/****************************************************************************** * * Copyright(c) 2007 - 2017 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * wlanfae * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, * Hsinchu 300, Taiwan. * * Larry Finger * *****************************************************************************/ /*@************************************************************ * include files * ************************************************************ */ #include "mp_precomp.h" #include "phydm_precomp.h" #if (RTL8822B_SUPPORT == 1 || RTL8821C_SUPPORT == 1 ||\ RTL8195B_SUPPORT == 1 || RTL8198F_SUPPORT == 1 ||\ RTL8814B_SUPPORT == 1 || RTL8822C_SUPPORT == 1) void _iqk_page_switch(void *dm_void) { struct dm_struct *dm = (struct dm_struct *)dm_void; if (dm->support_ic_type == ODM_RTL8821C) odm_write_4byte(dm, 0x1b00, 0xf8000008); else odm_write_4byte(dm, 0x1b00, 0xf800000a); } u32 halrf_psd_log2base(u32 val) { u8 j; u32 tmp, tmp2, val_integerd_b = 0, tindex, shiftcount = 0; u32 result, val_fractiond_b = 0; u32 table_fraction[21] = { 0, 432, 332, 274, 232, 200, 174, 151, 132, 115, 100, 86, 74, 62, 51, 42, 32, 23, 15, 7, 0}; if (val == 0) return 0; tmp = val; while (1) { if (tmp == 1) break; tmp = (tmp >> 1); shiftcount++; } val_integerd_b = shiftcount + 1; tmp2 = 1; for (j = 1; j <= val_integerd_b; j++) tmp2 = tmp2 * 2; tmp = (val * 100) / tmp2; tindex = tmp / 5; if (tindex > 20) tindex = 20; val_fractiond_b = table_fraction[tindex]; result = val_integerd_b * 100 - val_fractiond_b; return result; } void phydm_get_iqk_cfir(void *dm_void, u8 idx, u8 path, boolean debug) { struct dm_struct *dm = (struct dm_struct *)dm_void; struct dm_iqk_info *iqk_info = &dm->IQK_info; u8 i, ch; u32 tmp; u32 bit_mask_20_16 = BIT(20) | BIT(19) | BIT(18) | BIT(17) | BIT(16); if (debug) ch = 2; else ch = 0; odm_set_bb_reg(dm, R_0x1b00, MASKDWORD, 0xf8000008 | path << 1); if (idx == 0) odm_set_bb_reg(dm, R_0x1b0c, BIT(13) | BIT(12), 0x3); else odm_set_bb_reg(dm, R_0x1b0c, BIT(13) | BIT(12), 0x1); odm_set_bb_reg(dm, R_0x1bd4, bit_mask_20_16, 0x10); for (i = 0; i < 8; i++) { odm_set_bb_reg(dm, R_0x1bd8, MASKDWORD, 0xe0000001 + (i * 4)); tmp = odm_get_bb_reg(dm, R_0x1bfc, MASKDWORD); iqk_info->iqk_cfir_real[ch][path][idx][i] = (tmp & 0x0fff0000) >> 16; iqk_info->iqk_cfir_imag[ch][path][idx][i] = tmp & 0xfff; } odm_set_bb_reg(dm, R_0x1bd8, MASKDWORD, 0x0); odm_set_bb_reg(dm, R_0x1b0c, BIT(13) | BIT(12), 0x0); } void halrf_iqk_xym_enable(struct dm_struct *dm, u8 xym_enable) { struct dm_iqk_info *iqk_info = &dm->IQK_info; if (xym_enable == 0) iqk_info->xym_read = false; else iqk_info->xym_read = true; RF_DBG(dm, DBG_RF_IQK, "[IQK]%-20s %s\n", "xym_read = ", (iqk_info->xym_read ? "true" : "false")); } /*xym_type => 0: rx_sym; 1: tx_xym; 2:gs1_xym; 3:gs2_sym; 4: rxk1_xym*/ void halrf_iqk_xym_read(void *dm_void, u8 path, u8 xym_type) { struct dm_struct *dm = (struct dm_struct *)dm_void; struct dm_iqk_info *iqk_info = &dm->IQK_info; u8 i, start, num; u32 tmp1, tmp2; if (!iqk_info->xym_read) return; if (*dm->band_width == 0) { start = 3; num = 4; } else if (*dm->band_width == 1) { start = 2; num = 6; } else { start = 0; num = 10; } odm_write_4byte(dm, 0x1b00, 0xf8000008); tmp1 = odm_read_4byte(dm, 0x1b1c); odm_write_4byte(dm, 0x1b1c, 0xa2193c32); odm_write_4byte(dm, 0x1b00, 0xf800000a); tmp2 = odm_read_4byte(dm, 0x1b1c); odm_write_4byte(dm, 0x1b1c, 0xa2193c32); for (path = 0; path < 2; path++) { odm_write_4byte(dm, 0x1b00, 0xf8000008 | path << 1); switch (xym_type) { case 0: for (i = 0; i < num; i++) { odm_write_4byte(dm, 0x1b14, 0xe6 + start + i); odm_write_4byte(dm, 0x1b14, 0x0); iqk_info->rx_xym[path][i] = odm_read_4byte(dm, 0x1b38); } break; case 1: for (i = 0; i < num; i++) { odm_write_4byte(dm, 0x1b14, 0xe6 + start + i); odm_write_4byte(dm, 0x1b14, 0x0); iqk_info->tx_xym[path][i] = odm_read_4byte(dm, 0x1b38); } break; case 2: for (i = 0; i < 6; i++) { odm_write_4byte(dm, 0x1b14, 0xe0 + i); odm_write_4byte(dm, 0x1b14, 0x0); iqk_info->gs1_xym[path][i] = odm_read_4byte(dm, 0x1b38); } break; case 3: for (i = 0; i < 6; i++) { odm_write_4byte(dm, 0x1b14, 0xe0 + i); odm_write_4byte(dm, 0x1b14, 0x0); iqk_info->gs2_xym[path][i] = odm_read_4byte(dm, 0x1b38); } break; case 4: for (i = 0; i < 6; i++) { odm_write_4byte(dm, 0x1b14, 0xe0 + i); odm_write_4byte(dm, 0x1b14, 0x0); iqk_info->rxk1_xym[path][i] = odm_read_4byte(dm, 0x1b38); } break; } odm_write_4byte(dm, 0x1b38, 0x20000000); odm_write_4byte(dm, 0x1b00, 0xf8000008); odm_write_4byte(dm, 0x1b1c, tmp1); odm_write_4byte(dm, 0x1b00, 0xf800000a); odm_write_4byte(dm, 0x1b1c, tmp2); _iqk_page_switch(dm); } } /*xym_type => 0: rx_sym; 1: tx_xym; 2:gs1_xym; 3:gs2_sym; 4: rxk1_xym*/ void halrf_iqk_xym_show(struct dm_struct *dm, u8 xym_type) { u8 num, path, path_num, i; struct dm_iqk_info *iqk_info = &dm->IQK_info; if (dm->rf_type == RF_1T1R) path_num = 0x1; else if (dm->rf_type == RF_2T2R) path_num = 0x2; else path_num = 0x4; if (*dm->band_width == CHANNEL_WIDTH_20) num = 4; else if (*dm->band_width == CHANNEL_WIDTH_40) num = 6; else num = 10; for (path = 0; path < path_num; path++) { switch (xym_type) { case 0: for (i = 0; i < num; i++) RF_DBG(dm, DBG_RF_IQK, "[IQK]%-20s %-2d: 0x%x\n", (path == 0) ? "PATH A RX-XYM " : "PATH B RX-XYM", i, iqk_info->rx_xym[path][i]); break; case 1: for (i = 0; i < num; i++) RF_DBG(dm, DBG_RF_IQK, "[IQK]%-20s %-2d: 0x%x\n", (path == 0) ? "PATH A TX-XYM " : "PATH B TX-XYM", i, iqk_info->tx_xym[path][i]); break; case 2: for (i = 0; i < 6; i++) RF_DBG(dm, DBG_RF_IQK, "[IQK]%-20s %-2d: 0x%x\n", (path == 0) ? "PATH A GS1-XYM " : "PATH B GS1-XYM", i, iqk_info->gs1_xym[path][i]); break; case 3: for (i = 0; i < 6; i++) RF_DBG(dm, DBG_RF_IQK, "[IQK]%-20s %-2d: 0x%x\n", (path == 0) ? "PATH A GS2-XYM " : "PATH B GS2-XYM", i, iqk_info->gs2_xym[path][i]); break; case 4: for (i = 0; i < 6; i++) RF_DBG(dm, DBG_RF_IQK, "[IQK]%-20s %-2d: 0x%x\n", (path == 0) ? "PATH A RXK1-XYM " : "PATH B RXK1-XYM", i, iqk_info->rxk1_xym[path][i]); break; } } } void halrf_iqk_xym_dump(void *dm_void) { u32 tmp1, tmp2; struct dm_struct *dm = (struct dm_struct *)dm_void; odm_write_4byte(dm, 0x1b00, 0xf8000008); tmp1 = odm_read_4byte(dm, 0x1b1c); odm_write_4byte(dm, 0x1b00, 0xf800000a); tmp2 = odm_read_4byte(dm, 0x1b1c); odm_write_4byte(dm, 0x1b00, 0xf8000008); odm_write_4byte(dm, 0x1b1c, tmp1); odm_write_4byte(dm, 0x1b00, 0xf800000a); odm_write_4byte(dm, 0x1b1c, tmp2); _iqk_page_switch(dm); } void halrf_iqk_info_dump(void *dm_void, u32 *_used, char *output, u32 *_out_len) { struct dm_struct *dm = (struct dm_struct *)dm_void; u32 used = *_used; u32 out_len = *_out_len; u8 rf_path, j, reload_iqk = 0; u32 tmp; /*two channel, PATH, TX/RX, 0:pass 1 :fail*/ boolean iqk_result[2][NUM][2]; struct dm_iqk_info *iqk_info = &dm->IQK_info; if (!(dm->support_ic_type & (ODM_RTL8822B | ODM_RTL8821C))) return; /* IQK INFO */ PDM_SNPF(out_len, used, output + used, out_len - used, "%-20s\n", "% IQK Info %"); PDM_SNPF(out_len, used, output + used, out_len - used, "%-20s\n", (dm->fw_offload_ability & PHYDM_RF_IQK_OFFLOAD) ? "FW-IQK" : "Driver-IQK"); reload_iqk = (u8)odm_get_bb_reg(dm, R_0x1bf0, BIT(16)); PDM_SNPF(out_len, used, output + used, out_len - used, "%-20s: %s\n", "reload", (reload_iqk) ? "True" : "False"); PDM_SNPF(out_len, used, output + used, out_len - used, "%-20s: %s\n", "rfk_forbidden", (iqk_info->rfk_forbidden) ? "True" : "False"); #if (RTL8814A_SUPPORT == 1 || RTL8822B_SUPPORT == 1 || \ RTL8821C_SUPPORT == 1 || RTL8195B_SUPPORT == 1 ||\ RTL8814B_SUPPORT == 1 || RTL8822C_SUPPORT == 1) PDM_SNPF(out_len, used, output + used, out_len - used, "%-20s: %s\n", "segment_iqk", (iqk_info->segment_iqk) ? "True" : "False"); #endif PDM_SNPF(out_len, used, output + used, out_len - used, "%-20s:%d %d\n", "iqk count / fail count", dm->n_iqk_cnt, dm->n_iqk_fail_cnt); PDM_SNPF(out_len, used, output + used, out_len - used, "%-20s: %d\n", "channel", *dm->channel); if (*dm->band_width == CHANNEL_WIDTH_20) PDM_SNPF(out_len, used, output + used, out_len - used, "%-20s: %s\n", "bandwidth", "BW_20"); else if (*dm->band_width == CHANNEL_WIDTH_40) PDM_SNPF(out_len, used, output + used, out_len - used, "%-20s: %s\n", "bandwidth", "BW_40"); else if (*dm->band_width == CHANNEL_WIDTH_80) PDM_SNPF(out_len, used, output + used, out_len - used, "%-20s: %s\n", "bandwidth", "BW_80"); else if (*dm->band_width == CHANNEL_WIDTH_160) PDM_SNPF(out_len, used, output + used, out_len - used, "%-20s: %s\n", "bandwidth", "BW_160"); else PDM_SNPF(out_len, used, output + used, out_len - used, "%-20s: %s\n", "bandwidth", "BW_UNKNOWN"); PDM_SNPF(out_len, used, output + used, out_len - used, "%-20s: %llu %s\n", "progressing_time", dm->rf_calibrate_info.iqk_total_progressing_time, "(ms)"); tmp = odm_read_4byte(dm, 0x1bf0); for (rf_path = RF_PATH_A; rf_path <= RF_PATH_B; rf_path++) for (j = 0; j < 2; j++) iqk_result[0][rf_path][j] = (boolean) (tmp & (BIT(rf_path + (j * 4)) >> (rf_path + (j * 4)))); PDM_SNPF(out_len, used, output + used, out_len - used, "%-20s: 0x%08x\n", "Reg0x1bf0", tmp); PDM_SNPF(out_len, used, output + used, out_len - used, "%-20s: %s\n", "PATH_A-Tx result", (iqk_result[0][RF_PATH_A][0]) ? "Fail" : "Pass"); PDM_SNPF(out_len, used, output + used, out_len - used, "%-20s: %s\n", "PATH_A-Rx result", (iqk_result[0][RF_PATH_A][1]) ? "Fail" : "Pass"); #if (RTL8822B_SUPPORT == 1) PDM_SNPF(out_len, used, output + used, out_len - used, "%-20s: %s\n", "PATH_B-Tx result", (iqk_result[0][RF_PATH_B][0]) ? "Fail" : "Pass"); PDM_SNPF(out_len, used, output + used, out_len - used, "%-20s: %s\n", "PATH_B-Rx result", (iqk_result[0][RF_PATH_B][1]) ? "Fail" : "Pass"); #endif *_used = used; *_out_len = out_len; } void halrf_get_fw_version(void *dm_void) { struct dm_struct *dm = (struct dm_struct *)dm_void; struct _hal_rf_ *rf = &dm->rf_table; rf->fw_ver = (dm->fw_version << 16) | dm->fw_sub_version; } void halrf_iqk_dbg(void *dm_void) { struct dm_struct *dm = (struct dm_struct *)dm_void; u8 rf_path, j; u32 tmp; /*two channel, PATH, TX/RX, 0:pass 1 :fail*/ boolean iqk_result[2][NUM][2]; struct dm_iqk_info *iqk_info = &dm->IQK_info; struct _hal_rf_ *rf = &dm->rf_table; /* IQK INFO */ RF_DBG(dm, DBG_RF_IQK, "%-20s\n", "====== IQK Info ======"); RF_DBG(dm, DBG_RF_IQK, "%-20s\n", (dm->fw_offload_ability & PHYDM_RF_IQK_OFFLOAD) ? "FW-IQK" : "Driver-IQK"); if (dm->fw_offload_ability & PHYDM_RF_IQK_OFFLOAD) { halrf_get_fw_version(dm); RF_DBG(dm, DBG_RF_IQK, "%-20s: 0x%x\n", "FW_VER", rf->fw_ver); } else { RF_DBG(dm, DBG_RF_IQK, "%-20s: %s\n", "IQK_VER", HALRF_IQK_VER); } RF_DBG(dm, DBG_RF_IQK, "%-20s: %s\n", "reload", (iqk_info->is_reload) ? "True" : "False"); RF_DBG(dm, DBG_RF_IQK, "%-20s: %d %d\n", "iqk count / fail count", dm->n_iqk_cnt, dm->n_iqk_fail_cnt); RF_DBG(dm, DBG_RF_IQK, "%-20s: %d\n", "channel", *dm->channel); if (*dm->band_width == CHANNEL_WIDTH_20) RF_DBG(dm, DBG_RF_IQK, "%-20s: %s\n", "bandwidth", "BW_20"); else if (*dm->band_width == CHANNEL_WIDTH_40) RF_DBG(dm, DBG_RF_IQK, "%-20s: %s\n", "bandwidth", "BW_40"); else if (*dm->band_width == CHANNEL_WIDTH_80) RF_DBG(dm, DBG_RF_IQK, "%-20s: %s\n", "bandwidth", "BW_80"); else if (*dm->band_width == CHANNEL_WIDTH_160) RF_DBG(dm, DBG_RF_IQK, "%-20s: %s\n", "bandwidth", "BW_160"); else RF_DBG(dm, DBG_RF_IQK, "%-20s: %s\n", "bandwidth", "BW_UNKNOWN"); RF_DBG(dm, DBG_RF_IQK, "%-20s: %s\n", "rfk_forbidden", (iqk_info->rfk_forbidden) ? "True" : "False"); #if (RTL8814A_SUPPORT == 1 || RTL8822B_SUPPORT == 1 || \ RTL8821C_SUPPORT == 1 || RTL8195B_SUPPORT == 1 ||\ RTL8814B_SUPPORT == 1 || RTL8822C_SUPPORT == 1) RF_DBG(dm, DBG_RF_IQK, "%-20s: %s\n", "segment_iqk", (iqk_info->segment_iqk) ? "True" : "False"); #endif RF_DBG(dm, DBG_RF_IQK, "%-20s: %llu %s\n", "progressing_time", dm->rf_calibrate_info.iqk_progressing_time, "(ms)"); tmp = odm_read_4byte(dm, 0x1bf0); for (rf_path = RF_PATH_A; rf_path <= RF_PATH_B; rf_path++) for (j = 0; j < 2; j++) iqk_result[0][rf_path][j] = (boolean) (tmp & (BIT(rf_path + (j * 4)) >> (rf_path + (j * 4)))); RF_DBG(dm, DBG_RF_IQK, "%-20s: 0x%08x\n", "Reg0x1bf0", tmp); RF_DBG(dm, DBG_RF_IQK, "%-20s: 0x%08x\n", "Reg0x1be8", odm_read_4byte(dm, 0x1be8)); RF_DBG(dm, DBG_RF_IQK, "%-20s: %s\n", "PATH_A-Tx result", (iqk_result[0][RF_PATH_A][0]) ? "Fail" : "Pass"); RF_DBG(dm, DBG_RF_IQK, "%-20s: %s\n", "PATH_A-Rx result", (iqk_result[0][RF_PATH_A][1]) ? "Fail" : "Pass"); #if (RTL8822B_SUPPORT == 1) RF_DBG(dm, DBG_RF_IQK, "%-20s: %s\n", "PATH_B-Tx result", (iqk_result[0][RF_PATH_B][0]) ? "Fail" : "Pass"); RF_DBG(dm, DBG_RF_IQK, "%-20s: %s\n", "PATH_B-Rx result", (iqk_result[0][RF_PATH_B][1]) ? "Fail" : "Pass"); #endif } void halrf_lck_dbg(struct dm_struct *dm) { RF_DBG(dm, DBG_RF_IQK, "%-20s\n", "====== LCK Info ======"); RF_DBG(dm, DBG_RF_IQK, "%-20s: %llu %s\n", "progressing_time", dm->rf_calibrate_info.lck_progressing_time, "(ms)"); } void halrf_iqk_dbg_cfir_backup(struct dm_struct *dm) { struct dm_iqk_info *iqk_info = &dm->IQK_info; u8 path, idx, i; RF_DBG(dm, DBG_RF_IQK, "[IQK]%-20s\n", "backup TX/RX CFIR"); for (path = 0; path < 2; path++) for (idx = 0; idx < 2; idx++) phydm_get_iqk_cfir(dm, idx, path, true); for (path = 0; path < 2; path++) { for (idx = 0; idx < 2; idx++) { for (i = 0; i < 8; i++) { RF_DBG(dm, DBG_RF_IQK, "[IQK]%-7s %-3s CFIR_real: %-2d: 0x%x\n", (path == 0) ? "PATH A" : "PATH B", (idx == 0) ? "TX" : "RX", i, iqk_info->iqk_cfir_real[2][path][idx][i]) ; } for (i = 0; i < 8; i++) { RF_DBG(dm, DBG_RF_IQK, "[IQK]%-7s %-3s CFIR_img:%-2d: 0x%x\n", (path == 0) ? "PATH A" : "PATH B", (idx == 0) ? "TX" : "RX", i, iqk_info->iqk_cfir_imag[2][path][idx][i]) ; } } } } void halrf_iqk_dbg_cfir_backup_update(struct dm_struct *dm) { struct dm_iqk_info *iqk = &dm->IQK_info; u8 i, path, idx; u32 bmask13_12 = BIT(13) | BIT(12); u32 bmask20_16 = BIT(20) | BIT(19) | BIT(18) | BIT(17) | BIT(16); u32 data; if (iqk->iqk_cfir_real[2][0][0][0] == 0) { RF_DBG(dm, DBG_RF_IQK, "[IQK]%-20s\n", "CFIR is invalid"); return; } for (path = 0; path < 2; path++) { for (idx = 0; idx < 2; idx++) { odm_set_bb_reg(dm, R_0x1b00, MASKDWORD, 0xf8000008 | path << 1); odm_set_bb_reg(dm, R_0x1b2c, MASKDWORD, 0x7); odm_set_bb_reg(dm, R_0x1b38, MASKDWORD, 0x20000000); odm_set_bb_reg(dm, R_0x1b3c, MASKDWORD, 0x20000000); odm_set_bb_reg(dm, R_0x1bcc, MASKDWORD, 0x00000000); if (idx == 0) odm_set_bb_reg(dm, R_0x1b0c, bmask13_12, 0x3); else odm_set_bb_reg(dm, R_0x1b0c, bmask13_12, 0x1); odm_set_bb_reg(dm, R_0x1bd4, bmask20_16, 0x10); for (i = 0; i < 8; i++) { data = ((0xc0000000 >> idx) + 0x3) + (i * 4) + (iqk->iqk_cfir_real[2][path][idx][i] << 9); odm_write_4byte(dm, 0x1bd8, data); data = ((0xc0000000 >> idx) + 0x1) + (i * 4) + (iqk->iqk_cfir_imag[2][path][idx][i] << 9); odm_write_4byte(dm, 0x1bd8, data); } } odm_set_bb_reg(dm, R_0x1bd8, MASKDWORD, 0x0); odm_set_bb_reg(dm, R_0x1b0c, bmask13_12, 0x0); } RF_DBG(dm, DBG_RF_IQK, "[IQK]%-20s\n", "update new CFIR"); } void halrf_iqk_dbg_cfir_reload(struct dm_struct *dm) { struct dm_iqk_info *iqk = &dm->IQK_info; u8 i, path, idx; u32 bmask13_12 = BIT(13) | BIT(12); u32 bmask20_16 = BIT(20) | BIT(19) | BIT(18) | BIT(17) | BIT(16); u32 data; if (iqk->iqk_cfir_real[0][0][0][0] == 0) { RF_DBG(dm, DBG_RF_IQK, "[IQK]%-20s\n", "CFIR is invalid"); return; } for (path = 0; path < 2; path++) { for (idx = 0; idx < 2; idx++) { odm_set_bb_reg(dm, R_0x1b00, MASKDWORD, 0xf8000008 | path << 1); odm_set_bb_reg(dm, R_0x1b2c, MASKDWORD, 0x7); odm_set_bb_reg(dm, R_0x1b38, MASKDWORD, 0x20000000); odm_set_bb_reg(dm, R_0x1b3c, MASKDWORD, 0x20000000); odm_set_bb_reg(dm, R_0x1bcc, MASKDWORD, 0x00000000); if (idx == 0) odm_set_bb_reg(dm, R_0x1b0c, bmask13_12, 0x3); else odm_set_bb_reg(dm, R_0x1b0c, bmask13_12, 0x1); odm_set_bb_reg(dm, R_0x1bd4, bmask20_16, 0x10); for (i = 0; i < 8; i++) { data = ((0xc0000000 >> idx) + 0x3) + (i * 4) + (iqk->iqk_cfir_real[0][path][idx][i] << 9); odm_write_4byte(dm, 0x1bd8, data); data = ((0xc0000000 >> idx) + 0x1) + (i * 4) + (iqk->iqk_cfir_imag[0][path][idx][i] << 9); odm_write_4byte(dm, 0x1bd8, data); } } odm_set_bb_reg(dm, R_0x1bd8, MASKDWORD, 0x0); odm_set_bb_reg(dm, R_0x1b0c, bmask13_12, 0x0); } RF_DBG(dm, DBG_RF_IQK, "[IQK]%-20s\n", "write CFIR with default value"); } void halrf_iqk_dbg_cfir_write(struct dm_struct *dm, u8 type, u32 path, u32 idx, u32 i, u32 data) { struct dm_iqk_info *iqk_info = &dm->IQK_info; if (type == 0) iqk_info->iqk_cfir_real[2][path][idx][i] = data; else iqk_info->iqk_cfir_imag[2][path][idx][i] = data; } void halrf_iqk_dbg_cfir_backup_show(struct dm_struct *dm) { struct dm_iqk_info *iqk_info = &dm->IQK_info; u8 path, idx, i; RF_DBG(dm, DBG_RF_IQK, "[IQK]%-20s\n", "backup TX/RX CFIR"); for (path = 0; path < 2; path++) { for (idx = 0; idx < 2; idx++) { for (i = 0; i < 8; i++) { RF_DBG(dm, DBG_RF_IQK, "[IQK]%-10s %-3s CFIR_real:%-2d: 0x%x\n", (path == 0) ? "PATH A" : "PATH B", (idx == 0) ? "TX" : "RX", i, iqk_info->iqk_cfir_real[2][path][idx][i]) ; } for (i = 0; i < 8; i++) { RF_DBG(dm, DBG_RF_IQK, "[IQK]%-10s %-3s CFIR_img:%-2d: 0x%x\n", (path == 0) ? "PATH A" : "PATH B", (idx == 0) ? "TX" : "RX", i, iqk_info->iqk_cfir_imag[2][path][idx][i]) ; } } } } void halrf_do_imr_test(void *dm_void, u8 flag_imr_test) { struct dm_struct *dm = (struct dm_struct *)dm_void; if (flag_imr_test != 0x0) switch (dm->support_ic_type) { #if (RTL8822B_SUPPORT == 1) case ODM_RTL8822B: do_imr_test_8822b(dm); break; #endif #if (RTL8821C_SUPPORT == 1) case ODM_RTL8821C: do_imr_test_8821c(dm); break; #endif default: break; } } void halrf_iqk_debug(void *dm_void, u32 *const dm_value, u32 *_used, char *output, u32 *_out_len) { struct dm_struct *dm = (struct dm_struct *)dm_void; if (dm_value[0] == 0x0) halrf_iqk_dbg_cfir_backup(dm); else if (dm_value[0] == 0x1) halrf_iqk_dbg_cfir_backup_update(dm); else if (dm_value[0] == 0x2) halrf_iqk_dbg_cfir_reload(dm); else if (dm_value[0] == 0x3) halrf_iqk_dbg_cfir_backup_show(dm); else if (dm_value[0] == 0x10) halrf_iqk_dbg_cfir_write(dm, 0, dm_value[1], dm_value[2], dm_value[3], dm_value[4]); else if (dm_value[0] == 0x11) halrf_iqk_dbg_cfir_write(dm, 1, dm_value[1], dm_value[2], dm_value[3], dm_value[4]); else if (dm_value[0] == 0x20) halrf_iqk_xym_enable(dm, (u8)dm_value[1]); else if (dm_value[0] == 0x21) halrf_iqk_xym_show(dm, (u8)dm_value[1]); else if (dm_value[0] == 0x30) halrf_do_imr_test(dm, (u8)dm_value[1]); } void halrf_iqk_hwtx_check(void *dm_void, boolean is_check) { } void halrf_segment_iqk_trigger(void *dm_void, boolean clear, boolean segment_iqk) { struct dm_struct *dm = (struct dm_struct *)dm_void; struct dm_iqk_info *iqk_info = &dm->IQK_info; struct _hal_rf_ *rf = &dm->rf_table; u64 start_time; #if (DM_ODM_SUPPORT_TYPE & (ODM_WIN)) if (odm_check_power_status(dm) == false) return; #endif if (dm->mp_mode && rf->is_con_tx && rf->is_single_tone && rf->is_carrier_suppresion) if (*dm->mp_mode && ((*rf->is_con_tx || *rf->is_single_tone || *rf->is_carrier_suppresion))) return; #if (DM_ODM_SUPPORT_TYPE == ODM_CE) if (!(rf->rf_supportability & HAL_RF_IQK)) return; #endif if (iqk_info->rfk_forbidden) return; if (!dm->rf_calibrate_info.is_iqk_in_progress) { odm_acquire_spin_lock(dm, RT_IQK_SPINLOCK); dm->rf_calibrate_info.is_iqk_in_progress = true; odm_release_spin_lock(dm, RT_IQK_SPINLOCK); start_time = odm_get_current_time(dm); dm->IQK_info.segment_iqk = segment_iqk; switch (dm->support_ic_type) { #if (RTL8822B_SUPPORT == 1) case ODM_RTL8822B: phy_iq_calibrate_8822b(dm, clear, segment_iqk); break; #endif #if (RTL8822C_SUPPORT == 1) case ODM_RTL8822C: phy_iq_calibrate_8822c(dm, clear, segment_iqk); break; #endif #if (RTL8821C_SUPPORT == 1) case ODM_RTL8821C: phy_iq_calibrate_8821c(dm, clear, segment_iqk); break; #endif #if (RTL8814B_SUPPORT == 1) case ODM_RTL8814B: break; #endif #if (RTL8195B_SUPPORT == 1) case ODM_RTL8195B: phy_iq_calibrate_8195b(dm, clear, segment_iqk); break; #endif #if (RTL8198F_SUPPORT == 1) case ODM_RTL8198F: phy_iq_calibrate_8198f(dm, clear, segment_iqk); break; #endif default: break; } dm->rf_calibrate_info.iqk_progressing_time = odm_get_progressing_time(dm, start_time); RF_DBG(dm, DBG_RF_IQK, "[IQK]IQK progressing_time = %lld ms\n", dm->rf_calibrate_info.iqk_progressing_time); odm_acquire_spin_lock(dm, RT_IQK_SPINLOCK); dm->rf_calibrate_info.is_iqk_in_progress = false; odm_release_spin_lock(dm, RT_IQK_SPINLOCK); } else { RF_DBG(dm, DBG_RF_IQK, "== Return the IQK CMD, because RFKs in Progress ==\n"); } } #endif u8 halrf_match_iqk_version(void *dm_void) { struct dm_struct *dm = (struct dm_struct *)dm_void; u32 iqk_version = 0; char temp[10] = {0}; odm_move_memory(dm, temp, HALRF_IQK_VER, sizeof(temp)); PHYDM_SSCANF(temp + 2, DCMD_HEX, &iqk_version); if (dm->support_ic_type == ODM_RTL8822B) { if (iqk_version >= 0x24 && (odm_get_hw_img_version(dm) >= 72)) return 1; else if ((iqk_version <= 0x23) && (odm_get_hw_img_version(dm) <= 71)) return 1; else return 0; } if (dm->support_ic_type == ODM_RTL8821C) { if (iqk_version >= 0x18 && (odm_get_hw_img_version(dm) >= 37)) return 1; else return 0; } return 1; } void halrf_rf_lna_setting(void *dm_void, enum halrf_lna_set type) { struct dm_struct *dm = (struct dm_struct *)dm_void; switch (dm->support_ic_type) { #if (RTL8188E_SUPPORT == 1) case ODM_RTL8188E: halrf_rf_lna_setting_8188e(dm, type); break; #endif #if (RTL8192E_SUPPORT == 1) case ODM_RTL8192E: halrf_rf_lna_setting_8192e(dm, type); break; #endif #if (RTL8192F_SUPPORT == 1) case ODM_RTL8192F: halrf_rf_lna_setting_8192f(dm, type); break; #endif #if (RTL8723B_SUPPORT == 1) case ODM_RTL8723B: halrf_rf_lna_setting_8723b(dm, type); break; #endif #if (RTL8812A_SUPPORT == 1) case ODM_RTL8812: halrf_rf_lna_setting_8812a(dm, type); break; #endif #if ((RTL8821A_SUPPORT == 1) || (RTL8881A_SUPPORT == 1)) case ODM_RTL8881A: case ODM_RTL8821: halrf_rf_lna_setting_8821a(dm, type); break; #endif #if (RTL8822B_SUPPORT == 1) case ODM_RTL8822B: halrf_rf_lna_setting_8822b(dm_void, type); break; #endif #if (RTL8822C_SUPPORT == 1) case ODM_RTL8822C: halrf_rf_lna_setting_8822c(dm_void, type); break; #endif #if (RTL8821C_SUPPORT == 1) case ODM_RTL8821C: halrf_rf_lna_setting_8821c(dm_void, type); break; #endif #if (RTL8814B_SUPPORT == 1) case ODM_RTL8814B: break; #endif default: break; } } void halrf_support_ability_debug(void *dm_void, char input[][16], u32 *_used, char *output, u32 *_out_len) { struct dm_struct *dm = (struct dm_struct *)dm_void; struct _hal_rf_ *rf = &dm->rf_table; u32 dm_value[10] = {0}; u32 used = *_used; u32 out_len = *_out_len; u8 i; for (i = 0; i < 5; i++) if (input[i + 1]) PHYDM_SSCANF(input[i + 2], DCMD_DECIMAL, &dm_value[i]); if (dm_value[0] == 100) { PDM_SNPF(out_len, used, output + used, out_len - used, "\n[RF Supportability]\n"); PDM_SNPF(out_len, used, output + used, out_len - used, "00. (( %s ))Power Tracking\n", ((rf->rf_supportability & HAL_RF_TX_PWR_TRACK) ? ("V") : ("."))); PDM_SNPF(out_len, used, output + used, out_len - used, "01. (( %s ))IQK\n", ((rf->rf_supportability & HAL_RF_IQK) ? ("V") : ("."))); PDM_SNPF(out_len, used, output + used, out_len - used, "02. (( %s ))LCK\n", ((rf->rf_supportability & HAL_RF_LCK) ? ("V") : ("."))); PDM_SNPF(out_len, used, output + used, out_len - used, "03. (( %s ))DPK\n", ((rf->rf_supportability & HAL_RF_DPK) ? ("V") : ("."))); PDM_SNPF(out_len, used, output + used, out_len - used, "04. (( %s ))HAL_RF_TXGAPK\n", ((rf->rf_supportability & HAL_RF_TXGAPK) ? ("V") : ("."))); } else { if (dm_value[1] == 1) /* enable */ rf->rf_supportability |= BIT(dm_value[0]); else if (dm_value[1] == 2) /* disable */ rf->rf_supportability &= ~(BIT(dm_value[0])); else PDM_SNPF(out_len, used, output + used, out_len - used, "[Warning!!!] 1:enable, 2:disable\n"); } PDM_SNPF(out_len, used, output + used, out_len - used, "\nCurr-RF_supportability = 0x%x\n\n", rf->rf_supportability); *_used = used; *_out_len = out_len; } void halrf_cmn_info_init(void *dm_void, enum halrf_cmninfo_init cmn_info, u32 value) { struct dm_struct *dm = (struct dm_struct *)dm_void; struct _hal_rf_ *rf = &dm->rf_table; switch (cmn_info) { case HALRF_CMNINFO_EEPROM_THERMAL_VALUE: rf->eeprom_thermal = (u8)value; break; case HALRF_CMNINFO_PWT_TYPE: rf->pwt_type = (u8)value; break; default: break; } } void halrf_cmn_info_hook(void *dm_void, enum halrf_cmninfo_hook cmn_info, void *value) { struct dm_struct *dm = (struct dm_struct *)dm_void; struct _hal_rf_ *rf = &dm->rf_table; switch (cmn_info) { case HALRF_CMNINFO_CON_TX: rf->is_con_tx = (boolean *)value; break; case HALRF_CMNINFO_SINGLE_TONE: rf->is_single_tone = (boolean *)value; break; case HALRF_CMNINFO_CARRIER_SUPPRESSION: rf->is_carrier_suppresion = (boolean *)value; break; case HALRF_CMNINFO_MP_RATE_INDEX: rf->mp_rate_index = (u8 *)value; break; default: /*do nothing*/ break; } } void halrf_cmn_info_set(void *dm_void, u32 cmn_info, u64 value) { /* This init variable may be changed in run time. */ struct dm_struct *dm = (struct dm_struct *)dm_void; struct _hal_rf_ *rf = &dm->rf_table; switch (cmn_info) { case HALRF_CMNINFO_ABILITY: rf->rf_supportability = (u32)value; break; case HALRF_CMNINFO_DPK_EN: rf->dpk_en = (u8)value; break; case HALRF_CMNINFO_RFK_FORBIDDEN: dm->IQK_info.rfk_forbidden = (boolean)value; break; #if (RTL8814A_SUPPORT == 1 || RTL8822B_SUPPORT == 1 || \ RTL8821C_SUPPORT == 1 || RTL8195B_SUPPORT == 1 ||\ RTL8814B_SUPPORT == 1 || RTL8822C_SUPPORT == 1) case HALRF_CMNINFO_IQK_SEGMENT: dm->IQK_info.segment_iqk = (boolean)value; break; #endif case HALRF_CMNINFO_RATE_INDEX: rf->p_rate_index = (u32)value; break; #if (DM_ODM_SUPPORT_TYPE & ODM_WIN) case HALRF_CMNINFO_MP_PSD_POINT: rf->halrf_psd_data.point = (u32)value; break; case HALRF_CMNINFO_MP_PSD_START_POINT: rf->halrf_psd_data.start_point = (u32)value; break; case HALRF_CMNINFO_MP_PSD_STOP_POINT: rf->halrf_psd_data.stop_point = (u32)value; break; case HALRF_CMNINFO_MP_PSD_AVERAGE: rf->halrf_psd_data.average = (u32)value; break; #endif default: /* do nothing */ break; } } u64 halrf_cmn_info_get(void *dm_void, u32 cmn_info) { /* This init variable may be changed in run time. */ struct dm_struct *dm = (struct dm_struct *)dm_void; struct _hal_rf_ *rf = &dm->rf_table; u64 return_value = 0; switch (cmn_info) { case HALRF_CMNINFO_ABILITY: return_value = (u32)rf->rf_supportability; break; case HALRF_CMNINFO_RFK_FORBIDDEN: return_value = dm->IQK_info.rfk_forbidden; break; #if (RTL8814A_SUPPORT == 1 || RTL8822B_SUPPORT == 1 || \ RTL8821C_SUPPORT == 1 || RTL8195B_SUPPORT == 1 ||\ RTL8814B_SUPPORT == 1 || RTL8822C_SUPPORT == 1) case HALRF_CMNINFO_IQK_SEGMENT: return_value = dm->IQK_info.segment_iqk; break; #endif default: /* do nothing */ break; } return return_value; } void halrf_supportability_init_mp(void *dm_void) { struct dm_struct *dm = (struct dm_struct *)dm_void; struct _hal_rf_ *rf = &dm->rf_table; switch (dm->support_ic_type) { case ODM_RTL8814B: #if (RTL8814B_SUPPORT == 1) rf->rf_supportability = HAL_RF_TX_PWR_TRACK | HAL_RF_IQK | HAL_RF_LCK | /*@HAL_RF_DPK |*/ 0; #endif break; #if (RTL8822B_SUPPORT == 1) case ODM_RTL8822B: rf->rf_supportability = HAL_RF_TX_PWR_TRACK | HAL_RF_IQK | HAL_RF_LCK | /*@HAL_RF_DPK |*/ 0; break; #endif #if (RTL8822C_SUPPORT == 1) case ODM_RTL8822C: rf->rf_supportability = HAL_RF_TX_PWR_TRACK | HAL_RF_IQK | HAL_RF_LCK | /*@HAL_RF_DPK |*/ 0; break; #endif #if (RTL8821C_SUPPORT == 1) case ODM_RTL8821C: rf->rf_supportability = HAL_RF_TX_PWR_TRACK | HAL_RF_IQK | HAL_RF_LCK | /*@HAL_RF_DPK |*/ /*@HAL_RF_TXGAPK |*/ 0; break; #endif #if (RTL8195B_SUPPORT == 1) case ODM_RTL8195B: rf->rf_supportability = HAL_RF_TX_PWR_TRACK | HAL_RF_IQK | HAL_RF_LCK | HAL_RF_DPK | HAL_RF_TXGAPK | 0; break; #endif default: rf->rf_supportability = HAL_RF_TX_PWR_TRACK | HAL_RF_IQK | HAL_RF_LCK | /*@HAL_RF_DPK |*/ /*@HAL_RF_TXGAPK |*/ 0; break; } RF_DBG(dm, DBG_RF_INIT, "IC = ((0x%x)), RF_Supportability Init MP = ((0x%x))\n", dm->support_ic_type, rf->rf_supportability); } void halrf_supportability_init(void *dm_void) { struct dm_struct *dm = (struct dm_struct *)dm_void; struct _hal_rf_ *rf = &dm->rf_table; switch (dm->support_ic_type) { case ODM_RTL8814B: #if (RTL8814B_SUPPORT == 1) rf->rf_supportability = HAL_RF_TX_PWR_TRACK | HAL_RF_IQK | HAL_RF_LCK | /*@HAL_RF_DPK |*/ 0; #endif break; #if (RTL8822B_SUPPORT == 1) case ODM_RTL8822B: rf->rf_supportability = HAL_RF_TX_PWR_TRACK | HAL_RF_IQK | HAL_RF_LCK | /*@HAL_RF_DPK |*/ 0; break; #endif #if (RTL8822C_SUPPORT == 1) case ODM_RTL8822C: rf->rf_supportability = HAL_RF_TX_PWR_TRACK | HAL_RF_IQK | HAL_RF_LCK | HAL_RF_DPK | 0; break; #endif #if (RTL8821C_SUPPORT == 1) case ODM_RTL8821C: rf->rf_supportability = HAL_RF_TX_PWR_TRACK | HAL_RF_IQK | HAL_RF_LCK | /*@HAL_RF_DPK |*/ /*@HAL_RF_TXGAPK |*/ 0; break; #endif #if (RTL8195B_SUPPORT == 1) case ODM_RTL8195B: rf->rf_supportability = HAL_RF_TX_PWR_TRACK | HAL_RF_IQK | HAL_RF_LCK | HAL_RF_DPK | HAL_RF_TXGAPK | 0; break; #endif default: rf->rf_supportability = HAL_RF_TX_PWR_TRACK | HAL_RF_IQK | HAL_RF_LCK | /*@HAL_RF_DPK |*/ 0; break; } RF_DBG(dm, DBG_RF_INIT, "IC = ((0x%x)), RF_Supportability Init = ((0x%x))\n", dm->support_ic_type, rf->rf_supportability); } void halrf_watchdog(void *dm_void) { struct dm_struct *dm = (struct dm_struct *)dm_void; phydm_rf_watchdog(dm); } void halrf_dack_trigger(void *dm_void) { struct dm_struct *dm = (struct dm_struct *)dm_void; struct _hal_rf_ *rf = &dm->rf_table; u64 start_time; start_time = odm_get_current_time(dm); switch (dm->support_ic_type) { #if (RTL8822C_SUPPORT == 1) case ODM_RTL8822C: halrf_dac_cal_8822c(dm); break; #endif default: break; } rf->dpk_progressing_time = odm_get_progressing_time(dm, start_time); RF_DBG(dm, DBG_RF_DACK, "[DACK]DACK progressing_time = %lld ms\n", rf->dpk_progressing_time); } void halrf_iqk_trigger(void *dm_void, boolean is_recovery) { struct dm_struct *dm = (struct dm_struct *)dm_void; struct dm_iqk_info *iqk_info = &dm->IQK_info; struct dm_dpk_info *dpk_info = &dm->dpk_info; struct _hal_rf_ *rf = &dm->rf_table; u64 start_time; #if (DM_ODM_SUPPORT_TYPE & (ODM_WIN)) if (odm_check_power_status(dm) == false) return; #endif if (dm->mp_mode && rf->is_con_tx && rf->is_single_tone && rf->is_carrier_suppresion) if (*dm->mp_mode && ((*rf->is_con_tx || *rf->is_single_tone || *rf->is_carrier_suppresion))) return; if (!(rf->rf_supportability & HAL_RF_IQK)) return; if (iqk_info->rfk_forbidden) return; if (!dm->rf_calibrate_info.is_iqk_in_progress) { odm_acquire_spin_lock(dm, RT_IQK_SPINLOCK); dm->rf_calibrate_info.is_iqk_in_progress = true; odm_release_spin_lock(dm, RT_IQK_SPINLOCK); start_time = odm_get_current_time(dm); switch (dm->support_ic_type) { #if (RTL8188E_SUPPORT == 1) case ODM_RTL8188E: phy_iq_calibrate_8188e(dm, is_recovery); break; #endif #if (RTL8188F_SUPPORT == 1) case ODM_RTL8188F: phy_iq_calibrate_8188f(dm, is_recovery); break; #endif #if (RTL8192E_SUPPORT == 1) case ODM_RTL8192E: phy_iq_calibrate_8192e(dm, is_recovery); break; #endif #if (RTL8197F_SUPPORT == 1) case ODM_RTL8197F: phy_iq_calibrate_8197f(dm, is_recovery); break; #endif #if (RTL8192F_SUPPORT == 1) case ODM_RTL8192F: phy_iq_calibrate_8192f(dm, is_recovery); break; #endif #if (RTL8703B_SUPPORT == 1) case ODM_RTL8703B: phy_iq_calibrate_8703b(dm, is_recovery); break; #endif #if (RTL8710B_SUPPORT == 1) case ODM_RTL8710B: phy_iq_calibrate_8710b(dm, is_recovery); break; #endif #if (RTL8723B_SUPPORT == 1) case ODM_RTL8723B: phy_iq_calibrate_8723b(dm, is_recovery); break; #endif #if (RTL8723D_SUPPORT == 1) case ODM_RTL8723D: phy_iq_calibrate_8723d(dm, is_recovery); break; #endif #if (RTL8721D_SUPPORT == 1) case ODM_RTL8721D: phy_iq_calibrate_8721d(dm, is_recovery); break; #endif #if (RTL8812A_SUPPORT == 1) case ODM_RTL8812: phy_iq_calibrate_8812a(dm, is_recovery); break; #endif #if (RTL8821A_SUPPORT == 1) case ODM_RTL8821: phy_iq_calibrate_8821a(dm, is_recovery); break; #endif #if (RTL8814A_SUPPORT == 1) case ODM_RTL8814A: phy_iq_calibrate_8814a(dm, is_recovery); break; #endif #if (RTL8822B_SUPPORT == 1) case ODM_RTL8822B: phy_iq_calibrate_8822b(dm, false, false); break; #endif #if (RTL8822C_SUPPORT == 1) case ODM_RTL8822C: phy_iq_calibrate_8822c(dm, false, false); /*halrf_do_tssi_8822c(dm);*/ do_dpk_8822c(dm); break; #endif #if (RTL8821C_SUPPORT == 1) case ODM_RTL8821C: phy_iq_calibrate_8821c(dm, false, false); break; #endif #if (RTL8814B_SUPPORT == 1) case ODM_RTL8814B: phy_iq_calibrate_8814b(dm, false, false); break; #endif #if (RTL8195B_SUPPORT == 1) case ODM_RTL8195B: phy_iq_calibrate_8195b(dm, false, false); break; #endif #if (RTL8198F_SUPPORT == 1) case ODM_RTL8198F: phy_iq_calibrate_8198f(dm, false, false); break; #endif default: break; } dm->rf_calibrate_info.iqk_progressing_time = odm_get_progressing_time(dm, start_time); RF_DBG(dm, DBG_RF_IQK, "[IQK]IQK progressing_time = %lld ms\n", dm->rf_calibrate_info.iqk_progressing_time); odm_acquire_spin_lock(dm, RT_IQK_SPINLOCK); dm->rf_calibrate_info.is_iqk_in_progress = false; odm_release_spin_lock(dm, RT_IQK_SPINLOCK); } else { RF_DBG(dm, DBG_RF_IQK, "== Return the IQK CMD, because RFKs in Progress ==\n"); } } void halrf_lck_trigger(void *dm_void) { struct dm_struct *dm = (struct dm_struct *)dm_void; struct dm_iqk_info *iqk_info = &dm->IQK_info; struct _hal_rf_ *rf = &dm->rf_table; u64 start_time; #if (DM_ODM_SUPPORT_TYPE & (ODM_WIN)) if (odm_check_power_status(dm) == false) return; #endif if (dm->mp_mode && rf->is_con_tx && rf->is_single_tone && rf->is_carrier_suppresion) if (*dm->mp_mode && ((*rf->is_con_tx || *rf->is_single_tone || *rf->is_carrier_suppresion))) return; if (!(rf->rf_supportability & HAL_RF_LCK)) return; if (iqk_info->rfk_forbidden) return; while (*dm->is_scan_in_process) { RF_DBG(dm, DBG_RF_IQK, "[LCK]scan is in process, bypass LCK\n"); return; } if (!dm->rf_calibrate_info.is_lck_in_progress) { odm_acquire_spin_lock(dm, RT_IQK_SPINLOCK); dm->rf_calibrate_info.is_lck_in_progress = true; odm_release_spin_lock(dm, RT_IQK_SPINLOCK); start_time = odm_get_current_time(dm); switch (dm->support_ic_type) { #if (RTL8188E_SUPPORT == 1) case ODM_RTL8188E: phy_lc_calibrate_8188e(dm); break; #endif #if (RTL8188F_SUPPORT == 1) case ODM_RTL8188F: phy_lc_calibrate_8188f(dm); break; #endif #if (RTL8192E_SUPPORT == 1) case ODM_RTL8192E: phy_lc_calibrate_8192e(dm); break; #endif #if (RTL8197F_SUPPORT == 1) case ODM_RTL8197F: phy_lc_calibrate_8197f(dm); break; #endif #if (RTL8192F_SUPPORT == 1) case ODM_RTL8192F: phy_lc_calibrate_8192f(dm); break; #endif #if (RTL8703B_SUPPORT == 1) case ODM_RTL8703B: phy_lc_calibrate_8703b(dm); break; #endif #if (RTL8710B_SUPPORT == 1) case ODM_RTL8710B: phy_lc_calibrate_8710b(dm); break; #endif #if (RTL8721D_SUPPORT == 1) case ODM_RTL8721D: phy_lc_calibrate_8721d(dm); break; #endif #if (RTL8723B_SUPPORT == 1) case ODM_RTL8723B: phy_lc_calibrate_8723b(dm); break; #endif #if (RTL8723D_SUPPORT == 1) case ODM_RTL8723D: phy_lc_calibrate_8723d(dm); break; #endif #if (RTL8812A_SUPPORT == 1) case ODM_RTL8812: phy_lc_calibrate_8812a(dm); break; #endif #if (RTL8821A_SUPPORT == 1) case ODM_RTL8821: phy_lc_calibrate_8821a(dm); break; #endif #if (RTL8814A_SUPPORT == 1) case ODM_RTL8814A: phy_lc_calibrate_8814a(dm); break; #endif #if (RTL8822B_SUPPORT == 1) case ODM_RTL8822B: phy_lc_calibrate_8822b(dm); break; #endif #if (RTL8822C_SUPPORT == 1) case ODM_RTL8822C: phy_lc_calibrate_8822c(dm); break; #endif #if (RTL8821C_SUPPORT == 1) case ODM_RTL8821C: phy_lc_calibrate_8821c(dm); break; #endif #if (RTL8814B_SUPPORT == 1) case ODM_RTL8814B: break; #endif default: break; } dm->rf_calibrate_info.lck_progressing_time = odm_get_progressing_time(dm, start_time); RF_DBG(dm, DBG_RF_IQK, "[IQK]LCK progressing_time = %lld ms\n", dm->rf_calibrate_info.lck_progressing_time); #if (RTL8822B_SUPPORT == 1 || RTL8821C_SUPPORT == 1) halrf_lck_dbg(dm); #endif odm_acquire_spin_lock(dm, RT_IQK_SPINLOCK); dm->rf_calibrate_info.is_lck_in_progress = false; odm_release_spin_lock(dm, RT_IQK_SPINLOCK); } else { RF_DBG(dm, DBG_RF_IQK, "= Return the LCK CMD, because RFK is in Progress =\n"); } } void halrf_aac_check(struct dm_struct *dm) { switch (dm->support_ic_type) { #if (RTL8821C_SUPPORT == 1) case ODM_RTL8821C: break; #endif #if (RTL8822B_SUPPORT == 1) case ODM_RTL8822B: #if 1 aac_check_8822b(dm); #endif break; #endif default: break; } } void halrf_init(void *dm_void) { struct dm_struct *dm = (struct dm_struct *)dm_void; RF_DBG(dm, DBG_RF_INIT, "HALRF_Init\n"); halrf_init_debug_setting(dm); if (*dm->mp_mode) halrf_supportability_init_mp(dm); else halrf_supportability_init(dm); #if 1 /*Init all RF funciton*/ halrf_aac_check(dm); halrf_dack_trigger(dm); #endif halrf_tssi_init(dm); } void halrf_dpk_trigger(void *dm_void) { struct dm_struct *dm = (struct dm_struct *)dm_void; struct _hal_rf_ *rf = &dm->rf_table; struct dm_dpk_info *dpk_info = &dm->dpk_info; u64 start_time; start_time = odm_get_current_time(dm); switch (dm->support_ic_type) { #if (RTL8822C_SUPPORT == 1) case ODM_RTL8822C: do_dpk_8822c(dm); break; #endif #if (DM_ODM_SUPPORT_TYPE & (ODM_AP)) #if (RTL8197F_SUPPORT == 1) case ODM_RTL8197F: do_dpk_8197f(dm); break; #endif #if (RTL8192F_SUPPORT == 1) case ODM_RTL8192F: do_dpk_8192f(dm); break; #endif #if (RTL8198F_SUPPORT == 1) case ODM_RTL8198F: do_dpk_8198f(dm); break; #endif #if (RTL8814B_SUPPORT == 1) case ODM_RTL8814B: break; #endif #endif #if (DM_ODM_SUPPORT_TYPE & (ODM_IOT)) #if (RTL8195B_SUPPORT == 1) case ODM_RTL8195B: if (!dpk_info->is_dpk_by_channel) { dpk_by_channel(dm); /*do dpk 9 ch*/ dpk_result_summary_8195b(dm); } else { /*do dpk 1 ch*/ do_dpk_8195b(dm, false); } break; #endif #endif default: break; } rf->dpk_progressing_time = odm_get_progressing_time(dm, start_time); RF_DBG(dm, DBG_RF_DPK, "[DPK]DPK progressing_time = %lld ms\n", rf->dpk_progressing_time); } u8 halrf_dpk_result_check(void *dm_void) { struct dm_struct *dm = (struct dm_struct *)dm_void; struct dm_dpk_info *dpk_info = &dm->dpk_info; u8 result = 0; switch (dm->support_ic_type) { #if (RTL8822C_SUPPORT == 1) case ODM_RTL8822C: if (dpk_info->dpk_path_ok == 0x3) result = 1; else result = 0; break; #endif #if (RTL8195B_SUPPORT == 1) case ODM_RTL8195B: if (dpk_info->dpk_path_ok == 0x1) result = 1; else result = 0; break; #endif #if (DM_ODM_SUPPORT_TYPE & (ODM_AP)) #if (RTL8197F_SUPPORT == 1) case ODM_RTL8197F: if (dpk_info->dpk_path_ok == 0x3) result = 1; else result = 0; break; #endif #if (RTL8192F_SUPPORT == 1) case ODM_RTL8192F: if (dpk_info->dpk_path_ok == 0x3) result = 1; else result = 0; break; #endif #if (RTL8198F_SUPPORT == 1) case ODM_RTL8198F: if (dpk_info->dpk_path_ok == 0xf) result = 1; else result = 0; break; #endif #endif default: break; } return result; } void halrf_dpk_sram_read(void *dm_void) { struct dm_struct *dm = (struct dm_struct *)dm_void; u8 path, group; switch (dm->support_ic_type) { #if (RTL8822C_SUPPORT == 1) case ODM_RTL8822C: dpk_coef_read_8822c(dm); break; #endif #if (RTL8195B_SUPPORT == 1) case ODM_RTL8195B: dpk_sram_read_8195b(dm); break; #endif #if (DM_ODM_SUPPORT_TYPE & (ODM_AP)) #if (RTL8197F_SUPPORT == 1) case ODM_RTL8197F: dpk_sram_read_8197f(dm); break; #endif #if (RTL8192F_SUPPORT == 1) case ODM_RTL8192F: dpk_sram_read_8192f(dm); break; #endif #if (RTL8198F_SUPPORT == 1) case ODM_RTL8198F: dpk_sram_read_8198f(dm); break; #endif #endif default: break; } } void halrf_dpk_enable_disable(void *dm_void) { struct dm_struct *dm = (struct dm_struct *)dm_void; switch (dm->support_ic_type) { #if (RTL8822C_SUPPORT == 1) case ODM_RTL8822C: dpk_enable_disable_8822c(dm); break; #endif #if (RTL8195B_SUPPORT == 1) case ODM_RTL8195B: dpk_enable_disable_8195b(dm); break; #endif #if (DM_ODM_SUPPORT_TYPE & (ODM_AP)) #if (RTL8197F_SUPPORT == 1) case ODM_RTL8197F: phy_dpk_enable_disable_8197f(dm); break; #endif #if (RTL8192F_SUPPORT == 1) case ODM_RTL8192F: phy_dpk_enable_disable_8192f(dm); break; #endif #if (RTL8198F_SUPPORT == 1) case ODM_RTL8198F: dpk_enable_disable_8198f(dm); break; #endif #endif default: break; } } void halrf_dpk_track(void *dm_void) { struct dm_struct *dm = (struct dm_struct *)dm_void; struct dm_dpk_info *dpk_info = &dm->dpk_info; switch (dm->support_ic_type) { #if (RTL8822C_SUPPORT == 1) case ODM_RTL8822C: dpk_track_8822c(dm); break; #endif #if (RTL8195B_SUPPORT == 1) case ODM_RTL8195B: dpk_track_8195b(dm); break; #endif #if (DM_ODM_SUPPORT_TYPE & (ODM_AP)) #if (RTL8197F_SUPPORT == 1) case ODM_RTL8197F: phy_dpk_track_8197f(dm); break; #endif #if (RTL8192F_SUPPORT == 1) case ODM_RTL8192F: phy_dpk_track_8192f(dm); break; #endif #if (RTL8198F_SUPPORT == 1) case ODM_RTL8198F: dpk_track_8198f(dm); break; #endif #endif default: break; } } void halrf_dpk_reload(void *dm_void) { struct dm_struct *dm = (struct dm_struct *)dm_void; struct dm_dpk_info *dpk_info = &dm->dpk_info; switch (dm->support_ic_type) { #if (RTL8195B_SUPPORT == 1) case ODM_RTL8195B: dpk_reload_8195b(dm); break; #endif #if (DM_ODM_SUPPORT_TYPE & (ODM_AP)) #if (RTL8197F_SUPPORT == 1) case ODM_RTL8197F: if (dpk_info->dpk_path_ok > 0) dpk_reload_8197f(dm); break; #endif #if (RTL8192F_SUPPORT == 1) case ODM_RTL8192F: if (dpk_info->dpk_path_ok > 0) dpk_reload_8192f(dm); break; #endif #if (RTL8198F_SUPPORT == 1) case ODM_RTL8198F: if (dpk_info->dpk_path_ok > 0) dpk_reload_8198f(dm); break; #endif #endif default: break; } } enum hal_status halrf_config_rfk_with_header_file(void *dm_void, u32 config_type) { struct dm_struct *dm = (struct dm_struct *)dm_void; enum hal_status result = HAL_STATUS_SUCCESS; #if (RTL8198F_SUPPORT == 1) if (dm->support_ic_type == ODM_RTL8198F) { if (config_type == CONFIG_BB_RF_CAL_INIT) odm_read_and_config_mp_8198f_cal_init(dm); } #endif #if (RTL8822C_SUPPORT == 1) if (dm->support_ic_type == ODM_RTL8822C) { if (config_type == CONFIG_BB_RF_CAL_INIT) odm_read_and_config_mp_8822c_cal_init(dm); } #endif #if (RTL8814B_SUPPORT == 1) if (dm->support_ic_type == ODM_RTL8814B) { if (config_type == CONFIG_BB_RF_CAL_INIT) odm_read_and_config_mp_8814b_cal_init(dm); } #endif #if (RTL8195B_SUPPORT == 1) if (dm->support_ic_type == ODM_RTL8195B) { if (config_type == CONFIG_BB_RF_CAL_INIT) odm_read_and_config_mp_8195b_cal_init(dm); } #endif return result; } void halrf_txgapk_trigger(void *dm_void) { struct dm_struct *dm = (struct dm_struct *)dm_void; struct _hal_rf_ *rf = &dm->rf_table; u64 start_time; start_time = odm_get_current_time(dm); switch (dm->support_ic_type) { #if (DM_ODM_SUPPORT_TYPE & (ODM_IOT)) #if (RTL8195B_SUPPORT == 1) case ODM_RTL8195B: phy_txgap_calibrate_8195b(dm, false); break; #endif #endif default: break; } rf->dpk_progressing_time = odm_get_progressing_time(dm_void, start_time); RF_DBG(dm, DBG_RF_TXGAPK, "[TGGC]TXGAPK progressing_time = %lld ms\n", rf->dpk_progressing_time); } void halrf_tssi_init(void *dm_void) { struct dm_struct *dm = (struct dm_struct *)dm_void; #if (RTL8822C_SUPPORT == 1) halrf_tssi_init_8822c(dm); #endif } void halrf_do_tssi(void *dm_void) { struct dm_struct *dm = (struct dm_struct *)dm_void; #if (RTL8822C_SUPPORT == 1) halrf_do_tssi_8822c(dm); #endif } void halrf_set_tssi_value(void *dm_void, u32 tssi_value) { struct dm_struct *dm = (struct dm_struct *)dm_void; #if (RTL8822C_SUPPORT == 1) halrf_set_tssi_value_8822c(dm, tssi_value); #endif } u32 halrf_query_tssi_value(void *dm_void) { struct dm_struct *dm = (struct dm_struct *)dm_void; #if (RTL8822C_SUPPORT == 1) return halrf_query_tssi_value_8822c(dm); #endif return 0; } /*Golbal function*/ void halrf_reload_bp(void *dm_void, u32 *bp_reg, u32 *bp, u32 num) { struct dm_struct *dm = (struct dm_struct *)dm_void; u32 i; for (i = 0; i < num; i++) odm_write_4byte(dm, bp_reg[i], bp[i]); } void halrf_reload_bprf(void *dm_void, u32 *bp_reg, u32 bp[][4], u32 num, u8 ss) { struct dm_struct *dm = (struct dm_struct *)dm_void; u32 i, path; for (i = 0; i < num; i++) { for (path = 0; path < ss; path++) odm_set_rf_reg(dm, (enum rf_path)path, bp_reg[i], MASK20BITS, bp[i][path]); } } void halrf_bp(void *dm_void, u32 *bp_reg, u32 *bp, u32 num) { struct dm_struct *dm = (struct dm_struct *)dm_void; u32 i; for (i = 0; i < num; i++) bp[i] = odm_read_4byte(dm, bp_reg[i]); } void halrf_bprf(void *dm_void, u32 *bp_reg, u32 bp[][4], u32 num, u8 ss) { struct dm_struct *dm = (struct dm_struct *)dm_void; u32 i, path; for (i = 0; i < num; i++) { for (path = 0; path < ss; path++) { bp[i][path] = odm_get_rf_reg(dm, (enum rf_path)path, bp_reg[i], MASK20BITS); } } } void halrf_swap(void *dm_void, u32 *v1, u32 *v2) { struct dm_struct *dm = (struct dm_struct *)dm_void; u32 temp; temp = *v1; *v1 = *v2; *v2 = temp; } void halrf_bubble(void *dm_void, u32 *v1, u32 *v2) { struct dm_struct *dm = (struct dm_struct *)dm_void; u32 temp; if (*v1 >= 0x200 && *v2 >= 0x200) { if (*v1 > *v2) halrf_swap(dm, v1, v2); } else if (*v1 < 0x200 && *v2 < 0x200) { if (*v1 > *v2) halrf_swap(dm, v1, v2); } else if (*v1 < 0x200 && *v2 >= 0x200) { halrf_swap(dm, v1, v2); } } void halrf_b_sort(void *dm_void, u32 *iv, u32 *qv) { struct dm_struct *dm = (struct dm_struct *)dm_void; u32 temp; u32 i, j; RF_DBG(dm, DBG_RF_DACK, "[DACK]bubble!!!!!!!!!!!!"); for (i = 0; i < SN - 1; i++) { for (j = 0; j < (SN - 1 - i) ; j++) { halrf_bubble(dm, &iv[j], &iv[j + 1]); halrf_bubble(dm, &qv[j], &qv[j + 1]); } } } void halrf_minmax_compare(void *dm_void, u32 value, u32 *min, u32 *max) { struct dm_struct *dm = (struct dm_struct *)dm_void; if (value >= 0x200) { if (*min >= 0x200) { if (*min > value) *min = value; } else { *min = value; } if (*max >= 0x200) { if (*max < value) *max = value; } } else { if (*min < 0x200) { if (*min > value) *min = value; } if (*max >= 0x200) { *max = value; } else { if (*max < value) *max = value; } } } u32 halrf_delta(void *dm_void, u32 v1, u32 v2) { struct dm_struct *dm = (struct dm_struct *)dm_void; if (v1 >= 0x200 && v2 >= 0x200) { if (v1 > v2) return v1 - v2; else return v2 - v1; } else if (v1 >= 0x200 && v2 < 0x200) { return v2 + (0x400 - v1); } else if (v1 < 0x200 && v2 >= 0x200) { return v1 + (0x400 - v2); } if (v1 > v2) return v1 - v2; else return v2 - v1; } boolean halrf_compare(void *dm_void, u32 value) { struct dm_struct *dm = (struct dm_struct *)dm_void; boolean fail = false; if (value >= 0x200 && (0x400 - value) > 0x64) fail = true; else if (value < 0x200 && value > 0x64) fail = true; if (fail) RF_DBG(dm, DBG_RF_DACK, "[DACK]overflow!!!!!!!!!!!!!!!"); return fail; } void halrf_mode(void *dm_void, u32 *i_value, u32 *q_value) { struct dm_struct *dm = (struct dm_struct *)dm_void; u32 iv[SN], qv[SN], im[SN], qm[SN], temp, temp1, temp2; u32 p, m, t; u32 i_max = 0, q_max = 0, i_min = 0x0, q_min = 0x0, c = 0x0; u32 i_delta, q_delta; u8 i, j, ii = 0, qi = 0; boolean fail = false; ODM_delay_ms(10); for (i = 0; i < SN; i++) { im[i] = 0; qm[i] = 0; } i = 0; c = 0; while (i < SN && c < 1000) { c++; temp = odm_get_bb_reg(dm, 0x2dbc, 0x3fffff); iv[i] = (temp & 0x3ff000) >> 12; qv[i] = temp & 0x3ff; fail = false; if (halrf_compare(dm, iv[i])) fail = true; if (halrf_compare(dm, qv[i])) fail = true; if (!fail) i++; } c = 0; do { c++; i_min = iv[0]; i_max = iv[0]; q_min = qv[0]; q_max = qv[0]; for (i = 0; i < SN; i++) { halrf_minmax_compare(dm, iv[i], &i_min, &i_max); halrf_minmax_compare(dm, qv[i], &q_min, &q_max); } RF_DBG(dm, DBG_RF_DACK, "[DACK]i_min=0x%x, i_max=0x%x", i_min, i_max); RF_DBG(dm, DBG_RF_DACK, "[DACK]q_min=0x%x, q_max=0x%x", q_min, q_max); if (i_max < 0x200 && i_min < 0x200) i_delta = i_max - i_min; else if (i_max >= 0x200 && i_min >= 0x200) i_delta = i_max - i_min; else i_delta = i_max + (0x400 - i_min); if (q_max < 0x200 && q_min < 0x200) q_delta = q_max - q_min; else if (q_max >= 0x200 && q_min >= 0x200) q_delta = q_max - q_min; else q_delta = q_max + (0x400 - q_min); RF_DBG(dm, DBG_RF_DACK, "[DACK]i_delta=0x%x, q_delta=0x%x", i_delta, q_delta); halrf_b_sort(dm, iv, qv); if (i_delta > 5 || q_delta > 5) { temp = odm_get_bb_reg(dm, 0x2dbc, 0x3fffff); iv[0] = (temp & 0x3ff000) >> 12; qv[0] = temp & 0x3ff; temp = odm_get_bb_reg(dm, 0x2dbc, 0x3fffff); iv[SN - 1] = (temp & 0x3ff000) >> 12; qv[SN - 1] = temp & 0x3ff; } else { break; } } while (c < 100); #if 1 /*i*/ m = 0; p = 0; for (i = 10; i < SN - 10; i++) { if (iv[i] > 0x200) m = (0x400 - iv[i]) + m; else p = iv[i] + p; } if (p > m) { t = p - m; t = t / (SN - 20); } else { t = m - p; t = t / (SN - 20); if (t != 0x0) t = 0x400 - t; } *i_value = t; /*q*/ m = 0; p = 0; for (i = 10; i < SN - 10; i++) { if (qv[i] > 0x200) m = (0x400 - qv[i]) + m; else p = qv[i] + p; } if (p > m) { t = p - m; t = t / (SN - 20); } else { t = m - p; t = t / (SN - 20); if (t != 0x0) t = 0x400 - t; } *q_value = t; #endif }