/****************************************************************************** * * Copyright(c) 2007 - 2012 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #define _OSDEP_SERVICE_C_ #include #define RT_TAG '1178' #ifdef DBG_MEMORY_LEAK #ifdef PLATFORM_LINUX atomic_t _malloc_cnt = ATOMIC_INIT(0); atomic_t _malloc_size = ATOMIC_INIT(0); #endif #endif /* DBG_MEMORY_LEAK */ #if defined(PLATFORM_LINUX) /* * Translate the OS dependent @param error_code to OS independent RTW_STATUS_CODE * @return: one of RTW_STATUS_CODE */ inline int RTW_STATUS_CODE(int error_code){ if(error_code >=0) return _SUCCESS; switch(error_code) { //case -ETIMEDOUT: // return RTW_STATUS_TIMEDOUT; default: return _FAIL; } } #else inline int RTW_STATUS_CODE(int error_code){ return error_code; } #endif u32 rtw_atoi(u8* s) { int num=0,flag=0; int i; for(i=0;i<=strlen(s);i++) { if(s[i] >= '0' && s[i] <= '9') num = num * 10 + s[i] -'0'; else if(s[0] == '-' && i==0) flag =1; else break; } if(flag == 1) num = num * -1; return(num); } inline u8* _rtw_vmalloc(u32 sz) { u8 *pbuf; #ifdef PLATFORM_LINUX pbuf = vmalloc(sz); #endif #ifdef PLATFORM_FREEBSD pbuf = malloc(sz,M_DEVBUF,M_NOWAIT); #endif #ifdef PLATFORM_WINDOWS NdisAllocateMemoryWithTag(&pbuf,sz, RT_TAG); #endif #ifdef DBG_MEMORY_LEAK #ifdef PLATFORM_LINUX if ( pbuf != NULL) { atomic_inc(&_malloc_cnt); atomic_add(sz, &_malloc_size); } #endif #endif /* DBG_MEMORY_LEAK */ return pbuf; } inline u8* _rtw_zvmalloc(u32 sz) { u8 *pbuf; #ifdef PLATFORM_LINUX pbuf = _rtw_vmalloc(sz); if (pbuf != NULL) memset(pbuf, 0, sz); #endif #ifdef PLATFORM_FREEBSD pbuf = malloc(sz,M_DEVBUF,M_ZERO|M_NOWAIT); #endif #ifdef PLATFORM_WINDOWS NdisAllocateMemoryWithTag(&pbuf,sz, RT_TAG); if (pbuf != NULL) NdisFillMemory(pbuf, sz, 0); #endif return pbuf; } inline void _rtw_vmfree(u8 *pbuf, u32 sz) { #ifdef PLATFORM_LINUX vfree(pbuf); #endif #ifdef PLATFORM_FREEBSD free(pbuf,M_DEVBUF); #endif #ifdef PLATFORM_WINDOWS NdisFreeMemory(pbuf,sz, 0); #endif #ifdef DBG_MEMORY_LEAK #ifdef PLATFORM_LINUX atomic_dec(&_malloc_cnt); atomic_sub(sz, &_malloc_size); #endif #endif /* DBG_MEMORY_LEAK */ } u8* _rtw_malloc(u32 sz) { u8 *pbuf=NULL; #ifdef PLATFORM_LINUX #ifdef RTK_DMP_PLATFORM if(sz > 0x4000) pbuf = (u8 *)dvr_malloc(sz); else #endif pbuf = kmalloc(sz,in_interrupt() ? GFP_ATOMIC : GFP_KERNEL); #endif #ifdef PLATFORM_FREEBSD pbuf = malloc(sz,M_DEVBUF,M_NOWAIT); #endif #ifdef PLATFORM_WINDOWS NdisAllocateMemoryWithTag(&pbuf,sz, RT_TAG); #endif #ifdef DBG_MEMORY_LEAK #ifdef PLATFORM_LINUX if ( pbuf != NULL) { atomic_inc(&_malloc_cnt); atomic_add(sz, &_malloc_size); } #endif #endif /* DBG_MEMORY_LEAK */ return pbuf; } u8* _rtw_zmalloc(u32 sz) { #ifdef PLATFORM_FREEBSD return malloc(sz,M_DEVBUF,M_ZERO|M_NOWAIT); #else // PLATFORM_FREEBSD u8 *pbuf = _rtw_malloc(sz); if (pbuf != NULL) { #ifdef PLATFORM_LINUX memset(pbuf, 0, sz); #endif #ifdef PLATFORM_WINDOWS NdisFillMemory(pbuf, sz, 0); #endif } return pbuf; #endif // PLATFORM_FREEBSD } void _rtw_mfree(u8 *pbuf, u32 sz) { #ifdef PLATFORM_LINUX #ifdef RTK_DMP_PLATFORM if(sz > 0x4000) dvr_free(pbuf); else #endif kfree(pbuf); #endif #ifdef PLATFORM_FREEBSD free(pbuf,M_DEVBUF); #endif #ifdef PLATFORM_WINDOWS NdisFreeMemory(pbuf,sz, 0); #endif #ifdef DBG_MEMORY_LEAK #ifdef PLATFORM_LINUX atomic_dec(&_malloc_cnt); atomic_sub(sz, &_malloc_size); #endif #endif /* DBG_MEMORY_LEAK */ } #ifdef PLATFORM_FREEBSD //review again struct sk_buff * dev_alloc_skb(unsigned int size) { struct sk_buff *skb=NULL; u8 *data=NULL; //skb = (struct sk_buff *)_rtw_zmalloc(sizeof(struct sk_buff)); // for skb->len, etc. skb = (struct sk_buff *)_rtw_malloc(sizeof(struct sk_buff)); if(!skb) goto out; data = _rtw_malloc(size); if(!data) goto nodata; skb->head = (unsigned char*)data; skb->data = (unsigned char*)data; skb->tail = (unsigned char*)data; skb->end = (unsigned char*)data + size; skb->len = 0; //printf("%s()-%d: skb=%p, skb->head = %p\n", __FUNCTION__, __LINE__, skb, skb->head); out: return skb; nodata: _rtw_mfree((u8 *)skb, sizeof(struct sk_buff)); skb = NULL; goto out; } void dev_kfree_skb_any(struct sk_buff *skb) { //printf("%s()-%d: skb->head = %p\n", __FUNCTION__, __LINE__, skb->head); if(skb->head) _rtw_mfree(skb->head, 0); //printf("%s()-%d: skb = %p\n", __FUNCTION__, __LINE__, skb); if(skb) _rtw_mfree((u8 *)skb, 0); } struct sk_buff *skb_clone(const struct sk_buff *skb) { return NULL; } #endif /* PLATFORM_FREEBSD */ inline struct sk_buff *_rtw_skb_alloc(u32 sz) { #ifdef PLATFORM_LINUX return __dev_alloc_skb(sz, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL); #endif /* PLATFORM_LINUX */ #ifdef PLATFORM_FREEBSD return dev_alloc_skb(sz); #endif /* PLATFORM_FREEBSD */ } inline void _rtw_skb_free(struct sk_buff *skb) { dev_kfree_skb_any(skb); } inline struct sk_buff *_rtw_skb_copy(const struct sk_buff *skb) { #ifdef PLATFORM_LINUX return skb_copy(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL); #endif /* PLATFORM_LINUX */ #ifdef PLATFORM_FREEBSD return NULL; #endif /* PLATFORM_FREEBSD */ } inline struct sk_buff *_rtw_skb_clone(struct sk_buff *skb) { #ifdef PLATFORM_LINUX return skb_clone(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL); #endif /* PLATFORM_LINUX */ #ifdef PLATFORM_FREEBSD return skb_clone(skb); #endif /* PLATFORM_FREEBSD */ } inline int _rtw_netif_rx(_nic_hdl ndev, struct sk_buff *skb) { #ifdef PLATFORM_LINUX skb->dev = ndev; return netif_rx(skb); #endif /* PLATFORM_LINUX */ #ifdef PLATFORM_FREEBSD return (*ndev->if_input)(ndev, skb); #endif /* PLATFORM_FREEBSD */ } void _rtw_skb_queue_purge(struct sk_buff_head *list) { struct sk_buff *skb; while ((skb = skb_dequeue(list)) != NULL) _rtw_skb_free(skb); } #ifdef CONFIG_USB_HCI inline void *_rtw_usb_buffer_alloc(struct usb_device *dev, size_t size, dma_addr_t *dma) { #ifdef PLATFORM_LINUX #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,35)) return usb_alloc_coherent(dev, size, (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL), dma); #else return usb_buffer_alloc(dev, size, (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL), dma); #endif #endif /* PLATFORM_LINUX */ #ifdef PLATFORM_FREEBSD return (malloc(size, M_USBDEV, M_NOWAIT | M_ZERO)); #endif /* PLATFORM_FREEBSD */ } inline void _rtw_usb_buffer_free(struct usb_device *dev, size_t size, void *addr, dma_addr_t dma) { #ifdef PLATFORM_LINUX #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,35)) usb_free_coherent(dev, size, addr, dma); #else usb_buffer_free(dev, size, addr, dma); #endif #endif /* PLATFORM_LINUX */ #ifdef PLATFORM_FREEBSD free(addr, M_USBDEV); #endif /* PLATFORM_FREEBSD */ } #endif /* CONFIG_USB_HCI */ #if defined(DBG_MEM_ALLOC) struct rtw_mem_stat { ATOMIC_T alloc; // the memory bytes we allocate currently ATOMIC_T peak; // the peak memory bytes we allocate ATOMIC_T alloc_cnt; // the alloc count for alloc currently ATOMIC_T alloc_err_cnt; // the error times we fail to allocate memory }; struct rtw_mem_stat rtw_mem_type_stat[mstat_tf_idx(MSTAT_TYPE_MAX)]; #ifdef RTW_MEM_FUNC_STAT struct rtw_mem_stat rtw_mem_func_stat[mstat_ff_idx(MSTAT_FUNC_MAX)]; #endif char *MSTAT_TYPE_str[] = { "VIR", "PHY", "SKB", "USB", }; #ifdef RTW_MEM_FUNC_STAT char *MSTAT_FUNC_str[] = { "UNSP", "IO", "TXIO", "RXIO", "TX", "RX", }; #endif void rtw_mstat_dump(void *sel) { int i; int value_t[4][mstat_tf_idx(MSTAT_TYPE_MAX)]; #ifdef RTW_MEM_FUNC_STAT int value_f[4][mstat_ff_idx(MSTAT_FUNC_MAX)]; #endif int vir_alloc, vir_peak, vir_alloc_err, phy_alloc, phy_peak, phy_alloc_err; int tx_alloc, tx_peak, tx_alloc_err, rx_alloc, rx_peak, rx_alloc_err; for(i=0;i 5000) { // rtw_mstat_dump(RTW_DBGDUMP); update_time=rtw_get_current_time(); //} } #ifndef SIZE_MAX #define SIZE_MAX (~(size_t)0) #endif struct mstat_sniff_rule { enum mstat_f flags; size_t lb; size_t hb; }; struct mstat_sniff_rule mstat_sniff_rules[] = { {MSTAT_TYPE_PHY, 4097, SIZE_MAX}, }; int mstat_sniff_rule_num = sizeof(mstat_sniff_rules)/sizeof(struct mstat_sniff_rule); bool match_mstat_sniff_rules(const enum mstat_f flags, const size_t size) { int i; for (i = 0; i= size) return _TRUE; } return _FALSE; } inline u8* dbg_rtw_vmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line) { u8 *p; if (match_mstat_sniff_rules(flags, sz)) DBG_871X("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz)); p=_rtw_vmalloc((sz)); rtw_mstat_update( flags , p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , sz ); return p; } inline u8* dbg_rtw_zvmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line) { u8 *p; if (match_mstat_sniff_rules(flags, sz)) DBG_871X("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz)); p=_rtw_zvmalloc((sz)); rtw_mstat_update( flags , p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , sz ); return p; } inline void dbg_rtw_vmfree(u8 *pbuf, u32 sz, const enum mstat_f flags, const char *func, const int line) { if (match_mstat_sniff_rules(flags, sz)) DBG_871X("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz)); _rtw_vmfree((pbuf), (sz)); rtw_mstat_update( flags , MSTAT_FREE , sz ); } inline u8* dbg_rtw_malloc(u32 sz, const enum mstat_f flags, const char *func, const int line) { u8 *p; if (match_mstat_sniff_rules(flags, sz)) DBG_871X("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz)); p=_rtw_malloc((sz)); rtw_mstat_update( flags , p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , sz ); return p; } inline u8* dbg_rtw_zmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line) { u8 *p; if (match_mstat_sniff_rules(flags, sz)) DBG_871X("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz)); p = _rtw_zmalloc((sz)); rtw_mstat_update( flags , p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , sz ); return p; } inline void dbg_rtw_mfree(u8 *pbuf, u32 sz, const enum mstat_f flags, const char *func, const int line) { if (match_mstat_sniff_rules(flags, sz)) DBG_871X("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz)); _rtw_mfree((pbuf), (sz)); rtw_mstat_update( flags , MSTAT_FREE , sz ); } inline struct sk_buff * dbg_rtw_skb_alloc(unsigned int size, const enum mstat_f flags, const char *func, int line) { struct sk_buff *skb; unsigned int truesize = 0; skb = _rtw_skb_alloc(size); if(skb) truesize = skb->truesize; if(!skb || truesize < size || match_mstat_sniff_rules(flags, truesize)) DBG_871X("DBG_MEM_ALLOC %s:%d %s(%d), skb:%p, truesize=%u\n", func, line, __FUNCTION__, size, skb, truesize); rtw_mstat_update( flags , skb ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , truesize ); return skb; } inline void dbg_rtw_skb_free(struct sk_buff *skb, const enum mstat_f flags, const char *func, int line) { unsigned int truesize = skb->truesize; if(match_mstat_sniff_rules(flags, truesize)) DBG_871X("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __FUNCTION__, truesize); _rtw_skb_free(skb); rtw_mstat_update( flags , MSTAT_FREE , truesize ); } inline struct sk_buff *dbg_rtw_skb_copy(const struct sk_buff *skb, const enum mstat_f flags, const char *func, const int line) { struct sk_buff *skb_cp; unsigned int truesize = skb->truesize; unsigned int cp_truesize = 0; skb_cp = _rtw_skb_copy(skb); if(skb_cp) cp_truesize = skb_cp->truesize; if(!skb_cp || cp_truesize < truesize || match_mstat_sniff_rules(flags, cp_truesize)) DBG_871X("DBG_MEM_ALLOC %s:%d %s(%u), skb_cp:%p, cp_truesize=%u\n", func, line, __FUNCTION__, truesize, skb_cp, cp_truesize); rtw_mstat_update( flags , skb_cp ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , truesize ); return skb_cp; } inline struct sk_buff *dbg_rtw_skb_clone(struct sk_buff *skb, const enum mstat_f flags, const char *func, const int line) { struct sk_buff *skb_cl; unsigned int truesize = skb->truesize; unsigned int cl_truesize = 0; skb_cl = _rtw_skb_clone(skb); if(skb_cl) cl_truesize = skb_cl->truesize; if(!skb_cl || cl_truesize < truesize || match_mstat_sniff_rules(flags, cl_truesize)) DBG_871X("DBG_MEM_ALLOC %s:%d %s(%u), skb_cl:%p, cl_truesize=%u\n", func, line, __FUNCTION__, truesize, skb_cl, cl_truesize); rtw_mstat_update( flags , skb_cl ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , truesize ); return skb_cl; } inline int dbg_rtw_netif_rx(_nic_hdl ndev, struct sk_buff *skb, const enum mstat_f flags, const char *func, int line) { int ret; unsigned int truesize = skb->truesize; if(match_mstat_sniff_rules(flags, truesize)) DBG_871X("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __FUNCTION__, truesize); ret = _rtw_netif_rx(ndev, skb); rtw_mstat_update( flags , MSTAT_FREE , truesize ); return ret; } inline void dbg_rtw_skb_queue_purge(struct sk_buff_head *list, enum mstat_f flags, const char *func, int line) { struct sk_buff *skb; while ((skb = skb_dequeue(list)) != NULL) dbg_rtw_skb_free(skb, flags, func, line); } #ifdef CONFIG_USB_HCI inline void *dbg_rtw_usb_buffer_alloc(struct usb_device *dev, size_t size, dma_addr_t *dma, const enum mstat_f flags, const char *func, int line) { void *p; if(match_mstat_sniff_rules(flags, size)) DBG_871X("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, size); p = _rtw_usb_buffer_alloc(dev, size, dma); rtw_mstat_update( flags , p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , size ); return p; } inline void dbg_rtw_usb_buffer_free(struct usb_device *dev, size_t size, void *addr, dma_addr_t dma, const enum mstat_f flags, const char *func, int line) { if(match_mstat_sniff_rules(flags, size)) DBG_871X("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, size); _rtw_usb_buffer_free(dev, size, addr, dma); rtw_mstat_update( flags , MSTAT_FREE , size ); } #endif /* CONFIG_USB_HCI */ #endif /* defined(DBG_MEM_ALLOC) */ void* rtw_malloc2d(int h, int w, int size) { int j; void **a = (void **) rtw_zmalloc( h*sizeof(void *) + h*w*size ); if(a == NULL) { DBG_871X("%s: alloc memory fail!\n", __FUNCTION__); return NULL; } for( j=0; jprev = pnew; pnew->next = pnext; pnew->prev = pprev; pprev->next = pnew; } #endif /* PLATFORM_FREEBSD */ void _rtw_init_listhead(_list *list) { #ifdef PLATFORM_LINUX INIT_LIST_HEAD(list); #endif #ifdef PLATFORM_FREEBSD list->next = list; list->prev = list; #endif #ifdef PLATFORM_WINDOWS NdisInitializeListHead(list); #endif } /* For the following list_xxx operations, caller must guarantee the atomic context. Otherwise, there will be racing condition. */ u32 rtw_is_list_empty(_list *phead) { #ifdef PLATFORM_LINUX if (list_empty(phead)) return _TRUE; else return _FALSE; #endif #ifdef PLATFORM_FREEBSD if (phead->next == phead) return _TRUE; else return _FALSE; #endif #ifdef PLATFORM_WINDOWS if (IsListEmpty(phead)) return _TRUE; else return _FALSE; #endif } void rtw_list_insert_head(_list *plist, _list *phead) { #ifdef PLATFORM_LINUX list_add(plist, phead); #endif #ifdef PLATFORM_FREEBSD __list_add(plist, phead, phead->next); #endif #ifdef PLATFORM_WINDOWS InsertHeadList(phead, plist); #endif } void rtw_list_insert_tail(_list *plist, _list *phead) { #ifdef PLATFORM_LINUX list_add_tail(plist, phead); #endif #ifdef PLATFORM_FREEBSD __list_add(plist, phead->prev, phead); #endif #ifdef PLATFORM_WINDOWS InsertTailList(phead, plist); #endif } void rtw_init_timer(_timer *ptimer, void *padapter, void *pfunc) { _adapter *adapter = (_adapter *)padapter; #ifdef PLATFORM_LINUX _init_timer(ptimer, adapter->pnetdev, pfunc, adapter); #endif #ifdef PLATFORM_FREEBSD _init_timer(ptimer, adapter->pifp, pfunc, adapter->mlmepriv.nic_hdl); #endif #ifdef PLATFORM_WINDOWS _init_timer(ptimer, adapter->hndis_adapter, pfunc, adapter->mlmepriv.nic_hdl); #endif } /* Caller must check if the list is empty before calling rtw_list_delete */ void _rtw_init_sema(_sema *sema, int init_val) { #ifdef PLATFORM_LINUX sema_init(sema, init_val); #endif #ifdef PLATFORM_FREEBSD sema_init(sema, init_val, "rtw_drv"); #endif #ifdef PLATFORM_OS_XP KeInitializeSemaphore(sema, init_val, SEMA_UPBND); // count=0; #endif #ifdef PLATFORM_OS_CE if(*sema == NULL) *sema = CreateSemaphore(NULL, init_val, SEMA_UPBND, NULL); #endif } void _rtw_free_sema(_sema *sema) { #ifdef PLATFORM_FREEBSD sema_destroy(sema); #endif #ifdef PLATFORM_OS_CE CloseHandle(*sema); #endif } void _rtw_up_sema(_sema *sema) { #ifdef PLATFORM_LINUX up(sema); #endif #ifdef PLATFORM_FREEBSD sema_post(sema); #endif #ifdef PLATFORM_OS_XP KeReleaseSemaphore(sema, IO_NETWORK_INCREMENT, 1, FALSE ); #endif #ifdef PLATFORM_OS_CE ReleaseSemaphore(*sema, 1, NULL ); #endif } u32 _rtw_down_sema(_sema *sema) { #ifdef PLATFORM_LINUX if (down_interruptible(sema)) return _FAIL; else return _SUCCESS; #endif #ifdef PLATFORM_FREEBSD sema_wait(sema); return _SUCCESS; #endif #ifdef PLATFORM_OS_XP if(STATUS_SUCCESS == KeWaitForSingleObject(sema, Executive, KernelMode, TRUE, NULL)) return _SUCCESS; else return _FAIL; #endif #ifdef PLATFORM_OS_CE if(WAIT_OBJECT_0 == WaitForSingleObject(*sema, INFINITE )) return _SUCCESS; else return _FAIL; #endif } void _rtw_mutex_init(_mutex *pmutex) { #ifdef PLATFORM_LINUX #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,37)) mutex_init(pmutex); #else init_MUTEX(pmutex); #endif #endif #ifdef PLATFORM_FREEBSD mtx_init(pmutex, "", NULL, MTX_DEF|MTX_RECURSE); #endif #ifdef PLATFORM_OS_XP KeInitializeMutex(pmutex, 0); #endif #ifdef PLATFORM_OS_CE *pmutex = CreateMutex( NULL, _FALSE, NULL); #endif } void _rtw_mutex_free(_mutex *pmutex); void _rtw_mutex_free(_mutex *pmutex) { #ifdef PLATFORM_LINUX #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,37)) mutex_destroy(pmutex); #else #endif #ifdef PLATFORM_FREEBSD sema_destroy(pmutex); #endif #endif #ifdef PLATFORM_OS_XP #endif #ifdef PLATFORM_OS_CE #endif } void _rtw_spinlock_init(_lock *plock) { #ifdef PLATFORM_LINUX spin_lock_init(plock); #endif #ifdef PLATFORM_FREEBSD mtx_init(plock, "", NULL, MTX_DEF|MTX_RECURSE); #endif #ifdef PLATFORM_WINDOWS NdisAllocateSpinLock(plock); #endif } void _rtw_spinlock_free(_lock *plock) { #ifdef PLATFORM_FREEBSD mtx_destroy(plock); #endif #ifdef PLATFORM_WINDOWS NdisFreeSpinLock(plock); #endif } #ifdef PLATFORM_FREEBSD extern PADAPTER prtw_lock; void rtw_mtx_lock(_lock *plock){ if(prtw_lock){ mtx_lock(&prtw_lock->glock); } else{ printf("%s prtw_lock==NULL",__FUNCTION__); } } void rtw_mtx_unlock(_lock *plock){ if(prtw_lock){ mtx_unlock(&prtw_lock->glock); } else{ printf("%s prtw_lock==NULL",__FUNCTION__); } } #endif //PLATFORM_FREEBSD void _rtw_spinlock(_lock *plock) { #ifdef PLATFORM_LINUX spin_lock(plock); #endif #ifdef PLATFORM_FREEBSD mtx_lock(plock); #endif #ifdef PLATFORM_WINDOWS NdisAcquireSpinLock(plock); #endif } void _rtw_spinunlock(_lock *plock) { #ifdef PLATFORM_LINUX spin_unlock(plock); #endif #ifdef PLATFORM_FREEBSD mtx_unlock(plock); #endif #ifdef PLATFORM_WINDOWS NdisReleaseSpinLock(plock); #endif } void _rtw_spinlock_ex(_lock *plock) { #ifdef PLATFORM_LINUX spin_lock(plock); #endif #ifdef PLATFORM_FREEBSD mtx_lock(plock); #endif #ifdef PLATFORM_WINDOWS NdisDprAcquireSpinLock(plock); #endif } void _rtw_spinunlock_ex(_lock *plock) { #ifdef PLATFORM_LINUX spin_unlock(plock); #endif #ifdef PLATFORM_FREEBSD mtx_unlock(plock); #endif #ifdef PLATFORM_WINDOWS NdisDprReleaseSpinLock(plock); #endif } void _rtw_init_queue(_queue *pqueue) { _rtw_init_listhead(&(pqueue->queue)); _rtw_spinlock_init(&(pqueue->lock)); } u32 _rtw_queue_empty(_queue *pqueue) { return (rtw_is_list_empty(&(pqueue->queue))); } u32 rtw_end_of_queue_search(_list *head, _list *plist) { if (head == plist) return _TRUE; else return _FALSE; } u32 rtw_get_current_time(void) { #ifdef PLATFORM_LINUX return jiffies; #endif #ifdef PLATFORM_FREEBSD struct timeval tvp; getmicrotime(&tvp); return tvp.tv_sec; #endif #ifdef PLATFORM_WINDOWS LARGE_INTEGER SystemTime; NdisGetCurrentSystemTime(&SystemTime); return (u32)(SystemTime.LowPart);// count of 100-nanosecond intervals #endif } inline u32 rtw_systime_to_ms(u32 systime) { #ifdef PLATFORM_LINUX return systime * 1000 / HZ; #endif #ifdef PLATFORM_FREEBSD return systime * 1000; #endif #ifdef PLATFORM_WINDOWS return systime / 10000 ; #endif } inline u32 rtw_ms_to_systime(u32 ms) { #ifdef PLATFORM_LINUX return ms * HZ / 1000; #endif #ifdef PLATFORM_FREEBSD return ms /1000; #endif #ifdef PLATFORM_WINDOWS return ms * 10000 ; #endif } // the input parameter start use the same unit as returned by rtw_get_current_time inline s32 rtw_get_passing_time_ms(u32 start) { #ifdef PLATFORM_LINUX return rtw_systime_to_ms(jiffies-start); #endif #ifdef PLATFORM_FREEBSD return rtw_systime_to_ms(rtw_get_current_time()); #endif #ifdef PLATFORM_WINDOWS LARGE_INTEGER SystemTime; NdisGetCurrentSystemTime(&SystemTime); return rtw_systime_to_ms((u32)(SystemTime.LowPart) - start) ; #endif } inline s32 rtw_get_time_interval_ms(u32 start, u32 end) { #ifdef PLATFORM_LINUX return rtw_systime_to_ms(end-start); #endif #ifdef PLATFORM_FREEBSD return rtw_systime_to_ms(rtw_get_current_time()); #endif #ifdef PLATFORM_WINDOWS return rtw_systime_to_ms(end-start); #endif } void rtw_sleep_schedulable(int ms) { #ifdef PLATFORM_LINUX u32 delta; delta = (ms * HZ)/1000;//(ms) if (delta == 0) { delta = 1;// 1 ms } set_current_state(TASK_INTERRUPTIBLE); if (schedule_timeout(delta) != 0) { return ; } return; #endif #ifdef PLATFORM_FREEBSD DELAY(ms*1000); return ; #endif #ifdef PLATFORM_WINDOWS NdisMSleep(ms*1000); //(us)*1000=(ms) #endif } void rtw_msleep_os(int ms) { #ifdef PLATFORM_LINUX msleep((unsigned int)ms); #endif #ifdef PLATFORM_FREEBSD //Delay for delay microseconds DELAY(ms*1000); return ; #endif #ifdef PLATFORM_WINDOWS NdisMSleep(ms*1000); //(us)*1000=(ms) #endif } void rtw_usleep_os(int us) { #ifdef PLATFORM_LINUX // msleep((unsigned int)us); if ( 1 < (us/1000) ) msleep(1); else msleep( (us/1000) + 1); #endif #ifdef PLATFORM_FREEBSD //Delay for delay microseconds DELAY(us); return ; #endif #ifdef PLATFORM_WINDOWS NdisMSleep(us); //(us) #endif } #ifdef DBG_DELAY_OS void _rtw_mdelay_os(int ms, const char *func, const int line) { #if 0 if(ms>10) DBG_871X("%s:%d %s(%d)\n", func, line, __FUNCTION__, ms); rtw_msleep_os(ms); return; #endif DBG_871X("%s:%d %s(%d)\n", func, line, __FUNCTION__, ms); #if defined(PLATFORM_LINUX) mdelay((unsigned long)ms); #elif defined(PLATFORM_WINDOWS) NdisStallExecution(ms*1000); //(us)*1000=(ms) #endif } void _rtw_udelay_os(int us, const char *func, const int line) { #if 0 if(us > 1000) { DBG_871X("%s:%d %s(%d)\n", func, line, __FUNCTION__, us); rtw_usleep_os(us); return; } #endif DBG_871X("%s:%d %s(%d)\n", func, line, __FUNCTION__, us); #if defined(PLATFORM_LINUX) udelay((unsigned long)us); #elif defined(PLATFORM_WINDOWS) NdisStallExecution(us); //(us) #endif } #else void rtw_mdelay_os(int ms) { #ifdef PLATFORM_LINUX mdelay((unsigned long)ms); #endif #ifdef PLATFORM_FREEBSD DELAY(ms*1000); return ; #endif #ifdef PLATFORM_WINDOWS NdisStallExecution(ms*1000); //(us)*1000=(ms) #endif } void rtw_udelay_os(int us) { #ifdef PLATFORM_LINUX udelay((unsigned long)us); #endif #ifdef PLATFORM_FREEBSD //Delay for delay microseconds DELAY(us); return ; #endif #ifdef PLATFORM_WINDOWS NdisStallExecution(us); //(us) #endif } #endif void rtw_yield_os() { #ifdef PLATFORM_LINUX yield(); #endif #ifdef PLATFORM_FREEBSD yield(); #endif #ifdef PLATFORM_WINDOWS SwitchToThread(); #endif } #define RTW_SUSPEND_LOCK_NAME "rtw_wifi" #define RTW_SUSPEND_EXT_LOCK_NAME "rtw_wifi_ext" #define RTW_SUSPEND_RX_LOCK_NAME "rtw_wifi_rx" #define RTW_SUSPEND_TRAFFIC_LOCK_NAME "rtw_wifi_traffic" #define RTW_SUSPEND_RESUME_LOCK_NAME "rtw_wifi_resume" #define RTW_RESUME_SCAN_LOCK_NAME "rtw_wifi_scan" #ifdef CONFIG_WAKELOCK static struct wake_lock rtw_suspend_lock; static struct wake_lock rtw_suspend_ext_lock; static struct wake_lock rtw_suspend_rx_lock; static struct wake_lock rtw_suspend_traffic_lock; static struct wake_lock rtw_suspend_resume_lock; static struct wake_lock rtw_resume_scan_lock; #elif defined(CONFIG_ANDROID_POWER) static android_suspend_lock_t rtw_suspend_lock ={ .name = RTW_SUSPEND_LOCK_NAME }; static android_suspend_lock_t rtw_suspend_ext_lock ={ .name = RTW_SUSPEND_EXT_LOCK_NAME }; static android_suspend_lock_t rtw_suspend_rx_lock ={ .name = RTW_SUSPEND_RX_LOCK_NAME }; static android_suspend_lock_t rtw_suspend_traffic_lock ={ .name = RTW_SUSPEND_TRAFFIC_LOCK_NAME }; static android_suspend_lock_t rtw_suspend_resume_lock ={ .name = RTW_SUSPEND_RESUME_LOCK_NAME }; static android_suspend_lock_t rtw_resume_scan_lock ={ .name = RTW_RESUME_SCAN_LOCK_NAME }; #endif inline void rtw_suspend_lock_init() { #ifdef CONFIG_WAKELOCK wake_lock_init(&rtw_suspend_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_LOCK_NAME); wake_lock_init(&rtw_suspend_ext_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_EXT_LOCK_NAME); wake_lock_init(&rtw_suspend_rx_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_RX_LOCK_NAME); wake_lock_init(&rtw_suspend_traffic_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_TRAFFIC_LOCK_NAME); wake_lock_init(&rtw_suspend_resume_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_RESUME_LOCK_NAME); wake_lock_init(&rtw_resume_scan_lock, WAKE_LOCK_SUSPEND, RTW_RESUME_SCAN_LOCK_NAME); #elif defined(CONFIG_ANDROID_POWER) android_init_suspend_lock(&rtw_suspend_lock); android_init_suspend_lock(&rtw_suspend_ext_lock); android_init_suspend_lock(&rtw_suspend_rx_lock); android_init_suspend_lock(&rtw_suspend_traffic_lock); android_init_suspend_lock(&rtw_suspend_resume_lock); android_init_suspend_lock(&rtw_resume_scan_lock); #endif } inline void rtw_suspend_lock_uninit() { #ifdef CONFIG_WAKELOCK wake_lock_destroy(&rtw_suspend_lock); wake_lock_destroy(&rtw_suspend_ext_lock); wake_lock_destroy(&rtw_suspend_rx_lock); wake_lock_destroy(&rtw_suspend_traffic_lock); wake_lock_destroy(&rtw_suspend_resume_lock); wake_lock_destroy(&rtw_resume_scan_lock); #elif defined(CONFIG_ANDROID_POWER) android_uninit_suspend_lock(&rtw_suspend_lock); android_uninit_suspend_lock(&rtw_suspend_ext_lock); android_uninit_suspend_lock(&rtw_suspend_rx_lock); android_uninit_suspend_lock(&rtw_suspend_traffic_lock); android_uninit_suspend_lock(&rtw_suspend_resume_lock); android_uninit_suspend_lock(&rtw_resume_scan_lock); #endif } inline void rtw_lock_suspend(void) { #ifdef CONFIG_WAKELOCK wake_lock(&rtw_suspend_lock); #elif defined(CONFIG_ANDROID_POWER) android_lock_suspend(&rtw_suspend_lock); #endif #if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER) //DBG_871X("####%s: suspend_lock_count:%d####\n", __FUNCTION__, rtw_suspend_lock.stat.count); #endif } inline void rtw_unlock_suspend(void) { #ifdef CONFIG_WAKELOCK wake_unlock(&rtw_suspend_lock); #elif defined(CONFIG_ANDROID_POWER) android_unlock_suspend(&rtw_suspend_lock); #endif #if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER) //DBG_871X("####%s: suspend_lock_count:%d####\n", __FUNCTION__, rtw_suspend_lock.stat.count); #endif } inline void rtw_resume_lock_suspend(void) { #ifdef CONFIG_WAKELOCK wake_lock(&rtw_suspend_resume_lock); #elif defined(CONFIG_ANDROID_POWER) android_lock_suspend(&rtw_suspend_resume_lock); #endif #if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER) //DBG_871X("####%s: suspend_lock_count:%d####\n", __FUNCTION__, rtw_suspend_lock.stat.count); #endif } inline void rtw_resume_unlock_suspend(void) { #ifdef CONFIG_WAKELOCK wake_unlock(&rtw_suspend_resume_lock); #elif defined(CONFIG_ANDROID_POWER) android_unlock_suspend(&rtw_suspend_resume_lock); #endif #if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER) //DBG_871X("####%s: suspend_lock_count:%d####\n", __FUNCTION__, rtw_suspend_lock.stat.count); #endif } inline void rtw_lock_suspend_timeout(u32 timeout_ms) { #ifdef CONFIG_WAKELOCK wake_lock_timeout(&rtw_suspend_lock, rtw_ms_to_systime(timeout_ms)); #elif defined(CONFIG_ANDROID_POWER) android_lock_suspend_auto_expire(&rtw_suspend_lock, rtw_ms_to_systime(timeout_ms)); #endif } inline void rtw_lock_ext_suspend_timeout(u32 timeout_ms) { #ifdef CONFIG_WAKELOCK wake_lock_timeout(&rtw_suspend_ext_lock, rtw_ms_to_systime(timeout_ms)); #elif defined(CONFIG_ANDROID_POWER) android_lock_suspend_auto_expire(&rtw_suspend_ext_lock, rtw_ms_to_systime(timeout_ms)); #endif //DBG_871X("EXT lock timeout:%d\n", timeout_ms); } inline void rtw_lock_rx_suspend_timeout(u32 timeout_ms) { #ifdef CONFIG_WAKELOCK wake_lock_timeout(&rtw_suspend_rx_lock, rtw_ms_to_systime(timeout_ms)); #elif defined(CONFIG_ANDROID_POWER) android_lock_suspend_auto_expire(&rtw_suspend_rx_lock, rtw_ms_to_systime(timeout_ms)); #endif //DBG_871X("RX lock timeout:%d\n", timeout_ms); } inline void rtw_lock_traffic_suspend_timeout(u32 timeout_ms) { #ifdef CONFIG_WAKELOCK wake_lock_timeout(&rtw_suspend_traffic_lock, rtw_ms_to_systime(timeout_ms)); #elif defined(CONFIG_ANDROID_POWER) android_lock_suspend_auto_expire(&rtw_suspend_traffic_lock, rtw_ms_to_systime(timeout_ms)); #endif //DBG_871X("traffic lock timeout:%d\n", timeout_ms); } inline void rtw_lock_resume_scan_timeout(u32 timeout_ms) { #ifdef CONFIG_WAKELOCK wake_lock_timeout(&rtw_resume_scan_lock, rtw_ms_to_systime(timeout_ms)); #elif defined(CONFIG_ANDROID_POWER) android_lock_suspend_auto_expire(&rtw_resume_scan_lock, rtw_ms_to_systime(timeout_ms)); #endif //DBG_871X("resume scan lock:%d\n", timeout_ms); } inline void ATOMIC_SET(ATOMIC_T *v, int i) { #ifdef PLATFORM_LINUX atomic_set(v,i); #elif defined(PLATFORM_WINDOWS) *v=i;// other choice???? #elif defined(PLATFORM_FREEBSD) atomic_set_int(v,i); #endif } inline int ATOMIC_READ(ATOMIC_T *v) { #ifdef PLATFORM_LINUX return atomic_read(v); #elif defined(PLATFORM_WINDOWS) return *v; // other choice???? #elif defined(PLATFORM_FREEBSD) return atomic_load_acq_32(v); #endif } inline void ATOMIC_ADD(ATOMIC_T *v, int i) { #ifdef PLATFORM_LINUX atomic_add(i,v); #elif defined(PLATFORM_WINDOWS) InterlockedAdd(v,i); #elif defined(PLATFORM_FREEBSD) atomic_add_int(v,i); #endif } inline void ATOMIC_SUB(ATOMIC_T *v, int i) { #ifdef PLATFORM_LINUX atomic_sub(i,v); #elif defined(PLATFORM_WINDOWS) InterlockedAdd(v,-i); #elif defined(PLATFORM_FREEBSD) atomic_subtract_int(v,i); #endif } inline void ATOMIC_INC(ATOMIC_T *v) { #ifdef PLATFORM_LINUX atomic_inc(v); #elif defined(PLATFORM_WINDOWS) InterlockedIncrement(v); #elif defined(PLATFORM_FREEBSD) atomic_add_int(v,1); #endif } inline void ATOMIC_DEC(ATOMIC_T *v) { #ifdef PLATFORM_LINUX atomic_dec(v); #elif defined(PLATFORM_WINDOWS) InterlockedDecrement(v); #elif defined(PLATFORM_FREEBSD) atomic_subtract_int(v,1); #endif } inline int ATOMIC_ADD_RETURN(ATOMIC_T *v, int i) { #ifdef PLATFORM_LINUX return atomic_add_return(i,v); #elif defined(PLATFORM_WINDOWS) return InterlockedAdd(v,i); #elif defined(PLATFORM_FREEBSD) atomic_add_int(v,i); return atomic_load_acq_32(v); #endif } inline int ATOMIC_SUB_RETURN(ATOMIC_T *v, int i) { #ifdef PLATFORM_LINUX return atomic_sub_return(i,v); #elif defined(PLATFORM_WINDOWS) return InterlockedAdd(v,-i); #elif defined(PLATFORM_FREEBSD) atomic_subtract_int(v,i); return atomic_load_acq_32(v); #endif } inline int ATOMIC_INC_RETURN(ATOMIC_T *v) { #ifdef PLATFORM_LINUX return atomic_inc_return(v); #elif defined(PLATFORM_WINDOWS) return InterlockedIncrement(v); #elif defined(PLATFORM_FREEBSD) atomic_add_int(v,1); return atomic_load_acq_32(v); #endif } inline int ATOMIC_DEC_RETURN(ATOMIC_T *v) { #ifdef PLATFORM_LINUX return atomic_dec_return(v); #elif defined(PLATFORM_WINDOWS) return InterlockedDecrement(v); #elif defined(PLATFORM_FREEBSD) atomic_subtract_int(v,1); return atomic_load_acq_32(v); #endif } #ifdef PLATFORM_LINUX /* * Open a file with the specific @param path, @param flag, @param mode * @param fpp the pointer of struct file pointer to get struct file pointer while file opening is success * @param path the path of the file to open * @param flag file operation flags, please refer to linux document * @param mode please refer to linux document * @return Linux specific error code */ static int openFile(struct file **fpp, char *path, int flag, int mode) { struct file *fp; fp=filp_open(path, flag, mode); if(IS_ERR(fp)) { *fpp=NULL; return PTR_ERR(fp); } else { *fpp=fp; return 0; } } /* * Close the file with the specific @param fp * @param fp the pointer of struct file to close * @return always 0 */ static int closeFile(struct file *fp) { filp_close(fp,NULL); return 0; } static int readFile(struct file *fp,char *buf,int len) { int rlen=0, sum=0; if (!fp->f_op || !fp->f_op->read) return -EPERM; while(sumf_op->read(fp,buf+sum,len-sum, &fp->f_pos); if(rlen>0) sum+=rlen; else if(0 != rlen) return rlen; else break; } return sum; } static int writeFile(struct file *fp,char *buf,int len) { int wlen=0, sum=0; if (!fp->f_op || !fp->f_op->write) return -EPERM; while(sumf_op->write(fp,buf+sum,len-sum, &fp->f_pos); if(wlen>0) sum+=wlen; else if(0 != wlen) return wlen; else break; } return sum; } /* * Test if the specifi @param path is a file and readable * @param path the path of the file to test * @return Linux specific error code */ static int isFileReadable(char *path) { struct file *fp; int ret = 0; mm_segment_t oldfs; char buf; fp=filp_open(path, O_RDONLY, 0); if(IS_ERR(fp)) { ret = PTR_ERR(fp); } else { oldfs = get_fs(); set_fs(get_ds()); if(1!=readFile(fp, &buf, 1)) ret = PTR_ERR(fp); set_fs(oldfs); filp_close(fp,NULL); } return ret; } /* * Open the file with @param path and retrive the file content into memory starting from @param buf for @param sz at most * @param path the path of the file to open and read * @param buf the starting address of the buffer to store file content * @param sz how many bytes to read at most * @return the byte we've read, or Linux specific error code */ static int retriveFromFile(char *path, u8* buf, u32 sz) { int ret =-1; mm_segment_t oldfs; struct file *fp; if(path && buf) { if( 0 == (ret=openFile(&fp,path, O_RDONLY, 0)) ){ DBG_871X("%s openFile path:%s fp=%p\n",__FUNCTION__, path ,fp); oldfs = get_fs(); set_fs(get_ds()); ret=readFile(fp, buf, sz); set_fs(oldfs); closeFile(fp); DBG_871X("%s readFile, ret:%d\n",__FUNCTION__, ret); } else { DBG_871X("%s openFile path:%s Fail, ret:%d\n",__FUNCTION__, path, ret); } } else { DBG_871X("%s NULL pointer\n",__FUNCTION__); ret = -EINVAL; } return ret; } /* * Open the file with @param path and wirte @param sz byte of data starting from @param buf into the file * @param path the path of the file to open and write * @param buf the starting address of the data to write into file * @param sz how many bytes to write at most * @return the byte we've written, or Linux specific error code */ static int storeToFile(char *path, u8* buf, u32 sz) { int ret =0; mm_segment_t oldfs; struct file *fp; if(path && buf) { if( 0 == (ret=openFile(&fp, path, O_CREAT|O_WRONLY, 0666)) ) { DBG_871X("%s openFile path:%s fp=%p\n",__FUNCTION__, path ,fp); oldfs = get_fs(); set_fs(get_ds()); ret=writeFile(fp, buf, sz); set_fs(oldfs); closeFile(fp); DBG_871X("%s writeFile, ret:%d\n",__FUNCTION__, ret); } else { DBG_871X("%s openFile path:%s Fail, ret:%d\n",__FUNCTION__, path, ret); } } else { DBG_871X("%s NULL pointer\n",__FUNCTION__); ret = -EINVAL; } return ret; } #endif //PLATFORM_LINUX /* * Test if the specifi @param path is a file and readable * @param path the path of the file to test * @return _TRUE or _FALSE */ int rtw_is_file_readable(char *path) { #ifdef PLATFORM_LINUX if(isFileReadable(path) == 0) return _TRUE; else return _FALSE; #else //Todo... return _FALSE; #endif } /* * Open the file with @param path and retrive the file content into memory starting from @param buf for @param sz at most * @param path the path of the file to open and read * @param buf the starting address of the buffer to store file content * @param sz how many bytes to read at most * @return the byte we've read */ int rtw_retrive_from_file(char *path, u8* buf, u32 sz) { #ifdef PLATFORM_LINUX int ret =retriveFromFile(path, buf, sz); return ret>=0?ret:0; #else //Todo... return 0; #endif } /* * Open the file with @param path and wirte @param sz byte of data starting from @param buf into the file * @param path the path of the file to open and write * @param buf the starting address of the data to write into file * @param sz how many bytes to write at most * @return the byte we've written */ int rtw_store_to_file(char *path, u8* buf, u32 sz) { #ifdef PLATFORM_LINUX int ret =storeToFile(path, buf, sz); return ret>=0?ret:0; #else //Todo... return 0; #endif } #ifdef PLATFORM_LINUX struct net_device *rtw_alloc_etherdev_with_old_priv(int sizeof_priv, void *old_priv) { struct net_device *pnetdev; struct rtw_netdev_priv_indicator *pnpi; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,35)) pnetdev = alloc_etherdev_mq(sizeof(struct rtw_netdev_priv_indicator), 4); #else pnetdev = alloc_etherdev(sizeof(struct rtw_netdev_priv_indicator)); #endif if (!pnetdev) goto RETURN; pnpi = netdev_priv(pnetdev); pnpi->priv=old_priv; pnpi->sizeof_priv=sizeof_priv; RETURN: return pnetdev; } struct net_device *rtw_alloc_etherdev(int sizeof_priv) { struct net_device *pnetdev; struct rtw_netdev_priv_indicator *pnpi; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,35)) pnetdev = alloc_etherdev_mq(sizeof(struct rtw_netdev_priv_indicator), 4); #else pnetdev = alloc_etherdev(sizeof(struct rtw_netdev_priv_indicator)); #endif if (!pnetdev) goto RETURN; pnpi = netdev_priv(pnetdev); pnpi->priv = rtw_zvmalloc(sizeof_priv); if (!pnpi->priv) { free_netdev(pnetdev); pnetdev = NULL; goto RETURN; } pnpi->sizeof_priv=sizeof_priv; RETURN: return pnetdev; } void rtw_free_netdev(struct net_device * netdev) { struct rtw_netdev_priv_indicator *pnpi; if(!netdev) goto RETURN; pnpi = netdev_priv(netdev); if(!pnpi->priv) goto RETURN; rtw_vmfree(pnpi->priv, pnpi->sizeof_priv); free_netdev(netdev); RETURN: return; } /* * Jeff: this function should be called under ioctl (rtnl_lock is accquired) while * LINUX_VERSION_CODE < KERNEL_VERSION(2,6,26) */ int rtw_change_ifname(_adapter *padapter, const char *ifname) { struct net_device *pnetdev; struct net_device *cur_pnetdev; struct rereg_nd_name_data *rereg_priv; int ret; if(!padapter) goto error; cur_pnetdev = padapter->pnetdev; rereg_priv = &padapter->rereg_nd_name_priv; //free the old_pnetdev if(rereg_priv->old_pnetdev) { free_netdev(rereg_priv->old_pnetdev); rereg_priv->old_pnetdev = NULL; } #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26)) if(!rtnl_is_locked()) unregister_netdev(cur_pnetdev); else #endif unregister_netdevice(cur_pnetdev); rereg_priv->old_pnetdev=cur_pnetdev; pnetdev = rtw_init_netdev(padapter); if (!pnetdev) { ret = -1; goto error; } SET_NETDEV_DEV(pnetdev, dvobj_to_dev(adapter_to_dvobj(padapter))); rtw_init_netdev_name(pnetdev, ifname); _rtw_memcpy(pnetdev->dev_addr, padapter->eeprompriv.mac_addr, ETH_ALEN); #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26)) if(!rtnl_is_locked()) ret = register_netdev(pnetdev); else #endif ret = register_netdevice(pnetdev); if ( ret != 0) { RT_TRACE(_module_hci_intfs_c_,_drv_err_,("register_netdev() failed\n")); goto error; } return 0; error: return -1; } #endif #ifdef PLATFORM_FREEBSD /* * Copy a buffer from userspace and write into kernel address * space. * * This emulation just calls the FreeBSD copyin function (to * copy data from user space buffer into a kernel space buffer) * and is designed to be used with the above io_write_wrapper. * * This function should return the number of bytes not copied. * I.e. success results in a zero value. * Negative error values are not returned. */ unsigned long copy_from_user(void *to, const void *from, unsigned long n) { if ( copyin(from, to, n) != 0 ) { /* Any errors will be treated as a failure to copy any of the requested bytes */ return n; } return 0; } unsigned long copy_to_user(void *to, const void *from, unsigned long n) { if ( copyout(from, to, n) != 0 ) { /* Any errors will be treated as a failure to copy any of the requested bytes */ return n; } return 0; } /* * The usb_register and usb_deregister functions are used to register * usb drivers with the usb subsystem. In this compatibility layer * emulation a list of drivers (struct usb_driver) is maintained * and is used for probing/attaching etc. * * usb_register and usb_deregister simply call these functions. */ int usb_register(struct usb_driver *driver) { rtw_usb_linux_register(driver); return 0; } int usb_deregister(struct usb_driver *driver) { rtw_usb_linux_deregister(driver); return 0; } void module_init_exit_wrapper(void *arg) { int (*func)(void) = arg; func(); return; } #endif //PLATFORM_FREEBSD #ifdef CONFIG_PLATFORM_SPRD #ifdef do_div #undef do_div #endif #include #endif u64 rtw_modular64(u64 x, u64 y) { #ifdef PLATFORM_LINUX return do_div(x, y); #elif defined(PLATFORM_WINDOWS) return (x % y); #elif defined(PLATFORM_FREEBSD) return (x %y); #endif } u64 rtw_division64(u64 x, u64 y) { #ifdef PLATFORM_LINUX do_div(x, y); return x; #elif defined(PLATFORM_WINDOWS) return (x / y); #elif defined(PLATFORM_FREEBSD) return (x / y); #endif } inline u32 rtw_random32(void) { #ifdef PLATFORM_LINUX #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3,8,0)) return prandom_u32(); #else return random32(); #endif #elif defined(PLATFORM_WINDOWS) #error "to be implemented\n" #elif defined(PLATFORM_FREEBSD) #error "to be implemented\n" #endif } void rtw_buf_free(u8 **buf, u32 *buf_len) { u32 ori_len; if (!buf || !buf_len) return; ori_len = *buf_len; if (*buf) { u32 tmp_buf_len = *buf_len; *buf_len = 0; rtw_mfree(*buf, tmp_buf_len); *buf = NULL; } } void rtw_buf_update(u8 **buf, u32 *buf_len, u8 *src, u32 src_len) { u32 ori_len = 0, dup_len = 0; u8 *ori = NULL; u8 *dup = NULL; if (!buf || !buf_len) return; if (!src || !src_len) goto keep_ori; /* duplicate src */ dup = rtw_malloc(src_len); if (dup) { dup_len = src_len; _rtw_memcpy(dup, src, dup_len); } keep_ori: ori = *buf; ori_len = *buf_len; /* replace buf with dup */ *buf_len = 0; *buf = dup; *buf_len = dup_len; /* free ori */ if (ori && ori_len > 0) rtw_mfree(ori, ori_len); } /** * rtw_cbuf_full - test if cbuf is full * @cbuf: pointer of struct rtw_cbuf * * Returns: _TRUE if cbuf is full */ inline bool rtw_cbuf_full(struct rtw_cbuf *cbuf) { return (cbuf->write == cbuf->read-1)? _TRUE : _FALSE; } /** * rtw_cbuf_empty - test if cbuf is empty * @cbuf: pointer of struct rtw_cbuf * * Returns: _TRUE if cbuf is empty */ inline bool rtw_cbuf_empty(struct rtw_cbuf *cbuf) { return (cbuf->write == cbuf->read)? _TRUE : _FALSE; } /** * rtw_cbuf_push - push a pointer into cbuf * @cbuf: pointer of struct rtw_cbuf * @buf: pointer to push in * * Lock free operation, be careful of the use scheme * Returns: _TRUE push success */ bool rtw_cbuf_push(struct rtw_cbuf *cbuf, void *buf) { if (rtw_cbuf_full(cbuf)) return _FAIL; if (0) DBG_871X("%s on %u\n", __func__, cbuf->write); cbuf->bufs[cbuf->write] = buf; cbuf->write = (cbuf->write+1)%cbuf->size; return _SUCCESS; } /** * rtw_cbuf_pop - pop a pointer from cbuf * @cbuf: pointer of struct rtw_cbuf * * Lock free operation, be careful of the use scheme * Returns: pointer popped out */ void *rtw_cbuf_pop(struct rtw_cbuf *cbuf) { void *buf; if (rtw_cbuf_empty(cbuf)) return NULL; if (0) DBG_871X("%s on %u\n", __func__, cbuf->read); buf = cbuf->bufs[cbuf->read]; cbuf->read = (cbuf->read+1)%cbuf->size; return buf; } /** * rtw_cbuf_alloc - allocte a rtw_cbuf with given size and do initialization * @size: size of pointer * * Returns: pointer of srtuct rtw_cbuf, NULL for allocation failure */ struct rtw_cbuf *rtw_cbuf_alloc(u32 size) { struct rtw_cbuf *cbuf; cbuf = (struct rtw_cbuf *)rtw_malloc(sizeof(*cbuf) + sizeof(void*)*size); if (cbuf) { cbuf->write = cbuf->read = 0; cbuf->size = size; } return cbuf; } /** * rtw_cbuf_free - free the given rtw_cbuf * @cbuf: pointer of struct rtw_cbuf to free */ void rtw_cbuf_free(struct rtw_cbuf *cbuf) { rtw_mfree((u8*)cbuf, sizeof(*cbuf) + sizeof(void*)*cbuf->size); }