN_2G_TX_OFFSET(pg_pwrtrim & PPG_BB_GAIN_2G_TX_OFFSET_MASK); kfree_data->bb_gain[BB_GAIN_2G][RF_PATH_B] = KFREE_BB_GAIN_2G_TX_OFFSET(pg_pwrtrim & PPG_BB_GAIN_2G_TXB_OFFSET_MASK >> 4); kfree_data->thermal = KFREE_THERMAL_OFFSET(pg_therm & PPG_THERMAL_OFFSET_MASK); if (GET_PG_KFREE_ON_8192E(PROMContent) && PROMContent[0xc1] != 0xff) kfree_data->flag |= KFREE_FLAG_ON; if (GET_PG_KFREE_THERMAL_K_ON_8192E(PROMContent) && PROMContent[0xc8] != 0xff) kfree_data->flag |= KFREE_FLAG_THERMAL_K_ON; } if (Adapter->registrypriv.RegPwrTrimEnable == 1) { kfree_data->flag |= KFREE_FLAG_ON; kfree_data->flag |= KFREE_FLAG_THERMAL_K_ON; } if (kfree_data->flag & KFREE_FLAG_THERMAL_K_ON) pHalData->eeprom_thermal_meter += kfree_data->thermal; RTW_INFO("kfree flag:%u\n", kfree_data->flag); if (Adapter->registrypriv.RegPwrTrimEnable == 1 || kfree_data->flag & KFREE_FLAG_ON) RTW_INFO("bb_gain A:%d\n", kfree_data->bb_gain[BB_GAIN_2G][RF_PATH_A]); if (Adapter->registrypriv.RegPwrTrimEnable == 1 || kfree_data->flag & KFREE_FLAG_ON) RTW_INFO("bb_gain B:%d\n", kfree_data->bb_gain[BB_GAIN_2G][RF_PATH_B]); if (Adapter->registrypriv.RegPwrTrimEnable == 1 || kfree_data->flag & KFREE_FLAG_THERMAL_K_ON) RTW_INFO("thermal:%d\n", kfree_data->thermal); #endif /*CONFIG_RF_POWER_TRIM*/ } enum { VOLTAGE_V25 = 0x03, LDOE25_SHIFT = 28 , }; static VOID Hal_EfusePowerSwitch8192E( IN PADAPTER pAdapter, IN u8 bWrite, IN u8 PwrState) { u8 tempval; u16 tmpV16; u8 EFUSE_ACCESS_ON_8192E = 0x69; u8 EFUSE_ACCESS_OFF_8192E = 0x00; if (PwrState == _TRUE) { rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON_8192E); /* Reset: 0x0000h[28], default valid */ tmpV16 = rtw_read16(pAdapter, REG_SYS_FUNC_EN); if (!(tmpV16 & FEN_ELDR)) { tmpV16 |= FEN_ELDR ; rtw_write16(pAdapter, REG_SYS_FUNC_EN, tmpV16); } /* Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */ tmpV16 = rtw_read16(pAdapter, REG_SYS_CLKR); if ((!(tmpV16 & LOADER_CLK_EN)) || (!(tmpV16 & ANA8M))) { tmpV16 |= (LOADER_CLK_EN | ANA8M) ; rtw_write16(pAdapter, REG_SYS_CLKR, tmpV16); } if (bWrite == _TRUE) { /* Enable LDO 2.5V before read/write action */ tempval = rtw_read8(pAdapter, EFUSE_TEST + 3); tempval &= 0x07; /* 0x34[30:27] = 4��1110 => LDOE25 voltage select to 2.25V Suggested by SD1 Jackie & DD -Tm_lin */ /* tempval |= (VOLTAGE_V25 << 4); */ tempval |= 0x70; rtw_write8(pAdapter, EFUSE_TEST + 3, (tempval | 0x80)); } } else { rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF_8192E); if (bWrite == _TRUE) { /* Disable LDO 2.5V after read/write action */ tempval = rtw_read8(pAdapter, EFUSE_TEST + 3); rtw_write8(pAdapter, EFUSE_TEST + 3, (tempval & 0x7F)); } } } static VOID rtl8192E_EfusePowerSwitch( IN PADAPTER pAdapter, IN u8 bWrite, IN u8 PwrState) { Hal_EfusePowerSwitch8192E(pAdapter, bWrite, PwrState); } static VOID Hal_EfuseReadEFuse8192E( PADAPTER Adapter, u16 _offset, u16 _size_byte, u8 *pbuf, IN BOOLEAN bPseudoTest ) { u8 *efuseTbl = NULL; u8 rtemp8[1]; u16 eFuse_Addr = 0; u8 offset, wren; u16 i, j; u16 **eFuseWord = NULL; u16 efuse_utilized = 0; u8 efuse_usage = 0; u8 u1temp = 0; /* */ /* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */ /* */ if ((_offset + _size_byte) > EFUSE_MAP_LEN_8192E) { /* total E-Fuse table is 512bytes */ RTW_INFO("Hal_EfuseReadEFuse8812A(): Invalid offset(%#x) with read bytes(%#x)!!\n", _offset, _size_byte); goto exit; } efuseTbl = (u8 *)rtw_zmalloc(EFUSE_MAP_LEN_8192E); if (efuseTbl == NULL) { RTW_INFO("%s: alloc efuseTbl fail!\n", __FUNCTION__); goto exit; } eFuseWord = (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_8192E, EFUSE_MAX_WORD_UNIT, 2); if (eFuseWord == NULL) { RTW_INFO("%s: alloc eFuseWord fail!\n", __FUNCTION__); goto exit; } /* 0. Refresh efuse init map as all oxFF. */ for (i = 0; i < EFUSE_MAX_SECTION_8192E; i++) for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) eFuseWord[i][j] = 0xFFFF; /* */ /* 1. Read the first byte to check if efuse is empty!!! */ /* */ /* */ ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); if (*rtemp8 != 0xFF) { efuse_utilized++; /* RTW_INFO("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8); */ eFuse_Addr++; } else { RTW_INFO("EFUSE is empty efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8); goto exit; } /* */ /* 2. Read real efuse content. Filter PG header and every section data. */ /* */ while ((*rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_8192E)) { /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr-1, *rtemp8)); */ /* Check PG header for section num. */ if ((*rtemp8 & 0x1F) == 0x0F) { /* extended header */ u1temp = ((*rtemp8 & 0xE0) >> 5); /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x *rtemp&0xE0 0x%x\n", u1temp, *rtemp8 & 0xE0)); */ /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x\n", u1temp)); */ ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8)); */ if ((*rtemp8 & 0x0F) == 0x0F && (*rtemp8 != 0xFF)) { eFuse_Addr++; ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_8192E)) eFuse_Addr++; continue; } else { if (*rtemp8 == 0xFF) { *rtemp8 = 0x0F; efuse_OneByteWrite(Adapter, eFuse_Addr, *rtemp8, bPseudoTest); continue; } offset = ((*rtemp8 & 0xF0) >> 1) | u1temp; wren = (*rtemp8 & 0x0F); eFuse_Addr++; } } else { offset = ((*rtemp8 >> 4) & 0x0f); wren = (*rtemp8 & 0x0f); } if (offset < EFUSE_MAX_SECTION_8192E) { /* Get word enable value from PG header */ /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Offset-%d Worden=%x\n", offset, wren)); */ for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { /* Check word enable condition in the section */ if (!(wren & 0x01)) { /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d\n", eFuse_Addr)); */ ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); eFuse_Addr++; /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8)); */ efuse_utilized++; eFuseWord[offset][i] = (*rtemp8 & 0xff); if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_8192E) break; /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d", eFuse_Addr)); */ ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); eFuse_Addr++; /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8)); */ efuse_utilized++; eFuseWord[offset][i] |= (((u2Byte)*rtemp8 << 8) & 0xff00); if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_8192E) break; } wren >>= 1; } } else { /* deal with error offset,skip error data */ RTW_PRINT("invalid offset:0x%02x\n", offset); for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { /* Check word enable condition in the section */ if (!(wren & 0x01)) { eFuse_Addr++; efuse_utilized++; if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_8192E) break; eFuse_Addr++; efuse_utilized++; if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_8192E) break; } } } /* Read next PG header */ ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d rtemp 0x%x\n", eFuse_Addr, *rtemp8)); */ if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_8192E)) { efuse_utilized++; eFuse_Addr++; } } /* */ /* 3. Collect 16 sections and 4 word unit into Efuse map. */ /* */ for (i = 0; i < EFUSE_MAX_SECTION_8192E; i++) { for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) { efuseTbl[(i * 8) + (j * 2)] = (eFuseWord[i][j] & 0xff); efuseTbl[(i * 8) + ((j * 2) + 1)] = ((eFuseWord[i][j] >> 8) & 0xff); } } /* */ /* 4. Copy from Efuse map to output pointer memory!!! */ /* */ for (i = 0; i < _size_byte; i++) pbuf[i] = efuseTbl[_offset + i]; /* */ /* 5. Calculate Efuse utilization. */ /* */ efuse_usage = (u1Byte)((eFuse_Addr * 100) / EFUSE_REAL_CONTENT_LEN_8192E); rtw_hal_set_hwreg(Adapter, HW_VAR_EFUSE_BYTES, (u8 *)&eFuse_Addr); exit: if (efuseTbl) rtw_mfree(efuseTbl, EFUSE_MAP_LEN_8192E); kfree(eFuseWord); } static VOID rtl8192E_ReadEFuse( PADAPTER Adapter, u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf, IN BOOLEAN bPseudoTest ) { Hal_EfuseReadEFuse8192E(Adapter, _offset, _size_byte, pbuf, bPseudoTest); } /* Do not support BT */ VOID Hal_EFUSEGetEfuseDefinition8192E( IN PADAPTER pAdapter, IN u1Byte efuseType, IN u1Byte type, OUT PVOID pOut ) { switch (type) { case TYPE_EFUSE_MAX_SECTION: { pu1Byte pMax_section; pMax_section = (pu1Byte)pOut; if (efuseType == EFUSE_WIFI) *pMax_section = EFUSE_MAX_SECTION_8192E; else *pMax_section = EFUSE_BT_MAX_SECTION_8192E; } break; case TYPE_EFUSE_REAL_CONTENT_LEN: { pu2Byte pu2Tmp; pu2Tmp = (pu2Byte)pOut; if (efuseType == EFUSE_WIFI) *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8192E; else *pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN_8192E; } break; case TYPE_EFUSE_CONTENT_LEN_BANK: { pu2Byte pu2Tmp; pu2Tmp = (pu2Byte)pOut; if (efuseType == EFUSE_WIFI) *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8192E; else *pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN_8192E; } break; case TYPE_AVAILABLE_EFUSE_BYTES_BANK: { pu2Byte pu2Tmp; pu2Tmp = (pu2Byte)pOut; if (efuseType == EFUSE_WIFI) *pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E); else *pu2Tmp = (u2Byte)(EFUSE_BT_REAL_BANK_CONTENT_LEN_8192E-EFUSE_PROTECT_BYTES_BANK_8192E); } break; case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL: { pu2Byte pu2Tmp; pu2Tmp = (pu2Byte)pOut; if (efuseType == EFUSE_WIFI) *pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E); else *pu2Tmp = (u2Byte)(EFUSE_BT_REAL_CONTENT_LEN_8192E-(EFUSE_PROTECT_BYTES_BANK_8192E * 3)); } break; case TYPE_EFUSE_MAP_LEN: { pu2Byte pu2Tmp; pu2Tmp = (pu2Byte)pOut; if (efuseType == EFUSE_WIFI) *pu2Tmp = (u2Byte)EFUSE_MAP_LEN_8192E; else *pu2Tmp = (u2Byte)EFUSE_BT_MAP_LEN_8192E; } break; case TYPE_EFUSE_PROTECT_BYTES_BANK: { pu1Byte pu1Tmp; pu1Tmp = (pu1Byte)pOut; if (efuseType == EFUSE_WIFI) *pu1Tmp = (u1Byte)(EFUSE_OOB_PROTECT_BYTES_8192E); else *pu1Tmp = (u1Byte)(EFUSE_PROTECT_BYTES_BANK_8192E); } break; default: { pu1Byte pu1Tmp; pu1Tmp = (pu1Byte)pOut; *pu1Tmp = 0; } break; } } VOID Hal_EFUSEGetEfuseDefinition_Pseudo8192E( IN PADAPTER pAdapter, IN u8 efuseType, IN u8 type, OUT PVOID pOut ) { switch (type) { case TYPE_EFUSE_MAX_SECTION: { pu1Byte pMax_section; pMax_section = (pu1Byte)pOut; if (efuseType == EFUSE_WIFI) *pMax_section = EFUSE_MAX_SECTION_8192E; else *pMax_section = EFUSE_BT_MAX_SECTION_8192E; } break; case TYPE_EFUSE_REAL_CONTENT_LEN: { pu2Byte pu2Tmp; pu2Tmp = (pu2Byte)pOut; if (efuseType == EFUSE_WIFI) *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8192E; else *pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN_8192E; } break; case TYPE_EFUSE_CONTENT_LEN_BANK: { pu2Byte pu2Tmp; pu2Tmp = (pu2Byte)pOut; if (efuseType == EFUSE_WIFI) *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8192E; else *pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN_8192E; } break; case TYPE_AVAILABLE_EFUSE_BYTES_BANK: { pu2Byte pu2Tmp; pu2Tmp = (pu2Byte)pOut; if (efuseType == EFUSE_WIFI) *pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E); else *pu2Tmp = (u2Byte)(EFUSE_BT_REAL_BANK_CONTENT_LEN_8192E-EFUSE_PROTECT_BYTES_BANK_8192E); } break; case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL: { pu2Byte pu2Tmp; pu2Tmp = (pu2Byte)pOut; if (efuseType == EFUSE_WIFI) *pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E); else *pu2Tmp = (u2Byte)(EFUSE_BT_REAL_CONTENT_LEN_8192E-(EFUSE_PROTECT_BYTES_BANK_8192E * 3)); } break; case TYPE_EFUSE_MAP_LEN: { pu2Byte pu2Tmp; pu2Tmp = (pu2Byte)pOut; if (efuseType == EFUSE_WIFI) *pu2Tmp = (u2Byte)EFUSE_MAP_LEN_8192E; else *pu2Tmp = (u2Byte)EFUSE_BT_MAP_LEN_8192E; } break; case TYPE_EFUSE_PROTECT_BYTES_BANK: { pu1Byte pu1Tmp; pu1Tmp = (pu1Byte)pOut; if (efuseType == EFUSE_WIFI) *pu1Tmp = (u1Byte)(EFUSE_OOB_PROTECT_BYTES_8192E); else *pu1Tmp = (u1Byte)(EFUSE_PROTECT_BYTES_BANK_8192E); } break; default: { pu1Byte pu1Tmp; pu1Tmp = (pu1Byte)pOut; *pu1Tmp = 0; } break; } } static VOID rtl8192E_EFUSE_GetEfuseDefinition( IN PADAPTER pAdapter, IN u8 efuseType, IN u8 type, OUT void *pOut, IN BOOLEAN bPseudoTest ) { if (bPseudoTest) Hal_EFUSEGetEfuseDefinition_Pseudo8192E(pAdapter, efuseType, type, pOut); else Hal_EFUSEGetEfuseDefinition8192E(pAdapter, efuseType, type, pOut); } static u8 Hal_EfuseWordEnableDataWrite8192E(IN PADAPTER pAdapter, IN u16 efuse_addr, IN u8 word_en, IN u8 *data, IN BOOLEAN bPseudoTest) { u16 tmpaddr = 0; u16 start_addr = efuse_addr; u8 badworden = 0x0F; u8 tmpdata[8]; memset((PVOID)tmpdata, 0xff, PGPKT_DATA_SIZE); if (!(word_en & BIT0)) { tmpaddr = start_addr; efuse_OneByteWrite(pAdapter, start_addr++, data[0], bPseudoTest); efuse_OneByteWrite(pAdapter, start_addr++, data[1], bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[0], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[1], bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) badworden &= (~BIT0); } if (!(word_en & BIT1)) { tmpaddr = start_addr; efuse_OneByteWrite(pAdapter, start_addr++, data[2], bPseudoTest); efuse_OneByteWrite(pAdapter, start_addr++, data[3], bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); efuse_OneByteRead(pAdapter, tmpaddr , &tmpdata[2], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[3], bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) badworden &= (~BIT1); } if (!(word_en & BIT2)) { tmpaddr = start_addr; efuse_OneByteWrite(pAdapter, start_addr++, data[4], bPseudoTest); efuse_OneByteWrite(pAdapter, start_addr++, data[5], bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[4], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[5], bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) badworden &= (~BIT2); } if (!(word_en & BIT3)) { tmpaddr = start_addr; efuse_OneByteWrite(pAdapter, start_addr++, data[6], bPseudoTest); efuse_OneByteWrite(pAdapter, start_addr++, data[7], bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[6], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[7], bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) badworden &= (~BIT3); } return badworden; } static u8 rtl8192E_Efuse_WordEnableDataWrite(IN PADAPTER pAdapter, IN u16 efuse_addr, IN u8 word_en, IN u8 *data, IN BOOLEAN bPseudoTest) { u8 ret = 0; ret = Hal_EfuseWordEnableDataWrite8192E(pAdapter, efuse_addr, word_en, data, bPseudoTest); return ret; } static u16 hal_EfuseGetCurrentSize_8192E(IN PADAPTER pAdapter, IN BOOLEAN bPseudoTest) { int bContinual = _TRUE; u16 efuse_addr = 0; u8 hoffset = 0, hworden = 0; u8 efuse_data, word_cnts = 0; if (bPseudoTest) efuse_addr = (u16)(fakeEfuseUsedBytes); else rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr); /* RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), start_efuse_addr = %d\n", efuse_addr)); */ while (bContinual && efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest) && (efuse_addr < EFUSE_REAL_CONTENT_LEN_8192E)) { if (efuse_data != 0xFF) { if ((efuse_data & 0x1F) == 0x0F) { /* extended header */ hoffset = efuse_data; efuse_addr++; efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest); if ((efuse_data & 0x0F) == 0x0F && (efuse_data != 0xFF)) { efuse_addr++; continue; } else { hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); hworden = efuse_data & 0x0F; } } else { hoffset = (efuse_data >> 4) & 0x0F; hworden = efuse_data & 0x0F; } word_cnts = Efuse_CalculateWordCnts(hworden); /* read next header */ efuse_addr = efuse_addr + (word_cnts * 2) + 1; } else bContinual = _FALSE ; } if (bPseudoTest) { fakeEfuseUsedBytes = efuse_addr; /* RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), return %d\n", fakeEfuseUsedBytes)); */ } else { rtw_hal_set_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr); RTW_INFO("%s(), return %d\n", __func__, efuse_addr); } return efuse_addr; } static u16 rtl8192E_EfuseGetCurrentSize( IN PADAPTER pAdapter, IN u8 efuseType, IN BOOLEAN bPseudoTest) { u16 ret = 0; ret = hal_EfuseGetCurrentSize_8192E(pAdapter, bPseudoTest); return ret; } static int hal_EfusePgPacketRead_8192E( IN PADAPTER pAdapter, IN u8 offset, IN u8 *data, IN BOOLEAN bPseudoTest) { u8 ReadState = PG_STATE_HEADER; int bContinual = _TRUE; int bDataEmpty = _TRUE ; u8 efuse_data, word_cnts = 0; u16 efuse_addr = 0; u8 hoffset = 0, hworden = 0; u8 tmpidx = 0; u8 tmpdata[8]; u8 max_section = 0; u8 tmp_header = 0; if (data == NULL) return _FALSE; if (offset > EFUSE_MAX_SECTION_8192E) return _FALSE; memset((PVOID)data, 0xff, sizeof(u8) * PGPKT_DATA_SIZE); memset((PVOID)tmpdata, 0xff, sizeof(u8) * PGPKT_DATA_SIZE); /* */ /* Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */ /* Skip dummy parts to prevent unexpected data read from Efuse. */ /* By pass right now. 2009.02.19. */ /* */ while (bContinual && (efuse_addr < EFUSE_REAL_CONTENT_LEN_8192E)) { /* ------- Header Read ------------- */ if (ReadState & PG_STATE_HEADER) { if (efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) { if (EXT_HEADER(efuse_data)) { tmp_header = efuse_data; efuse_addr++; efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest); if (!ALL_WORDS_DISABLED(efuse_data)) { hoffset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); hworden = efuse_data & 0x0F; } else { RTW_INFO("Error, All words disabled\n"); efuse_addr++; continue; } } else { hoffset = (efuse_data >> 4) & 0x0F; hworden = efuse_data & 0x0F; } word_cnts = Efuse_CalculateWordCnts(hworden); bDataEmpty = _TRUE ; if (hoffset == offset) { for (tmpidx = 0; tmpidx < word_cnts * 2 ; tmpidx++) { if (efuse_OneByteRead(pAdapter, efuse_addr + 1 + tmpidx , &efuse_data, bPseudoTest)) { tmpdata[tmpidx] = efuse_data; if (efuse_data != 0xff) bDataEmpty = _FALSE; } } if (bDataEmpty == _FALSE) ReadState = PG_STATE_DATA; else { /* read next header */ efuse_addr = efuse_addr + (word_cnts * 2) + 1; ReadState = PG_STATE_HEADER; } } else { /* read next header */ efuse_addr = efuse_addr + (word_cnts * 2) + 1; ReadState = PG_STATE_HEADER; } } else bContinual = _FALSE ; } /* ------- Data section Read ------------- */ else if (ReadState & PG_STATE_DATA) { efuse_WordEnableDataRead(hworden, tmpdata, data); efuse_addr = efuse_addr + (word_cnts * 2) + 1; ReadState = PG_STATE_HEADER; } } if ((data[0] == 0xff) && (data[1] == 0xff) && (data[2] == 0xff) && (data[3] == 0xff) && (data[4] == 0xff) && (data[5] == 0xff) && (data[6] == 0xff) && (data[7] == 0xff)) return _FALSE; else return _TRUE; } static int rtl8192E_Efuse_PgPacketRead(IN PADAPTER pAdapter, IN u8 offset, IN u8 *data, IN BOOLEAN bPseudoTest) { int ret = 0; ret = hal_EfusePgPacketRead_8192E(pAdapter, offset, data, bPseudoTest); return ret; } #if 0 int hal_EfusePgPacketWrite_8192E(IN PADAPTER pAdapter, IN u8 offset, IN u8 word_en, IN u8 *data, IN BOOLEAN bPseudoTest) { u8 WriteState = PG_STATE_HEADER; int bContinual = _TRUE, bDataEmpty = _TRUE; /* int bResult = _TRUE; */ u16 efuse_addr = 0; u8 efuse_data; u8 pg_header = 0, pg_header_temp = 0; u8 tmp_word_cnts = 0, target_word_cnts = 0; u8 tmp_header, match_word_en, tmp_word_en; PGPKT_STRUCT target_pkt; PGPKT_STRUCT tmp_pkt; u8 originaldata[sizeof(u8) * 8]; u8 tmpindex = 0, badworden = 0x0F; static int repeat_times = 0; BOOLEAN bExtendedHeader = _FALSE; u8 efuseType = EFUSE_WIFI; /* */ /* Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */ /* So we have to prevent unexpected data string connection, which will cause */ /* incorrect data auto-load from HW. The total size is equal or smaller than 498bytes */ /* (i.e., offset 0~497, and dummy 1bytes) expected after CP test. */ /* 2009.02.19. */ /* */ if (Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest) >= (EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E)) { RTW_INFO("hal_EfusePgPacketWrite_8812A() error: %x >= %x\n", Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest), (EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E)); return _FALSE; } /* Init the 8 bytes content as 0xff */ target_pkt.offset = offset; target_pkt.word_en = word_en; /* Initial the value to avoid compile warning */ tmp_pkt.offset = 0; tmp_pkt.word_en = 0; /* RTW_INFO("hal_EfusePgPacketWrite_8812A target offset 0x%x word_en 0x%x\n", target_pkt.offset, target_pkt.word_en); */ memset((PVOID)target_pkt.data, 0xFF, sizeof(u8) * 8); efuse_WordEnableDataRead(word_en, data, target_pkt.data); target_word_cnts = Efuse_CalculateWordCnts(target_pkt.word_en); /* efuse_reg_ctrl(pAdapter,_TRUE); */ /* power on */ /* RTW_INFO("EFUSE Power ON\n"); */ /* */ /* Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */ /* So we have to prevent unexpected data string connection, which will cause */ /* incorrect data auto-load from HW. Dummy 1bytes is additional. */ /* 2009.02.19. */ /* */ while (bContinual && (efuse_addr < (EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E))) { if (WriteState == PG_STATE_HEADER) { bDataEmpty = _TRUE; badworden = 0x0F; /* ************ so ******************* */ /* RTW_INFO("EFUSE PG_STATE_HEADER\n"); */ if (efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) { if ((efuse_data & 0x1F) == 0x0F) { /* extended header */ tmp_header = efuse_data; efuse_addr++; efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest); if ((efuse_data & 0x0F) == 0x0F) { /* wren fail */ efuse_addr++; continue; } else { tmp_pkt.offset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); tmp_pkt.word_en = efuse_data & 0x0F; } } else { tmp_header = efuse_data; tmp_pkt.offset = (tmp_header >> 4) & 0x0F; tmp_pkt.word_en = tmp_header & 0x0F; } tmp_word_cnts = Efuse_CalculateWordCnts(tmp_pkt.word_en); /* RTW_INFO("section offset 0x%x worden 0x%x\n", tmp_pkt.offset, tmp_pkt.word_en); */ /* ************ so-1 ******************* */ if (tmp_pkt.offset != target_pkt.offset) { efuse_addr = efuse_addr + (tmp_word_cnts * 2) + 1; /* Next pg_packet */ #if (EFUSE_ERROE_HANDLE == 1) WriteState = PG_STATE_HEADER; #endif } else { /* write the same offset */ /* RTW_INFO("hal_EfusePgPacketWrite_8812A section offset the same\n"); */ /* ************ so-2 ******************* */ for (tmpindex = 0 ; tmpindex < (tmp_word_cnts * 2) ; tmpindex++) { if (efuse_OneByteRead(pAdapter, (efuse_addr + 1 + tmpindex) , &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) bDataEmpty = _FALSE; } /* ************ so-2-1 ******************* */ if (bDataEmpty == _FALSE) { /* RTW_INFO("hal_EfusePgPacketWrite_8812A section offset the same and data is NOT empty\n"); */ efuse_addr = efuse_addr + (tmp_word_cnts * 2) + 1; /* Next pg_packet */ #if (EFUSE_ERROE_HANDLE == 1) WriteState = PG_STATE_HEADER; #endif } else { /* ************ so-2-2 ******************* */ /* RTW_INFO("hal_EfusePgPacketWrite_8812A section data empty\n"); */ match_word_en = 0x0F; /* same bit as original wren */ if (!((target_pkt.word_en & BIT0) | (tmp_pkt.word_en & BIT0))) match_word_en &= (~BIT0); if (!((target_pkt.word_en & BIT1) | (tmp_pkt.word_en & BIT1))) match_word_en &= (~BIT1); if (!((target_pkt.word_en & BIT2) | (tmp_pkt.word_en & BIT2))) match_word_en &= (~BIT2); if (!((target_pkt.word_en & BIT3) | (tmp_pkt.word_en & BIT3))) match_word_en &= (~BIT3); /* ************ so-2-2-A ******************* */ if ((match_word_en & 0x0F) != 0x0F) { badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, tmp_pkt.word_en , target_pkt.data, bPseudoTest); /* ************ so-2-2-A-1 ******************* */ /* ############################ */ if (0x0F != (badworden & 0x0F)) { u8 reorg_offset = offset; u8 reorg_worden = badworden; Efuse_PgPacketWrite(pAdapter, reorg_offset, reorg_worden, target_pkt.data, bPseudoTest); } /* ############################ */ tmp_word_en = 0x0F; /* not the same bit as original wren */ if ((target_pkt.word_en & BIT0) ^ (match_word_en & BIT0)) tmp_word_en &= (~BIT0); if ((target_pkt.word_en & BIT1) ^ (match_word_en & BIT1)) tmp_word_en &= (~BIT1); if ((target_pkt.word_en & BIT2) ^ (match_word_en & BIT2)) tmp_word_en &= (~BIT2); if ((target_pkt.word_en & BIT3) ^ (match_word_en & BIT3)) tmp_word_en &= (~BIT3); /* ************ so-2-2-A-2 ******************* */ if ((tmp_word_en & 0x0F) != 0x0F) { /* reorganize other pg packet * efuse_addr = efuse_addr + (2*tmp_word_cnts) +1; */ /* next pg packet addr */ efuse_addr = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest); /* =========================== */ target_pkt.offset = offset; target_pkt.word_en = tmp_word_en; /* =========================== */ } else bContinual = _FALSE; #if (EFUSE_ERROE_HANDLE == 1) WriteState = PG_STATE_HEADER; repeat_times++; if (repeat_times > EFUSE_REPEAT_THRESHOLD_) { bContinual = _FALSE; /* bResult = _FALSE; */ } #endif } else { /* ************ so-2-2-B ******************* */ /* reorganize other pg packet */ efuse_addr = efuse_addr + (2 * tmp_word_cnts) + 1; /* next pg packet addr */ /* =========================== */ target_pkt.offset = offset; target_pkt.word_en = target_pkt.word_en; /* =========================== */ #if (EFUSE_ERROE_HANDLE == 1) WriteState = PG_STATE_HEADER; #endif } } } RTW_INFO("EFUSE PG_STATE_HEADER-1\n"); } else { /* ************ s1: header == oxff ******************* */ bExtendedHeader = _FALSE; if (target_pkt.offset >= EFUSE_MAX_SECTION_BASE) { pg_header = ((target_pkt.offset & 0x07) << 5) | 0x0F; /* RTW_INFO("hal_EfusePgPacketWrite_8812A extended pg_header[2:0] |0x0F 0x%x\n", pg_header); */ efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); while (tmp_header == 0xFF) { /* RTW_INFO("hal_EfusePgPacketWrite_8812A extended pg_header[2:0] wirte fail\n"); */ repeat_times++; if (repeat_times > EFUSE_REPEAT_THRESHOLD_) { bContinual = _FALSE; /* bResult = _FALSE; */ efuse_addr++; break; } efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); } if (!bContinual) break; if (tmp_header == pg_header) { efuse_addr++; pg_header_temp = pg_header; pg_header = ((target_pkt.offset & 0x78) << 1) | target_pkt.word_en; /* RTW_INFO("hal_EfusePgPacketWrite_8812A extended pg_header[6:3] | worden 0x%x word_en 0x%x\n", pg_header, target_pkt.word_en); */ efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); while (tmp_header == 0xFF) { repeat_times++; if (repeat_times > EFUSE_REPEAT_THRESHOLD_) { bContinual = _FALSE; /* bResult = _FALSE; */ break; } efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); } if (!bContinual) break; if ((tmp_header & 0x0F) == 0x0F) { /* wren PG fail */ repeat_times++; if (repeat_times > EFUSE_REPEAT_THRESHOLD_) { bContinual = _FALSE; /* bResult = _FALSE; */ break; } else { efuse_addr++; continue; } } else if (pg_header != tmp_header) { /* offset PG fail */ bExtendedHeader = _TRUE; tmp_pkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1); tmp_pkt.word_en = tmp_header & 0x0F; tmp_word_cnts = Efuse_CalculateWordCnts(tmp_pkt.word_en); } } else if ((tmp_header & 0x1F) == 0x0F) { /* wrong extended header */ efuse_addr += 2; continue; } } else { pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en; efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); } if (tmp_header == pg_header) { /* ************ s1-1******************* */ WriteState = PG_STATE_DATA; } #if (EFUSE_ERROE_HANDLE == 1) else if (tmp_header == 0xFF) { /* ************ s1-3: if Write or read func doesn't work ******************* */ /* efuse_addr doesn't change */ WriteState = PG_STATE_HEADER; repeat_times++; if (repeat_times > EFUSE_REPEAT_THRESHOLD_) { bContinual = _FALSE; /* bResult = _FALSE; */ } } #endif else { /* ************ s1-2 : fixed the header procedure ******************* */ if (!bExtendedHeader) { tmp_pkt.offset = (tmp_header >> 4) & 0x0F; tmp_pkt.word_en = tmp_header & 0x0F; tmp_word_cnts = Efuse_CalculateWordCnts(tmp_pkt.word_en); } /* ************ s1-2-A :cover the exist data ******************* */ memset(originaldata, 0xff, sizeof(u8) * 8); if (Efuse_PgPacketRead(pAdapter, tmp_pkt.offset, originaldata, bPseudoTest)) { /* check if data exist */ /* efuse_reg_ctrl(pAdapter,_TRUE); */ /* power on */ badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, tmp_pkt.word_en, originaldata, bPseudoTest); /* ############################ */ if (0x0F != (badworden & 0x0F)) { u8 reorg_offset = tmp_pkt.offset; u8 reorg_worden = badworden; Efuse_PgPacketWrite(pAdapter, reorg_offset, reorg_worden, originaldata, bPseudoTest); efuse_addr = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest); } /* ############################ */ else { efuse_addr = efuse_addr + (tmp_word_cnts * 2) + 1; /* Next pg_packet */ } } /* ************ s1-2-B: wrong address******************* */ else { efuse_addr = efuse_addr + (tmp_word_cnts * 2) + 1; /* Next pg_packet */ } #if (EFUSE_ERROE_HANDLE == 1) WriteState = PG_STATE_HEADER; repeat_times++; if (repeat_times > EFUSE_REPEAT_THRESHOLD_) { bContinual = _FALSE; /* bResult = _FALSE; */ } #endif /* RTW_INFO("EFUSE PG_STATE_HEADER-2\n"); */ } } } /* write data state */ else if (WriteState == PG_STATE_DATA) { /* ************ s1-1 ******************* */ /* RTW_INFO("EFUSE PG_STATE_DATA\n"); */ badworden = 0x0f; badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, target_pkt.word_en, target_pkt.data, bPseudoTest); if ((badworden & 0x0F) == 0x0F) { /* ************ s1-1-A ******************* */ bContinual = _FALSE; } else { /* reorganize other pg packet */ /* ************ s1-1-B ******************* */ efuse_addr = efuse_addr + (2 * target_word_cnts) + 1; /* next pg packet addr */ /* =========================== */ target_pkt.offset = offset; target_pkt.word_en = badworden; target_word_cnts = Efuse_CalculateWordCnts(target_pkt.word_en); /* =========================== */ #if (EFUSE_ERROE_HANDLE == 1) WriteState = PG_STATE_HEADER; repeat_times++; if (repeat_times > EFUSE_REPEAT_THRESHOLD_) { bContinual = _FALSE; /* bResult = _FALSE; */ } #endif /* RTW_INFO("EFUSE PG_STATE_HEADER-3\n"); */ } } } if (efuse_addr >= (EFUSE_REAL_CONTENT_LEN_8192E-EFUSE_OOB_PROTECT_BYTES_8192E)) RTW_INFO("hal_EfusePgPacketWrite_8812A(): efuse_addr(%#x) Out of size!!\n", efuse_addr); /* efuse_reg_ctrl(pAdapter,_FALSE); */ /* power off */ return _TRUE; } #else BOOLEAN efuse_PgPacketCheck( PADAPTER pAdapter, u8 efuseType, BOOLEAN bPseudoTest ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); if (Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest) >= (EFUSE_REAL_CONTENT_LEN_8192E - EFUSE_OOB_PROTECT_BYTES_8192E)) { RTW_INFO("%s()error: %x >= %x\n", __func__, Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest), (EFUSE_REAL_CONTENT_LEN_8192E - EFUSE_OOB_PROTECT_BYTES_8192E)); return _FALSE; } return _TRUE; } VOID efuse_PgPacketConstruct( IN u8 offset, IN u8 word_en, IN u8 *pData, IN OUT PPGPKT_STRUCT pTargetPkt ) { memset((PVOID)pTargetPkt->data, 0xFF, sizeof(u8) * 8); pTargetPkt->offset = offset; pTargetPkt->word_en = word_en; efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data); pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en); RTW_INFO("efuse_PgPacketConstruct(), targetPkt, offset=%d, word_en=0x%x, word_cnts=%d\n", pTargetPkt->offset, pTargetPkt->word_en, pTargetPkt->word_cnts); } u2Byte Hal_EfusePgPacketExceptionHandle_8192E( PADAPTER pAdapter, u2Byte ErrOffset ) { BOOLEAN bPseudoTest = FALSE; u8 next = 0, next_next = 0, data = 0, i = 0, header = 0; u8 s = 0; u2Byte offset = ErrOffset; efuse_OneByteRead(pAdapter, offset, &header, bPseudoTest); if (EXT_HEADER(header)) { s = ((header & 0xF0) >> 4); /* Skip bad word enable to look two bytes ahead and determine if recoverable.*/ offset += 1; efuse_OneByteRead(pAdapter, offset+1, &next, bPseudoTest); efuse_OneByteRead(pAdapter, offset+2, &next_next, bPseudoTest); if (next == 0xFF && next_next == 0xFF) {/* Have enough space to make fake data to recover bad header.*/ switch (s) { case 0x0: case 0x2: case 0x4: case 0x6: case 0x8: case 0xA: case 0xC: for (i = 0; i < 3; ++i) { efuse_OneByteWrite(pAdapter, offset, 0x27, bPseudoTest); efuse_OneByteRead(pAdapter, offset, &data, bPseudoTest); if (data == 0x27) break; } break; case 0xE: for (i = 0; i < 3; ++i) { efuse_OneByteWrite(pAdapter, offset, 0x17, bPseudoTest); efuse_OneByteRead(pAdapter, offset, &data, bPseudoTest); if (data == 0x17) break; break; default: break; } efuse_OneByteWrite(pAdapter, offset+1, 0xFF, bPseudoTest); efuse_OneByteWrite(pAdapter, offset+2, 0xFF, bPseudoTest); offset += 3; ErrOffset = offset; } } else {/* 1-Byte header*/ if (ALL_WORDS_DISABLED(header)) { u8 next = 0; efuse_OneByteRead(pAdapter, offset+1, &next, bPseudoTest); if (next == 0xFF) {/* Have enough space to make fake data to recover bad header.*/ header = (header & 0xF0) | 0x7; for (i = 0; i < 3; ++i) { efuse_OneByteWrite(pAdapter, offset, header, bPseudoTest); efuse_OneByteRead(pAdapter, offset, &data, bPseudoTest); if (data == header) break; } efuse_OneByteWrite(pAdapter, offset+1, 0xFF, bPseudoTest); efuse_OneByteWrite(pAdapter, offset+2, 0xFF, bPseudoTest); offset += 2; ErrOffset = offset; } } } } return ErrOffset; } BOOLEAN hal_EfuseCheckIfDatafollowed( IN PADAPTER pAdapter, IN u8 word_cnts, IN u16 startAddr, IN BOOLEAN bPseudoTest ) { BOOLEAN bRet = FALSE; u8 i, efuse_data; for (i = 0; i < (word_cnts * 2) ; i++) { if (efuse_OneByteRead(pAdapter, (startAddr + i), &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) bRet = TRUE; } return bRet; } BOOLEAN hal_EfuseWordEnMatched( IN PPGPKT_STRUCT pTargetPkt, IN PPGPKT_STRUCT pCurPkt, IN u8 *pWden ) { u8 match_word_en = 0x0F; /* default all words are disabled */ /* check if the same words are enabled both target and current PG packet */ if (((pTargetPkt->word_en & BIT0) == 0) && ((pCurPkt->word_en & BIT0) == 0)) { match_word_en &= ~BIT0; /* enable word 0 */ } if (((pTargetPkt->word_en & BIT1) == 0) && ((pCurPkt->word_en & BIT1) == 0)) { match_word_en &= ~BIT1; /* enable word 1 */ } if (((pTargetPkt->word_en & BIT2) == 0) && ((pCurPkt->word_en & BIT2) == 0)) { match_word_en &= ~BIT2; /* enable word 2 */ } if (((pTargetPkt->word_en & BIT3) == 0) && ((pCurPkt->word_en & BIT3) == 0)) { match_word_en &= ~BIT3; /* enable word 3 */ } *pWden = match_word_en; if (match_word_en != 0xf) return TRUE; else return FALSE; } BOOLEAN efuse_PgPacketPartialWrite( IN PADAPTER pAdapter, IN u8 efuseType, IN OUT u16 *pAddr, IN PPGPKT_STRUCT pTargetPkt, IN BOOLEAN bPseudoTest ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); PEFUSE_HAL pEfuseHal = &(pHalData->EfuseHal); BOOLEAN bRet = _FALSE; u8 i, efuse_data = 0, cur_header = 0; u8 matched_wden = 0, badworden = 0; u16 startAddr = 0; PGPKT_STRUCT curPkt; u16 max_sec_num = (efuseType == EFUSE_WIFI) ? pEfuseHal->MaxSecNum_WiFi : pEfuseHal->MaxSecNum_BT; u16 efuse_max = pEfuseHal->BankSize; u16 efuse_max_available_len = (efuseType == EFUSE_WIFI) ? pEfuseHal->TotalAvailBytes_WiFi : pEfuseHal->TotalAvailBytes_BT; RTW_INFO("efuse_PgPacketPartialWrite()\n"); if (bPseudoTest) { pEfuseHal->fakeEfuseBank = (efuseType == EFUSE_WIFI) ? 0 : pEfuseHal->fakeEfuseBank; Efuse_GetCurrentSize(pAdapter, efuseType, _TRUE); } EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest); EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest); if (efuseType == EFUSE_WIFI) { if (bPseudoTest) { #ifdef HAL_EFUSE_MEMORY startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes; #else startAddr = (u16)fakeEfuseUsedBytes; #endif } else rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr); } else { if (bPseudoTest) { #ifdef HAL_EFUSE_MEMORY startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes; #else startAddr = (u16)fakeBTEfuseUsedBytes; #endif } else rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&startAddr); } startAddr %= efuse_max; RTW_INFO("%s: startAddr=%#X\n", __FUNCTION__, startAddr); RTW_INFO("efuse_PgPacketPartialWrite(), startAddr = 0x%X\n", startAddr); while (1) { if (startAddr >= efuse_max_available_len) { bRet = _FALSE; RTW_INFO("startAddr(%d) >= efuse_max_available_len(%d)\n", startAddr, efuse_max_available_len); break; } if (efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) { if (EXT_HEADER(efuse_data)) { cur_header = efuse_data; startAddr++; efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest); if (ALL_WORDS_DISABLED(efuse_data)) { u16 recoveredAddr = startAddr; recoveredAddr = Hal_EfusePgPacketExceptionHandle_8192E(pAdapter, startAddr - 1); if (recoveredAddr == (startAddr - 1)) { RTW_INFO("Error! All words disabled and the recovery failed, (Addr, Data) = (0x%X, 0x%X)\n", startAddr, efuse_data); pAdapter->LastError = ERR_INVALID_DATA; break; } else { startAddr = recoveredAddr; RTW_INFO("Bad extension header but recovered => Keep going.\n"); continue; } } else { curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); curPkt.word_en = efuse_data & 0x0F; } } else { if (ALL_WORDS_DISABLED(efuse_data)) { u16 recoveredAddr = startAddr; recoveredAddr = Hal_EfusePgPacketExceptionHandle_8192E(pAdapter, startAddr); if (recoveredAddr != startAddr) { efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest); RTW_INFO("Bad header but recovered => Read header again.\n"); } } cur_header = efuse_data; curPkt.offset = (cur_header >> 4) & 0x0F; curPkt.word_en = cur_header & 0x0F; } if (curPkt.offset > max_sec_num) { pAdapter->LastError = ERR_OUT_OF_RANGE; pEfuseHal->Status = ERR_OUT_OF_RANGE; bRet = _FALSE; break; } curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en); /* if same header is found but no data followed */ /* write some part of data followed by the header. */ if ((curPkt.offset == pTargetPkt->offset) && (!hal_EfuseCheckIfDatafollowed(pAdapter, curPkt.word_cnts, startAddr + 1, bPseudoTest)) && hal_EfuseWordEnMatched(pTargetPkt, &curPkt, &matched_wden)) { RTW_INFO("Need to partial write data by the previous wrote header\n"); /* RT_ASSERT(_FALSE, ("Error, Need to partial write data by the previous wrote header!!\n")); */ /* Here to write partial data */ badworden = Efuse_WordEnableDataWrite(pAdapter, startAddr + 1, matched_wden, pTargetPkt->data, bPseudoTest); if (badworden != 0x0F) { u32 PgWriteSuccess = 0; /* if write fail on some words, write these bad words again */ PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest); if (!PgWriteSuccess) { bRet = _FALSE; /* write fail, return */ break; } } /* partial write ok, update the target packet for later use */ for (i = 0; i < 4; i++) { if ((matched_wden & (0x1 << i)) == 0) { /* this word has been written */ pTargetPkt->word_en |= (0x1 << i); /* disable the word */ } } pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en); } /* read from next header */ startAddr = startAddr + (curPkt.word_cnts * 2) + 1; } else { /* not used header, 0xff */ *pAddr = startAddr; RTW_INFO("Started from unused header offset=%d\n", startAddr); bRet = _TRUE; break; } } return bRet; } BOOLEAN hal_EfuseFixHeaderProcess( IN PADAPTER pAdapter, IN u8 efuseType, IN PPGPKT_STRUCT pFixPkt, IN u16 *pAddr, IN BOOLEAN bPseudoTest ) { u8 originaldata[8], badworden = 0; u16 efuse_addr = *pAddr; u32 PgWriteSuccess = 0; memset((PVOID)originaldata, 0xff, 8); if (Efuse_PgPacketRead(pAdapter, pFixPkt->offset, originaldata, bPseudoTest)) { /* check if data exist */ badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, pFixPkt->word_en, originaldata, bPseudoTest); if (badworden != 0xf) { /* write fail */ PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pFixPkt->offset, badworden, originaldata, bPseudoTest); if (!PgWriteSuccess) return _FALSE; else efuse_addr = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest); } else efuse_addr = efuse_addr + (pFixPkt->word_cnts * 2) + 1; } else efuse_addr = efuse_addr + (pFixPkt->word_cnts * 2) + 1; *pAddr = efuse_addr; return _TRUE; } static u8 hal_EfusePgPacketWrite2ByteHeader( PADAPTER padapter, u8 efuseType, u16 *pAddr, PPGPKT_STRUCT pTargetPkt, u8 bPseudoTest) { u16 efuse_addr, efuse_max_available_len = 0; u8 pg_header = 0, tmp_header = 0, pg_header_temp = 0; u8 repeatcnt = 0; /* RTW_INFO("%s\n", __FUNCTION__); */ EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &efuse_max_available_len, bPseudoTest); efuse_addr = *pAddr; if (efuse_addr >= efuse_max_available_len) { RTW_INFO("%s: addr(%d) over available(%d)!!\n", __FUNCTION__, efuse_addr, efuse_max_available_len); return _FALSE; } while (efuse_addr < efuse_max_available_len) { pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F; efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest); phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 0); efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest); phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 1); while (tmp_header == 0xFF || pg_header != tmp_header) { if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) { RTW_INFO("%s, Repeat over limit for pg_header!!\n", __FUNCTION__); return _FALSE; } efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest); } /*to write ext_header*/ if (tmp_header == pg_header) { efuse_addr++; pg_header_temp = pg_header; pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en; efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest); phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 0); efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest); phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 1); while (tmp_header == 0xFF || pg_header != tmp_header) { if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) { RTW_INFO("%s, Repeat over limit for ext_header!!\n", __FUNCTION__); return _FALSE; } efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest); } if ((tmp_header & 0x0F) == 0x0F) { if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) { RTW_INFO("Repeat over limit for word_en!!\n"); return _FALSE; } else { if (tmp_header == 0xFF) { RTW_INFO("wrong word_en empty!!\n"); return _FALSE; } efuse_addr++; continue; } } else if (pg_header != tmp_header) { PGPKT_STRUCT fixPkt; RTW_INFO("Error, efuse_PgPacketWrite2ByteHeader(), offset PG fail, need to cover the existed data!!\n"); RTW_INFO("Error condition for offset PG fail, need to cover the existed data\n"); fixPkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1); fixPkt.word_en = tmp_header & 0x0F; fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en); if (!hal_EfuseFixHeaderProcess(padapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest)) return _FALSE; } else break; } else if ((tmp_header & 0x1F) == 0x0F) {/*wrong extended header*/ if (tmp_header == 0xFF) { RTW_INFO("wrong word_en empty!!\n"); return _FALSE; } efuse_addr += 2; continue; } } *pAddr = efuse_addr; return _TRUE; } static u8 hal_EfusePgPacketWrite1ByteHeader( PADAPTER pAdapter, u8 efuseType, u16 *pAddr, PPGPKT_STRUCT pTargetPkt, u8 bPseudoTest) { u8 bRet = _FALSE; u8 pg_header = 0, tmp_header = 0; u16 efuse_addr = *pAddr; u8 repeatcnt = 0; pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en; efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); while (tmp_header == 0xFF || pg_header != tmp_header) { if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) { RTW_INFO("retry %d times fail!!\n", repeatcnt); return FALSE; } efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); RTW_INFO("===> %s: Keep %d-th retrying, tmp_header = 0x%X\n", __func__, repeatcnt, tmp_header); } if (tmp_header != pg_header) { PGPKT_STRUCT fixPkt; RTW_INFO("Error, %s(), offset PG fail, need to cover the existed data!!\n", __func__); RTW_INFO("pg_header(0x%X) != tmp_header(0x%X)\n", pg_header, tmp_header); RTW_INFO("Error condition for fixed PG packet, need to cover the existed data: (Addr, Data) = (0x%X, 0x%X)\n", efuse_addr, tmp_header); fixPkt.offset = (tmp_header>>4) & 0x0F; fixPkt.word_en = tmp_header & 0x0F; fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en); if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest)) return FALSE; } *pAddr = efuse_addr; return _TRUE; } BOOLEAN efuse_PgPacketWriteHeader( PADAPTER pAdapter, u8 efuseType, u16 *pAddr, PPGPKT_STRUCT pTargetPkt, BOOLEAN bPseudoTest) { BOOLEAN bRet = _FALSE; if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE) bRet = hal_EfusePgPacketWrite2ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest); else bRet = hal_EfusePgPacketWrite1ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest); return bRet; } static u8 hal_EfusePgPacketWriteData( PADAPTER pAdapter, u8 efuseType, u16 *pAddr, PPGPKT_STRUCT pTargetPkt, u8 bPseudoTest) { u16 efuse_addr; u8 badworden; efuse_addr = *pAddr; badworden = rtl8192E_Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest); if (badworden != 0x0F) { RTW_INFO("%s: Fail!!\n", __FUNCTION__); return _FALSE; } /* RTW_INFO("%s: ok\n", __FUNCTION__); */ return _TRUE; } int hal_EfusePgPacketWrite_8192E(IN PADAPTER pAdapter, u8 offset, u8 word_en, u8 *pData, BOOLEAN bPseudoTest) { u8 efuseType = EFUSE_WIFI; PGPKT_STRUCT targetPkt; u16 startAddr = 0; RTW_INFO("===> efuse_PgPacketWrite[%s], offset: 0x%X\n", (efuseType == EFUSE_WIFI) ? "WIFI" : "BT", offset); /* 4 [1] Check if the remaining space is available to write. */ if (!efuse_PgPacketCheck(pAdapter, efuseType, bPseudoTest)) { pAdapter->LastError = ERR_WRITE_PROTECT; RTW_INFO("efuse_PgPacketCheck(), fail!!\n"); return _FALSE; } /* 4 [2] Construct a packet to write: (Data, Offset, and WordEnable) */ efuse_PgPacketConstruct(offset, word_en, pData, &targetPkt); /* 4 [3] Fix headers without data or fix bad headers, and then return the address where to get started. */ if (!efuse_PgPacketPartialWrite(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) { pAdapter->LastError = ERR_INVALID_DATA; RTW_INFO("efuse_PgPacketPartialWrite(), fail!!\n"); return _FALSE; } /* 4 [4] Write the (extension) header. */ if (!efuse_PgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) { pAdapter->LastError = ERR_IO_FAILURE; RTW_INFO("efuse_PgPacketWriteHeader(), fail!!\n"); return _FALSE; } /* 4 [5] Write the data. */ if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) { pAdapter->LastError = ERR_IO_FAILURE; RTW_INFO("efuse_PgPacketWriteData(), fail!!\n"); return _FALSE; } RTW_INFO("<=== efuse_PgPacketWrite\n"); return _TRUE; } #endif static int rtl8192E_Efuse_PgPacketWrite(IN PADAPTER pAdapter, IN u8 offset, IN u8 word_en, IN u8 *data, IN BOOLEAN bPseudoTest) { int ret; ret = hal_EfusePgPacketWrite_8192E(pAdapter, offset, word_en, data, bPseudoTest); return ret; } u8 GetEEPROMSize8192E( IN PADAPTER Adapter ) { u8 size = 0; u32 curRCR; curRCR = rtw_read16(Adapter, REG_SYS_EEPROM_CTRL); size = (curRCR & EEPROMSEL) ? 6 : 4; /* 6: EEPROM used is 93C46, 4: boot from E-Fuse. */ RTW_INFO("EEPROM type is %s\n", size == 4 ? "E-FUSE" : "93C46"); /* return size; */ return 4; /* <20120713, Kordan> The default value of HW is 6 ?!! */ } /* *********************************************************** * Efuse related code * *********************************************************** */ static void hw_var_set_monitor(PADAPTER Adapter, u8 variable, u8 *val) { u32 rcr_bits; u16 value_rxfltmap2; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct mlme_priv *pmlmepriv = &(Adapter->mlmepriv); if (*((u8 *)val) == _HW_STATE_MONITOR_) { #ifdef CONFIG_CUSTOMER_ALIBABA_GENERAL /* Remove control frame, Dont Append FCS */ rcr_bits = RCR_AAP | RCR_APM | RCR_AM | RCR_AB | RCR_APWRMGT | RCR_ADF | RCR_AMF | RCR_APP_PHYST_RXFF; #else /* Receive all type */ rcr_bits = RCR_AAP | RCR_APM | RCR_AM | RCR_AB | RCR_APWRMGT | RCR_ADF | RCR_ACF | RCR_AMF | RCR_APP_PHYST_RXFF; /* Append FCS */ rcr_bits |= RCR_APPFCS; #endif #if 0 /* CRC and ICV packet will drop in recvbuf2recvframe() We no turn on it. */ rcr_bits |= (RCR_ACRC32 | RCR_AICV); #endif rtw_hal_get_hwreg(Adapter, HW_VAR_RCR, (u8 *)&pHalData->rcr_backup); rtw_hal_set_hwreg(Adapter, HW_VAR_RCR, (u8 *)&rcr_bits); /* Receive all data frames */ value_rxfltmap2 = 0xFFFF; rtw_write16(Adapter, REG_RXFLTMAP2, value_rxfltmap2); #if 0 /* tx pause */ rtw_write8(padapter, REG_TXPAUSE, 0xFF); #endif } else { /* do nothing */ } } static void hw_var_set_opmode(PADAPTER Adapter, u8 variable, u8 *val) { u8 val8; u32 val32; u8 mode = *((u8 *)val); static u8 isMonitor = _FALSE; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); if (isMonitor == _TRUE) { /* reset RCR from backup */ rtw_hal_set_hwreg(Adapter, HW_VAR_RCR, (u8 *)&pHalData->rcr_backup); rtw_hal_rcr_set_chk_bssid(Adapter, MLME_ACTION_NONE); isMonitor = _FALSE; } RTW_INFO(ADPT_FMT "- Port-%d set opmode = %d\n", ADPT_ARG(Adapter), get_hw_port(Adapter), mode); if (mode == _HW_STATE_MONITOR_) { isMonitor = _TRUE; /* set net_type */ Set_MSR(Adapter, _HW_STATE_NOLINK_); hw_var_set_monitor(Adapter, variable, val); return; } rtw_hal_set_hwreg(Adapter, HW_VAR_MAC_ADDR, adapter_mac_addr(Adapter)); /* set mac addr to mac register */ #ifdef CONFIG_CONCURRENT_MODE if (Adapter->hw_port == HW_PORT1) { /* disable Port1 TSF update */ rtw_iface_disable_tsf_update(Adapter); Set_MSR(Adapter, mode); /*RTW_INFO("#### %s() -%d hw_port(%d) mode = %d ####\n", __FUNCTION__, __LINE__, Adapter->hw_port,mode);*/ if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) { if (!rtw_mi_get_ap_num(Adapter) && !rtw_mi_get_mesh_num(Adapter)) { #ifdef CONFIG_INTERRUPT_BASED_TXBCN #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT rtw_write8(Adapter, REG_DRVERLYINT, 0x05);/* restore early int time to 5ms */ #if defined(CONFIG_USB_HCI) UpdateInterruptMask8192EU(Adapter, _TRUE, 0, IMR_BCNDMAINT1_8192E); #elif defined(CONFIG_SDIO_HCI) UpdateInterruptMask8192ESdio(Adapter, 0, SDIO_HIMR_BCNERLY_INT_MSK); #endif #endif /* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */ #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR #if defined(CONFIG_USB_HCI) UpdateInterruptMask8192EU(Adapter, _TRUE , 0, (IMR_TXBCN0ERR_8192E | IMR_TXBCN0OK_8192E)); #elif defined(CONFIG_SDIO_HCI) UpdateInterruptMask8192ESdio(Adapter, 0, (SDIO_HIMR_TXBCNOK_MSK | SDIO_HIMR_TXBCNERR_MSK)); #endif #endif/* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */ #endif /* CONFIG_INTERRUPT_BASED_TXBCN */ StopTxBeacon(Adapter); } rtw_write8(Adapter, REG_BCN_CTRL_1, DIS_TSF_UDT | DIS_ATIM); /* disable atim wnd and disable beacon function */ /* rtw_write8(Adapter,REG_BCN_CTRL_1, DIS_TSF_UDT | EN_BCN_FUNCTION); */ } else if (mode == _HW_STATE_ADHOC_) { ResumeTxBeacon(Adapter); rtw_write8(Adapter, REG_BCN_CTRL_1, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB); } else if (mode == _HW_STATE_AP_) { #ifdef CONFIG_INTERRUPT_BASED_TXBCN #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT #if defined(CONFIG_USB_HCI) UpdateInterruptMask8192EU(Adapter, _TRUE , IMR_BCNDMAINT1_8192E, 0); #elif defined(CONFIG_SDIO_HCI) UpdateInterruptMask8192ESdio(Adapter, SDIO_HIMR_BCNERLY_INT_MSK, 0); #endif #endif/* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */ #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR #if defined(CONFIG_USB_HCI) UpdateInterruptMask8192EU(Adapter, _TRUE , (IMR_TXBCN0ERR_8192E | IMR_TXBCN0OK_8192E), 0); #elif defined(CONFIG_SDIO_HCI) UpdateInterruptMask8192ESdio(Adapter, (SDIO_HIMR_TXBCNOK_MSK | SDIO_HIMR_TXBCNERR_MSK), 0); #endif #endif/* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */ #endif /* CONFIG_INTERRUPT_BASED_TXBCN */ rtw_write8(Adapter, REG_BCN_CTRL_1, DIS_TSF_UDT | DIS_BCNQ_SUB); /* enable to rx data frame */ rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF); /* enable to rx ps-poll */ rtw_write16(Adapter, REG_RXFLTMAP1, 0x0400); /* Beacon Control related register for first time */ rtw_write8(Adapter, REG_BCNDMATIM, 0x02); /* 2ms */ /* rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF); */ rtw_write8(Adapter, REG_ATIMWND_1, 0x0a); /* 10ms for port1 */ rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */ /* reset TSF2 */ rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1)); /* enable BCN1 Function for if2 */ /* don't enable update TSF1 for if2 (due to TSF update when beacon/probe rsp are received) */ rtw_write8(Adapter, REG_BCN_CTRL_1, (DIS_TSF_UDT | EN_BCN_FUNCTION | EN_TXBCN_RPT | DIS_RX_BSSID_FIT)); /* SW_BCN_SEL - Port1 */ /* rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2)|BIT4); */ rtw_hal_set_hwreg(Adapter, HW_VAR_DL_BCN_SEL, NULL); /* select BCN on port 1 */ rtw_write8(Adapter, REG_CCK_CHECK_8192E, (rtw_read8(Adapter, REG_CCK_CHECK_8192E) | BIT_BCN_PORT_SEL)); if (!rtw_mi_buddy_check_mlmeinfo_state(Adapter, WIFI_FW_ASSOC_SUCCESS)) rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) & ~EN_BCN_FUNCTION); /* dis BCN0 ATIM WND if if1 is station */ /* rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|DIS_ATIM); */ #ifdef CONFIG_TSF_RESET_OFFLOAD /* Reset TSF for STA+AP concurrent mode */ if (DEV_STA_LD_NUM(adapter_to_dvobj(Adapter))) { if (rtw_hal_reset_tsf(Adapter, HW_PORT1) == _FAIL) RTW_INFO("ERROR! %s()-%d: Reset port1 TSF fail\n", __FUNCTION__, __LINE__); } #endif /* CONFIG_TSF_RESET_OFFLOAD */ } } else #endif /* CONFIG_CONCURRENT_MODE */ { #ifdef CONFIG_MI_WITH_MBSSID_CAM /*For Port0 - MBSS CAM*/ hw_var_set_opmode_mbid(Adapter, mode); #else /* disable Port0 TSF update */ rtw_iface_disable_tsf_update(Adapter); Set_MSR(Adapter, mode); /*RTW_INFO("#### %s() -%d hw_port(0) mode = %d ####\n", __FUNCTION__, __LINE__, mode);*/ if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) { #ifdef CONFIG_CONCURRENT_MODE if (!rtw_mi_get_ap_num(Adapter) && !rtw_mi_get_mesh_num(Adapter)) #endif /*CONFIG_CONCURRENT_MODE*/ { #ifdef CONFIG_INTERRUPT_BASED_TXBCN #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT rtw_write8(Adapter, REG_DRVERLYINT, 0x05);/* restore early int time to 5ms */ #if defined(CONFIG_USB_HCI) UpdateInterruptMask8192EU(Adapter, _TRUE, 0, IMR_BCNDMAINT0_8192E); #elif defined(CONFIG_SDIO_HCI) UpdateInterruptMask8192ESdio(Adapter, 0, SDIO_HIMR_BCNERLY_INT_MSK); #endif #endif/* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */ #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR #if defined(CONFIG_USB_HCI) UpdateInterruptMask8192EU(Adapter, _TRUE , 0, (IMR_TXBCN0ERR_8192E | IMR_TXBCN0OK_8192E)); #elif defined(CONFIG_SDIO_HCI) UpdateInterruptMask8192ESdio(Adapter, 0, (SDIO_HIMR_TXBCNOK_MSK | SDIO_HIMR_TXBCNERR_MSK)); #endif #endif /* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */ #endif /* CONFIG_INTERRUPT_BASED_TXBCN */ StopTxBeacon(Adapter); } rtw_write8(Adapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_ATIM); /* disable atim wnd */ /* rtw_write8(Adapter,REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION); */ } else if (mode == _HW_STATE_ADHOC_) { /*Beacon is polled to TXBUF*/ rtw_write16(Adapter, REG_CR, rtw_read16(Adapter, REG_CR) | BIT(8)); ResumeTxBeacon(Adapter); rtw_write8(Adapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB); } else if (mode == _HW_STATE_AP_) { #ifdef CONFIG_INTERRUPT_BASED_TXBCN #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT #if defined(CONFIG_USB_HCI) UpdateInterruptMask8192EU(Adapter, _TRUE , IMR_BCNDMAINT0_8192E, 0); #elif defined(CONFIG_SDIO_HCI) UpdateInterruptMask8192ESdio(Adapter, SDIO_HIMR_BCNERLY_INT_MSK, 0); #endif #endif/* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */ #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR #if defined(CONFIG_USB_HCI) UpdateInterruptMask8192EU(Adapter, _TRUE , (IMR_TXBCN0ERR_8192E | IMR_TXBCN0OK_8192E), 0); #elif defined(CONFIG_SDIO_HCI) UpdateInterruptMask8192ESdio(Adapter, (SDIO_HIMR_TXBCNOK_MSK | SDIO_HIMR_TXBCNERR_MSK), 0); #endif #endif/* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */ #endif /* CONFIG_INTERRUPT_BASED_TXBCN */ rtw_write8(Adapter, REG_BCN_CTRL, DIS_TSF_UDT | DIS_BCNQ_SUB); /*Beacon is polled to TXBUF*/ rtw_write16(Adapter, REG_CR, rtw_read16(Adapter, REG_CR) | BIT(8)); /* enable to rx data frame */ rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF); /* enable to rx ps-poll */ rtw_write16(Adapter, REG_RXFLTMAP1, 0x0400); /* Beacon Control related register for first time */ rtw_write8(Adapter, REG_BCNDMATIM, 0x02); /* 2ms */ /* rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF); */ rtw_write8(Adapter, REG_ATIMWND, 0x0c); /* 12ms */ rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */ /* reset TSF */ rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0)); /* enable BCN0 Function for if1 */ /* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */ rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT | EN_BCN_FUNCTION | EN_TXBCN_RPT | DIS_RX_BSSID_FIT)); /* SW_BCN_SEL - Port0 */ /* rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) & ~BIT4); */ rtw_hal_set_hwreg(Adapter, HW_VAR_DL_BCN_SEL, NULL); /* select BCN on port 0 */ rtw_write8(Adapter, REG_CCK_CHECK_8192E, (rtw_read8(Adapter, REG_CCK_CHECK_8192E) & ~BIT_BCN_PORT_SEL)); #ifdef CONFIG_CONCURRENT_MODE if (!rtw_mi_buddy_check_mlmeinfo_state(Adapter, WIFI_FW_ASSOC_SUCCESS)) rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) & ~EN_BCN_FUNCTION); #endif /* dis BCN1 ATIM WND if if2 is station */ /* rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|DIS_ATIM); */ #ifdef CONFIG_TSF_RESET_OFFLOAD /* Reset TSF for STA+AP concurrent mode */ if (DEV_STA_LD_NUM(adapter_to_dvobj(Adapter))) { if (rtw_hal_reset_tsf(Adapter, HW_PORT0) == _FAIL) RTW_INFO("ERROR! %s()-%d: Reset port0 TSF fail\n", __FUNCTION__, __LINE__); } #endif /* CONFIG_TSF_RESET_OFFLOAD */ } #endif } } /***********************************************************/ /* RTL8192E-MAC Setting */ VOID _InitTxBufferBoundary_8192E( IN PADAPTER Adapter, IN u8 txpktbuf_bndy ) { struct registry_priv *pregistrypriv = &Adapter->registrypriv; rtw_write8(Adapter, REG_BCNQ_BDNY, txpktbuf_bndy); rtw_write8(Adapter, REG_MGQ_BDNY, txpktbuf_bndy); rtw_write8(Adapter, REG_WMAC_LBK_BF_HD, txpktbuf_bndy); rtw_write8(Adapter, REG_TRXFF_BNDY, txpktbuf_bndy); rtw_write8(Adapter, REG_DWBCN0_CTRL_8192E+1, txpktbuf_bndy);/* BCN_HEAD */ #ifdef CONFIG_CONCURRENT_MODE rtw_write8(Adapter, REG_BCNQ1_BDNY, txpktbuf_bndy + 8); rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+1, txpktbuf_bndy + 8); /* BCN1_HEAD */ /* BIT1- BIT_SW_BCN_SEL_EN */ rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) | BIT1); #endif } VOID _InitQueueReservedPage_8192E( IN PADAPTER Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct registry_priv *pregistrypriv = &Adapter->registrypriv; u32 numHQ = 0; u32 numLQ = 0; u32 numNQ = 0; u32 numEQ = 0; u32 numPubQ = 0; u32 value32; if (!pregistrypriv->wifi_spec) { /* Typical setting */ if (pHalData->OutEpQueueSel & TX_SELE_HQ) numHQ = NORMAL_PAGE_NUM_HPQ_8192E; if (pHalData->OutEpQueueSel & TX_SELE_LQ) numLQ = NORMAL_PAGE_NUM_LPQ_8192E; /* NOTE: This step shall be proceed before writting REG_RQPN. */ if (pHalData->OutEpQueueSel & TX_SELE_NQ) numNQ = NORMAL_PAGE_NUM_NPQ_8192E; if (pHalData->OutEpQueueSel & TX_SELE_EQ) numEQ = NORMAL_PAGE_NUM_EPQ_8192E; } else { /* WMM */ if (pHalData->OutEpQueueSel & TX_SELE_HQ) numHQ = WMM_NORMAL_PAGE_NUM_HPQ_8192E; if (pHalData->OutEpQueueSel & TX_SELE_LQ) numLQ = WMM_NORMAL_PAGE_NUM_LPQ_8192E; /* NOTE: This step shall be proceed before writting REG_RQPN. */ if (pHalData->OutEpQueueSel & TX_SELE_NQ) numNQ = WMM_NORMAL_PAGE_NUM_NPQ_8192E; if (pHalData->OutEpQueueSel & TX_SELE_EQ) numEQ = NORMAL_PAGE_NUM_EPQ_8192E; } /* Reserve 1 page at the boundary for safety */ numPubQ = TX_TOTAL_PAGE_NUMBER_8192E - numHQ - numLQ - numNQ - numEQ - 1; value32 = _NPQ(numNQ) | _EPQ(numEQ); rtw_write32(Adapter, REG_RQPN_NPQ, value32); /* TX DMA */ value32 = _HPQ(numHQ) | _LPQ(numLQ) | _PUBQ(numPubQ) | LD_RQPN; rtw_write32(Adapter, REG_RQPN, value32); #ifdef CONFIG_SDIO_HCI rtw_hal_set_sdio_tx_max_length(Adapter, numHQ, numNQ, numLQ, numPubQ, SDIO_TX_DIV_NUM); #ifdef CONFIG_SDIO_TX_ENABLE_AVAL_INT _init_available_page_threshold(Adapter, numHQ, numNQ, numLQ, numPubQ); #endif #endif } static VOID _InitNormalChipRegPriority_8192E( IN PADAPTER Adapter, IN u16 beQ, IN u16 bkQ, IN u16 viQ, IN u16 voQ, IN u16 mgtQ, IN u16 hiQ ) { u16 value16 = (rtw_read16(Adapter, REG_TRXDMA_CTRL) & 0x7); value16 |= _TXDMA_BEQ_MAP(beQ) | _TXDMA_BKQ_MAP(bkQ) | _TXDMA_VIQ_MAP(viQ) | _TXDMA_VOQ_MAP(voQ) | _TXDMA_MGQ_MAP(mgtQ) | _TXDMA_HIQ_MAP(hiQ); rtw_write16(Adapter, REG_TRXDMA_CTRL, value16); } static VOID _InitNormalChipTwoOutEpPriority_8192E( IN PADAPTER Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct registry_priv *pregistrypriv = &Adapter->registrypriv; u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ; u16 valueHi = 0; u16 valueLow = 0; switch (pHalData->OutEpQueueSel) { case (TX_SELE_HQ | TX_SELE_LQ): valueHi = QUEUE_HIGH; valueLow = QUEUE_LOW; break; case (TX_SELE_NQ | TX_SELE_LQ): valueHi = QUEUE_NORMAL; valueLow = QUEUE_LOW; break; case (TX_SELE_HQ | TX_SELE_NQ): valueHi = QUEUE_HIGH; valueLow = QUEUE_NORMAL; break; default: valueHi = QUEUE_HIGH; valueLow = QUEUE_NORMAL; break; } if (!pregistrypriv->wifi_spec) { beQ = valueLow; bkQ = valueLow; viQ = valueHi; voQ = valueHi; mgtQ = valueHi; hiQ = valueHi; } else { /* for WMM ,CONFIG_OUT_EP_WIFI_MODE */ beQ = valueLow; bkQ = valueHi; viQ = valueHi; voQ = valueLow; mgtQ = valueHi; hiQ = valueHi; } _InitNormalChipRegPriority_8192E(Adapter, beQ, bkQ, viQ, voQ, mgtQ, hiQ); } static VOID _InitNormalChipThreeOutEpPriority_8192E( IN PADAPTER Adapter ) { struct registry_priv *pregistrypriv = &Adapter->registrypriv; u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ; if (!pregistrypriv->wifi_spec) { /* typical setting */ beQ = QUEUE_LOW; bkQ = QUEUE_LOW; viQ = QUEUE_NORMAL; voQ = QUEUE_HIGH; mgtQ = QUEUE_HIGH; hiQ = QUEUE_HIGH; } else { /* for WMM */ beQ = QUEUE_LOW; bkQ = QUEUE_NORMAL; viQ = QUEUE_NORMAL; voQ = QUEUE_HIGH; mgtQ = QUEUE_HIGH; hiQ = QUEUE_HIGH; } _InitNormalChipRegPriority_8192E(Adapter, beQ, bkQ, viQ, voQ, mgtQ, hiQ); } static VOID _InitNormalChipFourOutEpPriority_8192E( IN PADAPTER Adapter ) { struct registry_priv *pregistrypriv = &Adapter->registrypriv; u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ; if (!pregistrypriv->wifi_spec) { /* typical setting */ beQ = QUEUE_LOW; bkQ = QUEUE_LOW; viQ = QUEUE_NORMAL; voQ = QUEUE_HIGH; mgtQ = QUEUE_HIGH; hiQ = QUEUE_EXTRA; } else { /* for WMM */ beQ = QUEUE_LOW; bkQ = QUEUE_NORMAL; viQ = QUEUE_NORMAL; voQ = QUEUE_HIGH; mgtQ = QUEUE_HIGH; hiQ = QUEUE_EXTRA; } _InitNormalChipRegPriority_8192E(Adapter, beQ, bkQ, viQ, voQ, mgtQ, hiQ); } VOID _InitQueuePriority_8192E( IN PADAPTER Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); switch (pHalData->OutEpNumber) { case 2: _InitNormalChipTwoOutEpPriority_8192E(Adapter); break; case 3: _InitNormalChipThreeOutEpPriority_8192E(Adapter); break; case 4: /* TBD - for AP mode ,extra-Q */ _InitNormalChipFourOutEpPriority_8192E(Adapter); break; default: RTW_INFO("_InitQueuePriority_8192E(): Shall not reach here!\n"); break; } } VOID _InitPageBoundary_8192E( IN PADAPTER Adapter ) { u16 rxff_bndy = 0; rxff_bndy = MAX_RX_DMA_BUFFER_SIZE_8192E - 1; rtw_write16(Adapter, (REG_TRXFF_BNDY + 2), rxff_bndy); } VOID _InitDriverInfoSize_8192E( IN PADAPTER Adapter, IN u8 drvInfoSize ) { rtw_write8(Adapter, REG_RX_DRVINFO_SZ, drvInfoSize); } VOID _InitRDGSetting_8192E(PADAPTER Adapter) { rtw_write8(Adapter, REG_RD_CTRL, 0xFF); rtw_write16(Adapter, REG_RD_NAV_NXT, 0x200); rtw_write8(Adapter, REG_RD_RESP_PKT_TH, 0x05); } VOID _InitNetworkType_8192E( IN PADAPTER Adapter ) { u32 value32; value32 = rtw_read32(Adapter, REG_CR); /* TODO: use the other function to set network type */ value32 = (value32 & ~MASK_NETTYPE) | _NETTYPE(NT_LINK_AP); rtw_write32(Adapter, REG_CR, value32); } VOID _InitWMACSetting_8192E( IN PADAPTER Adapter ) { /* u4Byte value32; */ /* u16 value16; */ HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u32 rcr; /* rcr = AAP | APM | AM | AB | APP_ICV | ADF | AMF | APP_FCS | HTC_LOC_CTRL | APP_MIC | APP_PHYSTS; */ /* rcr = */ /* RCR_AAP | RCR_APM | RCR_AM | RCR_AB |RCR_CBSSID_DATA| RCR_CBSSID_BCN| RCR_APP_ICV | RCR_AMF | RCR_HTC_LOC_CTRL | RCR_APP_MIC | RCR_APP_PHYST_RXFF; */ /* don't turn on AAP, it will allow all packets to driver */ rcr = RCR_APM | RCR_AM | RCR_AB | RCR_CBSSID_DATA | RCR_CBSSID_BCN | RCR_APP_ICV | RCR_AMF | RCR_HTC_LOC_CTRL | RCR_APP_MIC | RCR_APP_PHYST_RXFF; #if (1 == RTL8192E_RX_PACKET_INCLUDE_CRC) rcr |= ACRC32; #endif rtw_hal_set_hwreg(Adapter, HW_VAR_RCR, (u8 *)&rcr); /* Accept all multicast address */ rtw_write32(Adapter, REG_MAR, 0xFFFFFFFF); rtw_write32(Adapter, REG_MAR + 4, 0xFFFFFFFF); /* Accept all data frames */ /* value16 = 0xFFFF; */ /* rtw_write16(Adapter, REG_RXFLTMAP2, value16); */ /* 2010.09.08 hpfan */ /* Since ADF is removed from RCR, ps-poll will not be indicate to driver, */ /* RxFilterMap should mask ps-poll to gurantee AP mode can rx ps-poll. */ /* value16 = 0x400; */ /* rtw_write16(Adapter, REG_RXFLTMAP1, value16); */ /* Accept all management frames */ /* value16 = 0xFFFF; */ /* rtw_write16(Adapter, REG_RXFLTMAP0, value16); */ /* enable RX_SHIFT bits */ /* rtw_write8(Adapter, REG_TRXDMA_CTRL, rtw_read8(Adapter, REG_TRXDMA_CTRL)|BIT(1)); */ } VOID _InitAdaptiveCtrl_8192E(IN PADAPTER Adapter) { u16 value16; u32 value32; /* Response Rate Set */ value32 = rtw_read32(Adapter, REG_RRSR); value32 &= ~RATE_BITMAP_ALL; value32 |= RATE_RRSR_CCK_ONLY_1M; rtw_write32(Adapter, REG_RRSR, value32); /* CF-END Threshold */ /* m_spIoBase->rtw_write8(REG_CFEND_TH, 0x1); */ /* SIFS (used in NAV) */ value16 = _SPEC_SIFS_CCK(0x10) | _SPEC_SIFS_OFDM(0x10); rtw_write16(Adapter, REG_SPEC_SIFS, value16); /* Retry Limit */ value16 = BIT_LRL(RL_VAL_STA) | BIT_SRL(RL_VAL_STA); rtw_write16(Adapter, REG_RETRY_LIMIT, value16); } VOID _InitEDCA_8192E(IN PADAPTER Adapter) { /* Set Spec SIFS (used in NAV) */ rtw_write16(Adapter, REG_SPEC_SIFS, 0x100a); rtw_write16(Adapter, REG_MAC_SPEC_SIFS, 0x100a); /* Set SIFS for CCK */ rtw_write16(Adapter, REG_SIFS_CTX, 0x100a); /* Set SIFS for OFDM */ rtw_write16(Adapter, REG_SIFS_TRX, 0x100a); /* TXOP */ rtw_write32(Adapter, REG_EDCA_BE_PARAM, 0x005EA42B); rtw_write32(Adapter, REG_EDCA_BK_PARAM, 0x0000A44F); rtw_write32(Adapter, REG_EDCA_VI_PARAM, 0x005EA324); rtw_write32(Adapter, REG_EDCA_VO_PARAM, 0x002FA226); } VOID _InitRetryFunction_8192E(IN PADAPTER Adapter) { u8 value8; value8 = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL); value8 |= EN_AMPDU_RTY_NEW; rtw_write8(Adapter, REG_FWHW_TXQ_CTRL, value8); /* Set ACK timeout */ rtw_write8(Adapter, REG_ACKTO, 0x40); /* masked by page for BCM IOT issue temporally */ /* rtw_write8(Adapter, REG_ACKTO, 0x80); */ } VOID _BeaconFunctionEnable( IN PADAPTER Adapter, IN BOOLEAN Enable, IN BOOLEAN Linked ) { rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT | EN_BCN_FUNCTION)); rtw_write8(Adapter, REG_RD_CTRL + 1, 0x6F); } VOID _InitBeaconParameters_8192E(IN PADAPTER Adapter) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u16 val16; u8 val8; val8 = DIS_TSF_UDT; val16 = val8 | (val8 << 8); /* port0 and port1 */ #ifdef CONFIG_BT_COEXIST if (pHalData->EEPROMBluetoothCoexist == 1) { /* Enable prot0 beacon function for PSTDMA */ val16 |= EN_BCN_FUNCTION; } #endif rtw_write16(Adapter, REG_BCN_CTRL, val16); /* TBTT setup time */ rtw_write8(Adapter, REG_TBTT_PROHIBIT, TBTT_PROHIBIT_SETUP_TIME); /* TBTT hold time: 0x540[19:8] */ rtw_write8(Adapter, REG_TBTT_PROHIBIT + 1, TBTT_PROHIBIT_HOLD_TIME_STOP_BCN & 0xFF); rtw_write8(Adapter, REG_TBTT_PROHIBIT + 2, (rtw_read8(Adapter, REG_TBTT_PROHIBIT + 2) & 0xF0) | (TBTT_PROHIBIT_HOLD_TIME_STOP_BCN >> 8)); rtw_write8(Adapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8192E);/* 5ms */ rtw_write8(Adapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8192E); /* 2ms */ /* Suggested by designer timchen. Change beacon AIFS to the largest number */ /* beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */ rtw_write16(Adapter, REG_BCNTCFG, 0x4413); } void SetBeaconRelatedRegisters8192E(PADAPTER padapter) { u32 value32; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv); struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); u32 bcn_ctrl_reg = REG_BCN_CTRL; /* reset TSF, enable update TSF, correcting TSF On Beacon */ /* REG_MBSSID_BCN_SPACE */ /* REG_BCNDMATIM */ /* REG_ATIMWND */ /* REG_TBTT_PROHIBIT */ /* REG_DRVERLYINT */ /* REG_BCN_MAX_ERR */ /* REG_BCNTCFG */ /* (0x510) */ /* REG_DUAL_TSF_RST */ /* REG_BCN_CTRL */ /* (0x550) */ #ifdef CONFIG_CONCURRENT_MODE if (padapter->hw_port == HW_PORT1) bcn_ctrl_reg = REG_BCN_CTRL_1; #endif /* BCN interval */ rtw_hal_set_hwreg(padapter, HW_VAR_BEACON_INTERVAL, (u8 *)&pmlmeinfo->bcn_interval); rtw_write8(padapter, REG_ATIMWND, 0x02);/* 2ms */ _InitBeaconParameters_8192E(padapter); rtw_write8(padapter, REG_SLOT, 0x09); value32 = rtw_read32(padapter, REG_TCR); value32 &= ~TSFRST; rtw_write32(padapter, REG_TCR, value32); value32 |= TSFRST; rtw_write32(padapter, REG_TCR, value32); /* NOTE: Fix test chip's bug (about contention windows's randomness) */ rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50); rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50); _BeaconFunctionEnable(padapter, _TRUE, _TRUE); ResumeTxBeacon(padapter); /* rtw_write8(padapter, 0x422, rtw_read8(padapter, 0x422)|BIT(6)); */ /* rtw_write8(padapter, 0x541, 0xff); */ /* rtw_write8(padapter, 0x542, rtw_read8(padapter, 0x541)|BIT(0)); */ rtw_write8(padapter, bcn_ctrl_reg, rtw_read8(padapter, bcn_ctrl_reg) | DIS_BCNQ_SUB); } VOID _InitBeaconMaxError_8192E( IN PADAPTER Adapter, IN BOOLEAN InfraMode ) { #ifdef CONFIG_ADHOC_WORKAROUND_SETTING rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF); #else /* rtw_write8(Adapter, REG_BCN_MAX_ERR, (InfraMode ? 0xFF : 0x10)); */ #endif } /* Set CCK and OFDM Block "ON" */ void _BBTurnOnBlock_8192E(PADAPTER padapter) { phy_set_bb_reg(padapter, rFPGA0_RFMOD, bCCKEn, 0x1); phy_set_bb_reg(padapter, rFPGA0_RFMOD, bOFDMEn, 0x1); } VOID hal_ReadRFType_8192E( IN PADAPTER Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); pHalData->rf_chip = RF_6052; pHalData->BandSet = BAND_ON_2_4G; } u8 Hal_CrystalAFEAdjust(_adapter *Adapter) { u8 val8; u32 val32; /* 40Mhz crystal source,MAC 0x28[2]=0 */ val8 = rtw_read8(Adapter, REG_AFE_CTRL2_8192E); val8 &= 0xfb; rtw_write8(Adapter, REG_AFE_CTRL2_8192E, val8); val32 = rtw_read32(Adapter, REG_AFE_CTRL4_8192E); val32 &= 0xfffffc7f; rtw_write32(Adapter, REG_AFE_CTRL4_8192E, val32); /* 92E AFE parameter */ /* AFE PLL KVCO selection, MAC 0x28[6]=1 */ val8 = rtw_read8(Adapter, REG_AFE_CTRL2_8192E); val8 &= 0xBF; rtw_write8(Adapter, REG_AFE_CTRL2_8192E, val8); /* AFE PLL KVCO selection, MAC 0x78[21]=0 */ val32 = rtw_read32(Adapter, REG_AFE_CTRL4_8192E); val32 &= 0xffdfffff; rtw_write32(Adapter, REG_AFE_CTRL4_8192E, val32); return _SUCCESS; } /* RTL8192E-MAC Setting ***********************************************************/ u8 SetHwReg8192E(PADAPTER Adapter, u8 variable, u8 *val) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct dm_struct *podmpriv = &pHalData->odmpriv; u8 ret = _SUCCESS; switch (variable) { case HW_VAR_SET_OPMODE: hw_var_set_opmode(Adapter, variable, val); break; case HW_VAR_BASIC_RATE: { struct mlme_ext_info *mlmext_info = &Adapter->mlmeextpriv.mlmext_info; u16 input_b = 0, masked = 0, ioted = 0, BrateCfg = 0; u16 rrsr_2g_force_mask = RRSR_CCK_RATES; u16 rrsr_2g_allow_mask = (RRSR_24M | RRSR_12M | RRSR_6M | RRSR_CCK_RATES); HalSetBrateCfg(Adapter, val, &BrateCfg); input_b = BrateCfg; /* apply force and allow mask */ BrateCfg |= rrsr_2g_force_mask; BrateCfg &= rrsr_2g_allow_mask; masked = BrateCfg; /* IOT consideration */ if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) { /* if peer is cisco and didn't use ofdm rate, we enable 6M ack */ if ((BrateCfg & (RRSR_24M | RRSR_12M | RRSR_6M)) == 0) BrateCfg |= RRSR_6M; } ioted = BrateCfg; pHalData->BasicRateSet = BrateCfg; RTW_INFO("HW_VAR_BASIC_RATE: %#x->%#x->%#x\n", input_b, masked, ioted); /* Set RRSR rate table. */ rtw_write16(Adapter, REG_RRSR, BrateCfg); rtw_write8(Adapter, REG_RRSR + 2, rtw_read8(Adapter, REG_RRSR + 2) & 0xf0); } break; case HW_VAR_TXPAUSE: rtw_write8(Adapter, REG_TXPAUSE, *((u8 *)val)); break; case HW_VAR_SLOT_TIME: { rtw_write8(Adapter, REG_SLOT, val[0]); } break; case HW_VAR_RESP_SIFS: { struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv; if ((pmlmeext->cur_wireless_mode == WIRELESS_11G) || (pmlmeext->cur_wireless_mode == WIRELESS_11BG)) { /* WIRELESS_MODE_G){ */ val[0] = 0x0a; val[1] = 0x0a; } else { val[0] = 0x0e; val[1] = 0x0e; } /* SIFS for OFDM Data ACK */ rtw_write8(Adapter, REG_SIFS_CTX_8192E+1, val[0]); /* SIFS for OFDM consecutive tx like CTS data! */ rtw_write8(Adapter, REG_SIFS_TRX_8192E+1, val[1]); rtw_write8(Adapter, REG_SPEC_SIFS_8192E+1, val[0]); rtw_write8(Adapter, REG_MAC_SPEC_SIFS_8192E+1, val[0]); /* Revise SIFS setting due to Hardware register definition change. */ rtw_write8(Adapter, REG_RESP_SIFS_OFDM_8192E+1, val[0]); rtw_write8(Adapter, REG_RESP_SIFS_OFDM_8192E, val[0]); } #if 0 { /* SIFS_Timer = 0x0a0a0808; */ /* RESP_SIFS for CCK */ rtw_write8(Adapter, REG_RESP_SIFS_CCK, val[0]); /* SIFS_T2T_CCK (0x08) */ rtw_write8(Adapter, REG_RESP_SIFS_CCK + 1, val[1]); /* SIFS_R2T_CCK(0x08) */ /* RESP_SIFS for OFDM */ rtw_write8(Adapter, REG_RESP_SIFS_OFDM, val[2]); /* SIFS_T2T_OFDM (0x0a) */ rtw_write8(Adapter, REG_RESP_SIFS_OFDM + 1, val[3]); /* SIFS_R2T_OFDM(0x0a) */ } #endif break; case HW_VAR_ACK_PREAMBLE: { u8 regTmp; u8 bShortPreamble = *((PBOOLEAN)val); /* Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */ regTmp = (pHalData->nCur40MhzPrimeSC) << 5; rtw_write8(Adapter, REG_RRSR + 2, regTmp); regTmp = BIT(4) | BIT(5); if (bShortPreamble) regTmp |= BIT1; else regTmp &= (~BIT1); rtw_write8(Adapter, REG_TRXPTCL_CTL_8192E+2, regTmp); } break; case HW_VAR_CAM_EMPTY_ENTRY: { u8 ucIndex = *((u8 *)val); u8 i; u32 ulCommand = 0; u32 ulContent = 0; u32 ulEncAlgo = CAM_AES; for (i = 0; i < CAM_CONTENT_COUNT; i++) { /* filled id in CAM config 2 byte */ if (i == 0) { ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo) << 2); /* ulContent |= CAM_VALID; */ } else ulContent = 0; /* polling bit, and No Write enable, and address */ ulCommand = CAM_CONTENT_COUNT * ucIndex + i; ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE; /* write content 0 is equall to mark invalid */ rtw_write32(Adapter, WCAMI, ulContent); /* mdelay(40); */ rtw_write32(Adapter, RWCAM, ulCommand); /* mdelay(40); */ } } break; case HW_VAR_CAM_INVALID_ALL: rtw_write32(Adapter, RWCAM, BIT(31) | BIT(30)); break; case HW_VAR_AC_PARAM_VO: rtw_write32(Adapter, REG_EDCA_VO_PARAM, ((u32 *)(val))[0]); break; case HW_VAR_AC_PARAM_VI: rtw_write32(Adapter, REG_EDCA_VI_PARAM, ((u32 *)(val))[0]); break; case HW_VAR_AC_PARAM_BE: pHalData->ac_param_be = ((u32 *)(val))[0]; rtw_write32(Adapter, REG_EDCA_BE_PARAM, ((u32 *)(val))[0]); break; case HW_VAR_AC_PARAM_BK: rtw_write32(Adapter, REG_EDCA_BK_PARAM, ((u32 *)(val))[0]); break; case HW_VAR_ACM_CTRL: { u8 acm_ctrl = *((u8 *)val); u8 AcmCtrl = rtw_read8(Adapter, REG_ACMHWCTRL); if (acm_ctrl > 1) AcmCtrl = AcmCtrl | 0x1; if (acm_ctrl & BIT(1)) AcmCtrl |= AcmHw_VoqEn; else AcmCtrl &= (~AcmHw_VoqEn); if (acm_ctrl & BIT(2)) AcmCtrl |= AcmHw_ViqEn; else AcmCtrl &= (~AcmHw_ViqEn); if (acm_ctrl & BIT(3)) AcmCtrl |= AcmHw_BeqEn; else AcmCtrl &= (~AcmHw_BeqEn); RTW_INFO("[HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl); rtw_write8(Adapter, REG_ACMHWCTRL, AcmCtrl); } break; #ifdef CONFIG_80211N_HT case HW_VAR_AMPDU_FACTOR: { u32 AMPDULen = (*(u8 *)val); if (AMPDULen < HT_AGG_SIZE_64K) AMPDULen = (0x2000 << (*(u8 *)val)) - 1; else AMPDULen = 0xffff; rtw_write16(Adapter, REG_AMPDU_MAX_LENGTH_8192E, AMPDULen); } break; #endif /* CONFIG_80211N_HT */ case HW_VAR_H2C_FW_PWRMODE: { u8 psmode = (*(u8 *)val); rtl8192e_set_FwPwrMode_cmd(Adapter, psmode); } break; case HW_VAR_H2C_FW_JOINBSSRPT: { u8 mstatus = (*(u8 *)val); rtl8192e_set_FwJoinBssReport_cmd(Adapter, mstatus); } break; case HW_VAR_DL_RSVD_PAGE: #ifdef CONFIG_BT_COEXIST if (pHalData->EEPROMBluetoothCoexist == 1) { if (check_fwstate(&Adapter->mlmepriv, WIFI_AP_STATE) == _TRUE) rtl8192e_download_BTCoex_AP_mode_rsvd_page(Adapter); } #endif /* CONFIG_BT_COEXIST */ break; #ifdef CONFIG_P2P_PS case HW_VAR_H2C_FW_P2P_PS_OFFLOAD: { u8 p2p_ps_state = (*(u8 *)val); rtl8192e_set_p2p_ps_offload_cmd(Adapter, p2p_ps_state); } break; #endif /* CONFIG_P2P */ case HW_VAR_TRIGGER_GPIO_0: break; case HW_VAR_EFUSE_BYTES: /* To set EFUE total used bytes, added by Roger, 2008.12.22. */ pHalData->EfuseUsedBytes = *((u16 *)val); break; case HW_VAR_FIFO_CLEARN_UP: { struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(Adapter); u8 trycnt = 100; u32 reg_hw_ssn; /* pause tx */ rtw_write8(Adapter, REG_TXPAUSE, 0xff); if (Adapter->xmitpriv.hw_ssn_seq_no == 1) reg_hw_ssn = REG_HW_SEQ1; else if (Adapter->xmitpriv.hw_ssn_seq_no == 2) reg_hw_ssn = REG_HW_SEQ2; else if (Adapter->xmitpriv.hw_ssn_seq_no == 3) reg_hw_ssn = REG_HW_SEQ3; else reg_hw_ssn = REG_HW_SEQ0; /* keep sn */ Adapter->xmitpriv.nqos_ssn = rtw_read16(Adapter, reg_hw_ssn); if (pwrpriv->bkeepfwalive != _TRUE) { /* RX DMA stop */ rtw_write32(Adapter, REG_RXPKT_NUM, (rtw_read32(Adapter, REG_RXPKT_NUM) | RW_RELEASE_EN)); do { if (!(rtw_read32(Adapter, REG_RXPKT_NUM) & RXDMA_IDLE)) break; } while (trycnt--); if (trycnt == 0) RTW_INFO("Stop RX DMA failed......\n"); /* RQPN Load 0 */ rtw_write16(Adapter, REG_RQPN_NPQ, 0x0); rtw_write32(Adapter, REG_RQPN, 0x80000000); mdelay(10); } } break; case HW_VAR_RESTORE_HW_SEQ: { /* restore Sequence No. */ u32 reg_hw_ssn; if (Adapter->xmitpriv.hw_ssn_seq_no == 1) reg_hw_ssn = REG_HW_SEQ1; else if (Adapter->xmitpriv.hw_ssn_seq_no == 2) reg_hw_ssn = REG_HW_SEQ2; else if (Adapter->xmitpriv.hw_ssn_seq_no == 3) reg_hw_ssn = REG_HW_SEQ3; else reg_hw_ssn = REG_HW_SEQ0; rtw_write8(Adapter, reg_hw_ssn, Adapter->xmitpriv.nqos_ssn); } break; case HW_VAR_CHECK_TXBUF: #ifdef CONFIG_CONCURRENT_MODE { u8 RetryLimit = 0x01; u16 val16; u32 reg_200 = 0, reg_204 = 0, reg_214 = 0; u32 init_reg_200 = 0, init_reg_204 = 0, init_reg_214 = 0; systime start = jiffies; u32 pass_ms; int i = 0; /* Shorten TX packet retry limit to save flush time */ rtw_write16(Adapter, REG_RETRY_LIMIT, BIT_SRL(RetryLimit) | BIT_LRL(RetryLimit)); init_reg_200 = rtw_read32(Adapter, REG_RQPN); /* PUBQ/LQ/HQ */ init_reg_204 = rtw_read32(Adapter, REG_FIFOPAGE); init_reg_214 = rtw_read32(Adapter, REG_RQPN_NPQ); while (rtw_get_passing_time_ms(start) < 2000 && !RTW_CANNOT_RUN(Adapter) ) { reg_200 = rtw_read32(Adapter, REG_RQPN); reg_204 = rtw_read32(Adapter, REG_FIFOPAGE); reg_214 = rtw_read32(Adapter, REG_RQPN_NPQ); /* Make sure all reserve pages are returned */ if (((reg_200 & 0x00ffffff) == (reg_204 & 0x00ffffff)) && /* PUBQ/LQ/HQ */ ((reg_214 & 0x00ff00ff) == ((reg_214 >> 8) & 0x00ff00ff))) /* EXQ/NQ */ break; i++; /* wait MAC to flush out reserve pages */ msleep(10); } pass_ms = rtw_get_passing_time_ms(start); if (RTW_CANNOT_RUN(Adapter)) { ; /* do nothing */ } else if (pass_ms >= 2000 || (reg_200 & 0x00ffffff) != (reg_204 & 0x00ffffff)) { RTW_PRINT("%s:(HW_VAR_CHECK_TXBUF)NOT empty(%d) in %d ms\n", __FUNCTION__, i, pass_ms); RTW_PRINT("%s:(HW_VAR_CHECK_TXBUF)0x200=0x%08x, 0x204=0x%08x 0x214=0x%08x (0x%08x, 0x%08x, 0x%08x)\n", __FUNCTION__, reg_200, reg_204, reg_214, init_reg_200, init_reg_204, init_reg_214); /* rtw_warn_on(1); */ } else RTW_INFO("%s:(HW_VAR_CHECK_TXBUF)TXBUF Empty(%d) in %d ms\n", __FUNCTION__, i, pass_ms); /* Restore TX packet retry limit */ RetryLimit = RL_VAL_STA; rtw_write16(Adapter, REG_RETRY_LIMIT, BIT_SRL(RetryLimit) | BIT_LRL(RetryLimit)); } #endif break; case HW_VAR_BCN_VALID: #ifdef CONFIG_CONCURRENT_MODE if (Adapter->hw_port == HW_PORT1) rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) | BIT0); else #endif /* BCN_VALID, BIT16 of REG_DWBCN0_CTRL_8192E = BIT0 of REG_DWBCN0_CTRL_8192E+2, write 1 to clear, Clear by sw */ rtw_write8(Adapter, REG_DWBCN0_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN0_CTRL_8192E+2) | BIT0); break; case HW_VAR_DL_BCN_SEL: #ifdef CONFIG_CONCURRENT_MODE if (Adapter->hw_port == HW_PORT1) /*SW_BCN_SEL - Port1*/ rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) | BIT4); else #endif /*SW_BCN_SEL - Port0*/ rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) & ~BIT4); break; #ifdef CONFIG_GPIO_WAKEUP case HW_SET_GPIO_WL_CTRL: { u8 enable = *val; u8 value = rtw_read8(Adapter, 0x4e); if (enable && (value & BIT(6))) { value &= ~BIT(6); rtw_write8(Adapter, 0x4e, value); } else if (enable == _FALSE) { value |= BIT(6); rtw_write8(Adapter, 0x4e, value); } RTW_INFO("%s: set WL control, 0x4E=0x%02X\n", __func__, rtw_read8(Adapter, 0x4e)); } break; #endif #ifdef CONFIG_BEAMFORMING #if (BEAMFORMING_SUPPORT == 1) case HW_VAR_HW_REG_TIMER_INIT: { HAL_HW_TIMER_TYPE TimerType = (*(PHAL_HW_TIMER_TYPE)val) >> 16; rtw_write8(Adapter, 0x164, 1); if (TimerType == HAL_TIMER_TXBF) rtw_write16(Adapter, 0x15C, (*(pu2Byte)val)); else if (TimerType == HAL_TIMER_EARLYMODE) rtw_write32(Adapter, 0x160, 0x05000190); } break; case HW_VAR_HW_REG_TIMER_START: { HAL_HW_TIMER_TYPE TimerType = *(PHAL_HW_TIMER_TYPE)val; if (TimerType == HAL_TIMER_TXBF) rtw_write8(Adapter, 0x15F, 0x5); else if (TimerType == HAL_TIMER_EARLYMODE) rtw_write8(Adapter, 0x163, 0x5); } break; case HW_VAR_HW_REG_TIMER_RESTART: { HAL_HW_TIMER_TYPE TimerType = *(PHAL_HW_TIMER_TYPE)val & 0xffff; if (TimerType == HAL_TIMER_TXBF) { u4Byte Reg15C = (*(pu4Byte)val) >> 16 | BIT24 | BIT26; rtw_write8(Adapter, 0x15F, 0x0); rtw_write32(Adapter, 0x15F, Reg15C); } else if (TimerType == HAL_TIMER_EARLYMODE) { rtw_write8(Adapter, 0x163, 0x0); rtw_write8(Adapter, 0x163, 0x5); } } break; case HW_VAR_HW_REG_TIMER_STOP: { HAL_HW_TIMER_TYPE TimerType = *(PHAL_HW_TIMER_TYPE)val; if (TimerType == HAL_TIMER_TXBF) rtw_write8(Adapter, 0x15F, 0); else if (TimerType == HAL_TIMER_EARLYMODE) rtw_write8(Adapter, 0x163, 0x0); } break; #endif/*(BEAMFORMING_SUPPORT ==1)*/ #endif/*CONFIG_BEAMFORMING*/ #if defined(CONFIG_TDLS) && defined(CONFIG_TDLS_CH_SW) case HW_VAR_TDLS_BCN_EARLY_C2H_RPT: rtl8192e_set_BcnEarly_C2H_Rpt_cmd(Adapter, *val); break; #endif default: ret = SetHwReg(Adapter, variable, val); break; } return ret; } struct qinfo_92e { u32 head:8; u32 pkt_num:7; u32 tail:8; u32 ac:2; u32 macid:7; }; struct bcn_qinfo_92e { u16 head:8; u16 pkt_num:8; }; void dump_qinfo_92e(void *sel, struct qinfo_92e *info, const char *tag) { /* if (info->pkt_num) */ RTW_PRINT_SEL(sel, "%shead:0x%02x, tail:0x%02x, pkt_num:%u, macid:%u, ac:%u\n" , tag ? tag : "", info->head, info->tail, info->pkt_num, info->macid, info->ac ); } void dump_bcn_qinfo_92e(void *sel, struct bcn_qinfo_92e *info, const char *tag) { /* if (info->pkt_num) */ RTW_PRINT_SEL(sel, "%shead:0x%02x, pkt_num:%u\n" , tag ? tag : "", info->head, info->pkt_num ); } void dump_mac_qinfo_92e(void *sel, _adapter *adapter) { u32 q0_info; u32 q1_info; u32 q2_info; u32 q3_info; u32 q4_info; u32 q5_info; u32 q6_info; u32 q7_info; u32 mg_q_info; u32 hi_q_info; u16 bcn_q_info; q0_info = rtw_read32(adapter, REG_Q0_INFO); q1_info = rtw_read32(adapter, REG_Q1_INFO); q2_info = rtw_read32(adapter, REG_Q2_INFO); q3_info = rtw_read32(adapter, REG_Q3_INFO); q4_info = rtw_read32(adapter, REG_Q4_INFO); q5_info = rtw_read32(adapter, REG_Q5_INFO); q6_info = rtw_read32(adapter, REG_Q6_INFO); q7_info = rtw_read32(adapter, REG_Q7_INFO); mg_q_info = rtw_read32(adapter, REG_MGQ_INFO); hi_q_info = rtw_read32(adapter, REG_HGQ_INFO); bcn_q_info = rtw_read16(adapter, REG_BCNQ_INFO); dump_qinfo_92e(sel, (struct qinfo_92e *)&q0_info, "Q0 "); dump_qinfo_92e(sel, (struct qinfo_92e *)&q1_info, "Q1 "); dump_qinfo_92e(sel, (struct qinfo_92e *)&q2_info, "Q2 "); dump_qinfo_92e(sel, (struct qinfo_92e *)&q3_info, "Q3 "); dump_qinfo_92e(sel, (struct qinfo_92e *)&q4_info, "Q4 "); dump_qinfo_92e(sel, (struct qinfo_92e *)&q5_info, "Q5 "); dump_qinfo_92e(sel, (struct qinfo_92e *)&q6_info, "Q6 "); dump_qinfo_92e(sel, (struct qinfo_92e *)&q7_info, "Q7 "); dump_qinfo_92e(sel, (struct qinfo_92e *)&mg_q_info, "MG "); dump_qinfo_92e(sel, (struct qinfo_92e *)&hi_q_info, "HI "); dump_bcn_qinfo_92e(sel, (struct bcn_qinfo_92e *)&bcn_q_info, "BCN "); } static void dump_mac_txfifo_92e(void *sel, _adapter *adapter) { u32 rqpn, rqpn_npq; u32 hpq, lpq, npq, epq, pubq; rqpn = rtw_read32(adapter, REG_FIFOPAGE); rqpn_npq = rtw_read32(adapter, REG_RQPN_NPQ); hpq = (rqpn & 0xFF); lpq = ((rqpn & 0xFF00)>>8); pubq = ((rqpn & 0xFF0000)>>16); npq = ((rqpn_npq & 0xFF00)>>8); epq = ((rqpn_npq & 0xFF000000)>>24); RTW_PRINT_SEL(sel, "Tx: available page num: "); if ((hpq == 0xEA) && (hpq == lpq) && (hpq == pubq)) RTW_PRINT_SEL(sel, "N/A (reg val = 0xea)\n"); else RTW_PRINT_SEL(sel, "HPQ: %d, LPQ: %d, NPQ: %d, EPQ: %d, PUBQ: %d\n" , hpq, lpq, npq, epq, pubq); } void rtl8192e_read_wmmedca_reg(PADAPTER adapter, u16 *vo_params, u16 *vi_params, u16 *be_params, u16 *bk_params) { u8 vo_reg_params[4]; u8 vi_reg_params[4]; u8 be_reg_params[4]; u8 bk_reg_params[4]; GetHwReg8192E(adapter, HW_VAR_AC_PARAM_VO, vo_reg_params); GetHwReg8192E(adapter, HW_VAR_AC_PARAM_VI, vi_reg_params); GetHwReg8192E(adapter, HW_VAR_AC_PARAM_BE, be_reg_params); GetHwReg8192E(adapter, HW_VAR_AC_PARAM_BK, bk_reg_params); vo_params[0] = vo_reg_params[0]; vo_params[1] = vo_reg_params[1] & 0x0F; vo_params[2] = (vo_reg_params[1] & 0xF0) >> 4; vo_params[3] = ((vo_reg_params[3] << 8) | (vo_reg_params[2])) * 32; vi_params[0] = vi_reg_params[0]; vi_params[1] = vi_reg_params[1] & 0x0F; vi_params[2] = (vi_reg_params[1] & 0xF0) >> 4; vi_params[3] = ((vi_reg_params[3] << 8) | (vi_reg_params[2])) * 32; be_params[0] = be_reg_params[0]; be_params[1] = be_reg_params[1] & 0x0F; be_params[2] = (be_reg_params[1] & 0xF0) >> 4; be_params[3] = ((be_reg_params[3] << 8) | (be_reg_params[2])) * 32; bk_params[0] = bk_reg_params[0]; bk_params[1] = bk_reg_params[1] & 0x0F; bk_params[2] = (bk_reg_params[1] & 0xF0) >> 4; bk_params[3] = ((bk_reg_params[3] << 8) | (bk_reg_params[2])) * 32; vo_params[1] = (1 << vo_params[1]) - 1; vo_params[2] = (1 << vo_params[2]) - 1; vi_params[1] = (1 << vi_params[1]) - 1; vi_params[2] = (1 << vi_params[2]) - 1; be_params[1] = (1 << be_params[1]) - 1; be_params[2] = (1 << be_params[2]) - 1; bk_params[1] = (1 << bk_params[1]) - 1; bk_params[2] = (1 << bk_params[2]) - 1; } void GetHwReg8192E(PADAPTER Adapter, u8 variable, u8 *val) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct dm_struct *podmpriv = &pHalData->odmpriv; u32 val32; switch (variable) { case HW_VAR_TXPAUSE: val[0] = rtw_read8(Adapter, REG_TXPAUSE); break; case HW_VAR_BCN_VALID: #ifdef CONFIG_CONCURRENT_MODE if (Adapter->hw_port == HW_PORT1) val[0] = (BIT0 & rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2)) ? _TRUE : _FALSE; else #endif /*BCN_VALID, BIT16 of REG_DWBCN0_CTRL_8192E = BIT0 of REG_DWBCN0_CTRL_8192E+2*/ val[0] = (BIT0 & rtw_read8(Adapter, REG_DWBCN0_CTRL_8192E+2)) ? _TRUE : _FALSE; break; case HW_VAR_AC_PARAM_VO: val32 = rtw_read32(Adapter, REG_EDCA_VO_PARAM); val[0] = val32 & 0xFF; val[1] = (val32 >> 8) & 0xFF; val[2] = (val32 >> 16) & 0xFF; val[3] = (val32 >> 24) & 0x07; break; case HW_VAR_AC_PARAM_VI: val32 = rtw_read32(Adapter, REG_EDCA_VI_PARAM); val[0] = val32 & 0xFF; val[1] = (val32 >> 8) & 0xFF; val[2] = (val32 >> 16) & 0xFF; val[3] = (val32 >> 24) & 0x07; break; case HW_VAR_AC_PARAM_BE: val32 = rtw_read32(Adapter, REG_EDCA_BE_PARAM); val[0] = val32 & 0xFF; val[1] = (val32 >> 8) & 0xFF; val[2] = (val32 >> 16) & 0xFF; val[3] = (val32 >> 24) & 0x07; break; case HW_VAR_AC_PARAM_BK: val32 = rtw_read32(Adapter, REG_EDCA_BK_PARAM); val[0] = val32 & 0xFF; val[1] = (val32 >> 8) & 0xFF; val[2] = (val32 >> 16) & 0xFF; val[3] = (val32 >> 24) & 0x07; break; case HW_VAR_EFUSE_BYTES: /* To get EFUE total used bytes, added by Roger, 2008.12.22. */ *((u16 *)(val)) = pHalData->EfuseUsedBytes; break; case HW_VAR_CHK_HI_QUEUE_EMPTY: /* *val = ((rtw_read32(Adapter, REG_HGQ_INFO)&0x00007f00)==0) ? _TRUE:_FALSE; */ *val = (rtw_read16(Adapter, REG_TXPKT_EMPTY) & BIT(10)) ? _TRUE : _FALSE; break; case HW_VAR_CHK_MGQ_CPU_EMPTY: *val = (rtw_read16(Adapter, REG_TXPKT_EMPTY) & BIT(8)) ? _TRUE : _FALSE; break; case HW_VAR_SYS_CLKR: *val = rtw_read8(Adapter, REG_SYS_CLKR); break; case HW_VAR_DUMP_MAC_QUEUE_INFO: dump_mac_qinfo_92e(val, Adapter); break; case HW_VAR_DUMP_MAC_TXFIFO: dump_mac_txfifo_92e(val, Adapter); break; default: GetHwReg(Adapter, variable, val); break; } } /* * Description: * Change default setting of specified variable. * */ u8 SetHalDefVar8192E( IN PADAPTER Adapter, IN HAL_DEF_VARIABLE eVariable, IN PVOID pValue ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 bResult = _SUCCESS; switch (eVariable) { default: bResult = SetHalDefVar(Adapter, eVariable, pValue); break; } return bResult; } void hal_ra_info_dump(_adapter *padapter , void *sel) { int i; u8 mac_id; u32 cmd; u32 ra_info1, ra_info2, bw_set; u32 rate_mask1, rate_mask2; u8 curr_tx_rate, curr_tx_sgi, hight_rate, lowest_rate; struct dvobj_priv *dvobj = adapter_to_dvobj(padapter); HAL_DATA_TYPE *HalData = GET_HAL_DATA(padapter); struct macid_ctl_t *macid_ctl = dvobj_to_macidctl(dvobj); for (i = 0; i < macid_ctl->num; i++) { if (rtw_macid_is_used(macid_ctl, i) && !rtw_macid_is_bmc(macid_ctl, i)) { mac_id = (u8) i; _RTW_PRINT_SEL(sel , "============ RA status check Mac_id:%d ===================\n", mac_id); cmd = 0x40000100 | mac_id; rtw_write32(padapter, REG_HMEBOX_E2_E3_8192E, cmd); msleep(10); ra_info1 = rtw_read32(padapter, REG_RSVD5_8192E); curr_tx_sgi = rtw_get_current_tx_sgi(padapter, macid_ctl->sta[mac_id]); curr_tx_rate = rtw_get_current_tx_rate(padapter, macid_ctl->sta[mac_id]); _RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] =>PWRSTS = 0x%02x\n", ra_info1, (ra_info1 >> 8) & 0x07); _RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] =>cur_tx_rate= %s, cur_sgi:%d\n", ra_info1, HDATA_RATE(curr_tx_rate), curr_tx_sgi); cmd = 0x40000400 | mac_id; rtw_write32(padapter, REG_HMEBOX_E2_E3_8192E, cmd); msleep(10); ra_info1 = rtw_read32(padapter, REG_RSVD5_8192E); ra_info2 = rtw_read32(padapter, REG_RSVD6_8192E); rate_mask1 = rtw_read32(padapter, REG_RSVD7_8192E); rate_mask2 = rtw_read32(padapter, REG_RSVD8_8192E); hight_rate = ra_info2 & 0xFF; lowest_rate = (ra_info2 >> 8) & 0xFF; bw_set = (ra_info1 >> 8) & 0xFF; _RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] => VHT_EN=0x%02x, ", ra_info1, (ra_info1 >> 24) & 0xFF); switch (bw_set) { case CHANNEL_WIDTH_20: _RTW_PRINT_SEL(sel , "BW_setting=20M\n"); break; case CHANNEL_WIDTH_40: _RTW_PRINT_SEL(sel , "BW_setting=40M\n"); break; case CHANNEL_WIDTH_80: _RTW_PRINT_SEL(sel , "BW_setting=80M\n"); break; case CHANNEL_WIDTH_160: _RTW_PRINT_SEL(sel , "BW_setting=160M\n"); break; default: _RTW_PRINT_SEL(sel , "BW_setting=0x%02x\n", bw_set); break; } _RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] =>RSSI = %d,DISRA = 0x%02x\n", ra_info1, ra_info1 & 0xFF, (ra_info1 >> 16) & 0xFF); _RTW_PRINT_SEL(sel, "[ ra_info2:0x%08x ] =>hight_rate= %s, lowest_rate= %s, SGI = 0x%02x, RateID = %d\n", ra_info2, HDATA_RATE(hight_rate), HDATA_RATE(lowest_rate), (ra_info2 >> 16) & 0xFF, (ra_info2 >> 24) & 0xFF); _RTW_PRINT_SEL(sel , "rate_mask2:0x%08x , rate_mask1:0x%08x\n", rate_mask2, rate_mask1); } } } /* * Description: * Query setting of specified variable. * */ u8 GetHalDefVar8192E( IN PADAPTER Adapter, IN HAL_DEF_VARIABLE eVariable, IN PVOID pValue ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 bResult = _SUCCESS; switch (eVariable) { case HAL_DEF_IS_SUPPORT_ANT_DIV: #ifdef CONFIG_ANTENNA_DIVERSITY *((u8 *)pValue) = (pHalData->AntDivCfg == 0) ? _FALSE : _TRUE; #endif break; case HAL_DEF_DRVINFO_SZ: *((u32 *)pValue) = DRVINFO_SZ; break; case HAL_DEF_MAX_RECVBUF_SZ: *((u32 *)pValue) = MAX_RECVBUF_SZ; break; case HAL_DEF_RX_PACKET_OFFSET: *((u32 *)pValue) = RXDESC_SIZE + (DRVINFO_SZ * 8); break; case HAL_DEF_TX_LDPC: if (IS_NORMAL_CHIP(pHalData->version_id)) *((PBOOLEAN)pValue) = _FALSE; else *((PBOOLEAN)pValue) = _FALSE; break; case HAL_DEF_RX_LDPC: if (IS_NORMAL_CHIP(pHalData->version_id)) *((PBOOLEAN)pValue) = _FALSE; else *((PBOOLEAN)pValue) = _FALSE; break; case HAL_DEF_TX_STBC: if (pHalData->rf_type == RF_1T2R || pHalData->rf_type == RF_1T1R) *(u8 *)pValue = 0; else *(u8 *)pValue = 1; break; case HAL_DEF_RX_STBC: *(u8 *)pValue = 1; break; case HAL_DEF_EXPLICIT_BEAMFORMER: case HAL_DEF_EXPLICIT_BEAMFORMEE: *((PBOOLEAN)pValue) = _FALSE; break; case HW_DEF_RA_INFO_DUMP: hal_ra_info_dump(Adapter, pValue); break; case HAL_DEF_TX_PAGE_SIZE: *((u32 *)pValue) = PAGE_SIZE_TX_92E; break; case HAL_DEF_TX_PAGE_BOUNDARY: *(u8 *)pValue = TX_PAGE_BOUNDARY_8192E; break; case HAL_DEF_RX_DMA_SZ_WOW: *(u32 *)pValue = MAX_RX_DMA_BUFFER_SIZE_8192E - RESV_FMWF; break; case HAL_DEF_RX_DMA_SZ: *(u32 *)pValue = MAX_RX_DMA_BUFFER_SIZE_8192E; break; case HAL_DEF_RX_PAGE_SIZE: *((u32 *)pValue) = 8; break; case HW_VAR_BEST_AMPDU_DENSITY: *((u32 *)pValue) = IEEE80211_HT_MPDU_DENSITY_16; break; default: bResult = GetHalDefVar(Adapter, eVariable, pValue); break; } return bResult; } void rtl8192e_start_thread(_adapter *padapter) { #ifdef CONFIG_SDIO_HCI #ifndef CONFIG_SDIO_TX_TASKLET struct xmit_priv *xmitpriv = &padapter->xmitpriv; if (xmitpriv->SdioXmitThread == NULL) { RTW_INFO(FUNC_ADPT_FMT " start RTWHALXT\n", FUNC_ADPT_ARG(padapter)); xmitpriv->SdioXmitThread = kthread_run(rtl8192es_xmit_thread, padapter, "RTWHALXT"); if (IS_ERR(xmitpriv->SdioXmitThread)) { RTW_ERR("%s: start rtl8192es_xmit_thread FAIL!!\n", __func__); xmitpriv->SdioXmitThread = NULL; } } #endif #endif } void rtl8192e_stop_thread(_adapter *padapter) { #ifdef CONFIG_SDIO_HCI #ifndef CONFIG_SDIO_TX_TASKLET struct xmit_priv *xmitpriv = &padapter->xmitpriv; /* stop xmit_buf_thread */ if (xmitpriv->SdioXmitThread) { _rtw_up_sema(&xmitpriv->SdioXmitSema); rtw_thread_stop(xmitpriv->SdioXmitThread); xmitpriv->SdioXmitThread = NULL; } #endif #endif } void hal_notch_filter_8192E(_adapter *adapter, bool enable) { if (enable) { RTW_INFO("Enable notch filter\n"); /* rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1); */ } else { RTW_INFO("Disable notch filter\n"); /* rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1); */ } } static void read_chip_version_8192e(PADAPTER Adapter) { u32 value32; HAL_DATA_TYPE *pHalData; u8 tmpvdr; pHalData = GET_HAL_DATA(Adapter); value32 = rtw_read32(Adapter, REG_SYS_CFG1_8192E); RTW_INFO("%s 0xF0 = 0x%x\n", __FUNCTION__, value32); pHalData->version_id.ICType = CHIP_8192E; pHalData->version_id.RFType = (value32 & RF_TYPE_ID) ? RF_2T2R : RF_1T1R; pHalData->version_id.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP); tmpvdr = (value32 & EXT_VENDOR_ID) >> EXT_VENDOR_ID_SHIFT; if (tmpvdr == 0x00) pHalData->version_id.VendorType = CHIP_VENDOR_TSMC; else if (tmpvdr == 0x01) pHalData->version_id.VendorType = CHIP_VENDOR_SMIC; else if (tmpvdr == 0x02) pHalData->version_id.VendorType = CHIP_VENDOR_UMC; pHalData->version_id.CUTVersion = (value32 & CHIP_VER_RTL_MASK) >> CHIP_VER_RTL_SHIFT; /* IC version (CUT) */ pHalData->MultiFunc = RT_MULTI_FUNC_NONE; rtw_hal_config_rftype(Adapter); #if 1 dump_chip_info(pHalData->version_id); #endif } void init_hal_spec_8192e(_adapter *adapter) { struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter); hal_spec->ic_name = "rtl8192e"; hal_spec->macid_num = 128; hal_spec->sec_cam_ent_num = 64; hal_spec->sec_cap = 0; hal_spec->rfpath_num_2g = 2; hal_spec->rfpath_num_5g = 0; hal_spec->txgi_max = 63; hal_spec->txgi_pdbm = 2; hal_spec->max_tx_cnt = 2; hal_spec->tx_nss_num = 2; hal_spec->rx_nss_num = 2; hal_spec->band_cap = BAND_CAP_2G; hal_spec->bw_cap = BW_CAP_20M | BW_CAP_40M; hal_spec->port_num = 2; hal_spec->proto_cap = PROTO_CAP_11B | PROTO_CAP_11G | PROTO_CAP_11N; hal_spec->wl_func = 0 | WL_FUNC_P2P | WL_FUNC_MIRACAST | WL_FUNC_TDLS ; hal_spec->pg_txpwr_saddr = 0x10; hal_spec->pg_txgi_diff_factor = 1; rtw_macid_ctl_init_sleep_reg(adapter_to_macidctl(adapter) , REG_MACID_SLEEP , REG_MACID_SLEEP_1 , REG_MACID_SLEEP_2 , REG_MACID_SLEEP_3); } void rtl8192e_init_default_value(_adapter *padapter) { PHAL_DATA_TYPE pHalData; struct pwrctrl_priv *pwrctrlpriv; u8 i; pHalData = GET_HAL_DATA(padapter); pwrctrlpriv = adapter_to_pwrctl(padapter); pHalData->fw_ractrl = _FALSE; if (!pwrctrlpriv->bkeepfwalive) pHalData->LastHMEBoxNum = 0; /* init phydm default value */ pHalData->bIQKInitialized = _FALSE; #if defined(CONFIG_USB_HCI) || defined(CONFIG_PCI_HCI) pHalData->IntrMask[0] = (u32)(\ /* IMR_ROK | */ /* IMR_RDU | */ /* IMR_VODOK | */ /* IMR_VIDOK | */ /* IMR_BEDOK | */ /* IMR_BKDOK | */ /* IMR_MGNTDOK | */ /* IMR_HIGHDOK | */ /* IMR_CPWM | */ /* IMR_CPWM2 | */ /* IMR_C2HCMD | */ /* IMR_HISR1_IND_INT | */ /* IMR_ATIMEND | */ /* IMR_BCNDMAINT_E | */ /* IMR_HSISR_IND_ON_INT | */ /* IMR_BCNDOK0 | */ /* IMR_BCNDMAINT0 | */ /* IMR_TSF_BIT32_TOGGLE | */ /* IMR_TXBCN0OK | */ /* IMR_TXBCN0ERR | */ /* IMR_GTINT3 | */ /* IMR_GTINT4 | */ /* IMR_TXCCK | */ 0); pHalData->IntrMask[1] = (u32)(\ /* IMR_RXFOVW | */ /* IMR_TXFOVW | */ /* IMR_RXERR | */ /* IMR_TXERR | */ /* IMR_ATIMEND_E | */ /* IMR_BCNDOK1 | */ /* IMR_BCNDOK2 | */ /* IMR_BCNDOK3 | */ /* IMR_BCNDOK4 | */ /* IMR_BCNDOK5 | */ /* IMR_BCNDOK6 | */ /* IMR_BCNDOK7 | */ /* IMR_BCNDMAINT1 | */ /* IMR_BCNDMAINT2 | */ /* IMR_BCNDMAINT3 | */ /* IMR_BCNDMAINT4 | */ /* IMR_BCNDMAINT5 | */ /* IMR_BCNDMAINT6 | */ /* IMR_BCNDMAINT7 | */ 0); #endif pHalData->EfuseHal.fakeEfuseBank = 0; pHalData->EfuseHal.fakeEfuseUsedBytes = 0; memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE); memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN); memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN); } #ifdef CONFIG_BT_COEXIST void rtl8192e_combo_card_WifiOnlyHwInit(PADAPTER Adapter) { u8 u1Tmp; u16 u2Tmp; u32 u4Tmp; RTW_INFO("%s !\n", __FUNCTION__); /* antenna fixed to wifi */ rtw_write8(Adapter, 0x944, 0x24); rtw_write32(Adapter, 0x930, 0x700700); rtw_write8(Adapter, 0x92c, 0x04); #ifdef CONFIG_USB_HCI rtw_write32(Adapter, REG_PAD_CTRL1_8192E, 0x30430004); #else rtw_write32(Adapter, REG_PAD_CTRL1_8192E, 0x30030004); #endif /* 0x4c[27][24]='00', Set Antenna to BB */ u4Tmp = rtw_read32(Adapter, BIT_REG_LED_CFG_8192E); u4Tmp &= ~BIT24; u4Tmp &= ~BIT27; rtw_write32(Adapter, BIT_REG_LED_CFG_8192E, u4Tmp); /* coex. table */ rtw_write32(Adapter , REG_BT_COEX_TABLE0_8192E, 0x55555555); rtw_write32(Adapter , REG_BT_COEX_TABLE1_8192E, 0x55555555); rtw_write32(Adapter , REG_BT_COEX_TABLE2_8192E, 0xffffff); rtw_write32(Adapter , REG_BT_COEX_TABLE3_8192E, 0x3); /* coex parameters */ rtw_write8(Adapter, REG_BT_STATISTICS_OTH_CTRL_8192E, 0x3); /* 0x790[5:0]=0x5 */ u1Tmp = rtw_read8(Adapter, REG_TDMA_TIME_AND_RPT_SAM_SET_8192E); u1Tmp &= 0xc0; u1Tmp |= 0x5; rtw_write8(Adapter, REG_TDMA_TIME_AND_RPT_SAM_SET_8192E, u1Tmp); /* enable counter statistics */ rtw_write8(Adapter, REG_BT_STATISTICS_CTRL_8192E, 0x4); /* enable PTA */ rtw_write8(Adapter, REG_GPIO_MUXCFG_8192E, 0x20); /* enable mailbox interface */ u2Tmp = rtw_read16(Adapter, REG_GPIO_MUXCFG_8192E); u2Tmp |= BIT9; rtw_write16(Adapter, REG_GPIO_MUXCFG_8192E, u2Tmp); /* enable PTA I2C mailbox */ u1Tmp = rtw_read8(Adapter, REG_CR_8192E+1); u1Tmp |= BIT4; rtw_write8(Adapter, REG_CR_8192E+1, u1Tmp); /* enable bt clock when wifi is disabled. */ u1Tmp = rtw_read8(Adapter, REG_WLLPS_CTRL_8192E+3); u1Tmp |= BIT0; rtw_write8(Adapter, REG_WLLPS_CTRL_8192E+3, u1Tmp); /* enable bt clock when suspend. */ u1Tmp = rtw_read8(Adapter, REG_SYS_PW_CTRL_8192E+3); u1Tmp |= BIT0; rtw_write8(Adapter, REG_SYS_PW_CTRL_8192E+3, u1Tmp); } #endif /* CONFIG_BT_COEXIST */ void rtl8192e_set_hal_ops(struct hal_ops *pHalFunc) { pHalFunc->dm_init = &rtl8192e_init_dm_priv; pHalFunc->dm_deinit = &rtl8192e_deinit_dm_priv; pHalFunc->read_chip_version = read_chip_version_8192e; pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8192E; pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8192E; pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8192E; pHalFunc->set_tx_power_index_handler = PHY_SetTxPowerIndex_8192E; pHalFunc->get_tx_power_index_handler = PHY_GetTxPowerIndex_8192E; pHalFunc->hal_dm_watchdog = &rtl8192e_HalDmWatchDog; pHalFunc->SetBeaconRelatedRegistersHandler = &SetBeaconRelatedRegisters8192E; pHalFunc->run_thread = &rtl8192e_start_thread; pHalFunc->cancel_thread = &rtl8192e_stop_thread; pHalFunc->read_bbreg = &PHY_QueryBBReg8192E; pHalFunc->write_bbreg = &PHY_SetBBReg8192E; pHalFunc->read_rfreg = &PHY_QueryRFReg8192E; pHalFunc->write_rfreg = &PHY_SetRFReg8192E; pHalFunc->read_wmmedca_reg = &rtl8192e_read_wmmedca_reg; /* Efuse related function */ pHalFunc->EfusePowerSwitch = &rtl8192E_EfusePowerSwitch; pHalFunc->ReadEFuse = &rtl8192E_ReadEFuse; pHalFunc->EFUSEGetEfuseDefinition = &rtl8192E_EFUSE_GetEfuseDefinition; pHalFunc->EfuseGetCurrentSize = &rtl8192E_EfuseGetCurrentSize; pHalFunc->Efuse_PgPacketRead = &rtl8192E_Efuse_PgPacketRead; pHalFunc->Efuse_PgPacketWrite = &rtl8192E_Efuse_PgPacketWrite; pHalFunc->Efuse_WordEnableDataWrite = &rtl8192E_Efuse_WordEnableDataWrite; #ifdef DBG_CONFIG_ERROR_DETECT pHalFunc->sreset_init_value = &sreset_init_value; pHalFunc->sreset_reset_value = &sreset_reset_value; pHalFunc->silentreset = &sreset_reset; pHalFunc->sreset_xmit_status_check = &rtl8192e_sreset_xmit_status_check; pHalFunc->sreset_linked_status_check = &rtl8192e_sreset_linked_status_check; pHalFunc->sreset_get_wifi_status = &sreset_get_wifi_status; pHalFunc->sreset_inprogress = &sreset_inprogress; #endif /* DBG_CONFIG_ERROR_DETECT */ pHalFunc->GetHalODMVarHandler = GetHalODMVar; pHalFunc->SetHalODMVarHandler = SetHalODMVar; /* pHalFunc->hal_notch_filter = &hal_notch_filter_rtl8192E; */ pHalFunc->c2h_handler = c2h_handler_8192e; pHalFunc->fill_h2c_cmd = &FillH2CCmd_8192E; pHalFunc->fill_fake_txdesc = &rtl8192e_fill_fake_txdesc; pHalFunc->fw_dl = &FirmwareDownload8192E; pHalFunc->hal_get_tx_buff_rsvd_page_num = &GetTxBufferRsvdPageNum8192E; }