/****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #define _RTL8192E_PHYCFG_C_ //#include #include const char *const GLBwSrc[]={ "CHANNEL_WIDTH_20", "CHANNEL_WIDTH_40", "CHANNEL_WIDTH_80", "CHANNEL_WIDTH_160", "CHANNEL_WIDTH_80_80" }; #define ENABLE_POWER_BY_RATE 1 #define POWERINDEX_ARRAY_SIZE 48 //= cckRatesSize + ofdmRatesSize + htRates1TSize + htRates2TSize + vhtRates1TSize + vhtRates1TSize; /*---------------------Define local function prototype-----------------------*/ /*----------------------------Function Body----------------------------------*/ // // 1. BB register R/W API // u32 PHY_QueryBBReg8192E( IN PADAPTER Adapter, IN u32 RegAddr, IN u32 BitMask ) { u32 ReturnValue = 0, OriginalValue, BitShift; #if (DISABLE_BB_RF == 1) return 0; #endif //DBG_871X("--->PHY_QueryBBReg8812(): RegAddr(%#x), BitMask(%#x)\n", RegAddr, BitMask); OriginalValue = rtw_read32(Adapter, RegAddr); BitShift = PHY_CalculateBitShift(BitMask); ReturnValue = (OriginalValue & BitMask) >> BitShift; //DBG_871X("BBR MASK=0x%x Addr[0x%x]=0x%x\n", BitMask, RegAddr, OriginalValue); return (ReturnValue); } VOID PHY_SetBBReg8192E( IN PADAPTER Adapter, IN u4Byte RegAddr, IN u4Byte BitMask, IN u4Byte Data ) { u4Byte OriginalValue, BitShift; #if (DISABLE_BB_RF == 1) return; #endif if(BitMask!= bMaskDWord) {//if not "double word" write OriginalValue = rtw_read32(Adapter, RegAddr); BitShift = PHY_CalculateBitShift(BitMask); Data = ((OriginalValue) & (~BitMask)) |( ((Data << BitShift)) & BitMask); } rtw_write32(Adapter, RegAddr, Data); //DBG_871X("BBW MASK=0x%x Addr[0x%x]=0x%x\n", BitMask, RegAddr, Data); } // // 2. RF register R/W API // static u32 phy_RFSerialRead( IN PADAPTER Adapter, IN u8 eRFPath, IN u32 Offset ) { u4Byte retValue = 0; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); BB_REGISTER_DEFINITION_T *pPhyReg = &pHalData->PHYRegDef[eRFPath]; u4Byte NewOffset; u4Byte tmplong2; u1Byte RfPiEnable=0; u1Byte i; u4Byte MaskforPhySet=0; Offset &= 0xff; // RT_TRACE(COMP_INIT, DBG_LOUD, ("phy_RFSerialRead offset 0x%x\n", Offset)); // // Switch page for 8256 RF IC // NewOffset = Offset; // For 92S LSSI Read RFLSSIRead // For RF A/B write 0x824/82c(does not work in the future) // We must use 0x824 for RF A and B to execute read trigger if(eRFPath == RF_PATH_A) { tmplong2 = PHY_QueryBBReg(Adapter, rFPGA0_XA_HSSIParameter2|MaskforPhySet, bMaskDWord);; tmplong2 = (tmplong2 & (~bLSSIReadAddress)) | (NewOffset<<23) | bLSSIReadEdge; //T65 RF PHY_SetBBReg(Adapter, rFPGA0_XA_HSSIParameter2|MaskforPhySet, bMaskDWord, tmplong2&(~bLSSIReadEdge)); } else { tmplong2 = PHY_QueryBBReg(Adapter, rFPGA0_XB_HSSIParameter2|MaskforPhySet, bMaskDWord); tmplong2 = (tmplong2 & (~bLSSIReadAddress)) | (NewOffset<<23) | bLSSIReadEdge; //T65 RF PHY_SetBBReg(Adapter, rFPGA0_XB_HSSIParameter2|MaskforPhySet, bMaskDWord, tmplong2&(~bLSSIReadEdge)); } tmplong2 = PHY_QueryBBReg(Adapter, rFPGA0_XA_HSSIParameter2|MaskforPhySet, bMaskDWord); PHY_SetBBReg(Adapter, rFPGA0_XA_HSSIParameter2|MaskforPhySet, bMaskDWord, tmplong2 & (~bLSSIReadEdge)); PHY_SetBBReg(Adapter, rFPGA0_XA_HSSIParameter2|MaskforPhySet, bMaskDWord, tmplong2 | bLSSIReadEdge); rtw_udelay_os(10);// PlatformStallExecution(10); //for(i=0;i<2;i++) // PlatformStallExecution(MAX_STALL_TIME); rtw_udelay_os(10);//PlatformStallExecution(10); if(eRFPath == RF_PATH_A) RfPiEnable = (u1Byte)PHY_QueryBBReg(Adapter, rFPGA0_XA_HSSIParameter1|MaskforPhySet, BIT8); else if(eRFPath == RF_PATH_B) RfPiEnable = (u1Byte)PHY_QueryBBReg(Adapter, rFPGA0_XB_HSSIParameter1|MaskforPhySet, BIT8); if(RfPiEnable) { // Read from BBreg8b8, 12 bits for 8190, 20bits for T65 RF retValue = PHY_QueryBBReg(Adapter, pPhyReg->rfLSSIReadBackPi|MaskforPhySet, bLSSIReadBackData); //RT_DISP(FINIT, INIT_RF, ("Readback from RF-PI : 0x%x\n", retValue)); } else { //Read from BBreg8a0, 12 bits for 8190, 20 bits for T65 RF retValue = PHY_QueryBBReg(Adapter, pPhyReg->rfLSSIReadBack|MaskforPhySet, bLSSIReadBackData); //RT_DISP(FINIT, INIT_RF,("Readback from RF-SI : 0x%x\n", retValue)); } //RT_DISP(FPHY, PHY_RFR, ("RFR-%d Addr[0x%x]=0x%x\n", eRFPath, pPhyReg->rfLSSIReadBack, retValue)); return retValue; } static VOID phy_RFSerialWrite( IN PADAPTER Adapter, IN u8 eRFPath, IN u32 Offset, IN u32 Data ) { u32 DataAndAddr = 0; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); BB_REGISTER_DEFINITION_T *pPhyReg = &pHalData->PHYRegDef[eRFPath]; u32 NewOffset,MaskforPhySet=0; // 2009/06/17 MH We can not execute IO for power save or other accident mode. //if(RT_CANNOT_IO(Adapter)) //{ // RTPRINT(FPHY, PHY_RFW, ("phy_RFSerialWrite stop\n")); // return; //} // <20121026, Kordan> If 0x818 == 1, the second value written on the previous address. PHY_SetBBReg(Adapter, ODM_AFE_SETTING, 0x20000, 0x0); Offset &= 0xff; // Shadow Update //PHY_RFShadowWrite(Adapter, eRFPath, Offset, Data); // // Switch page for 8256 RF IC // NewOffset = Offset; // // Put write addr in [5:0] and write data in [31:16] // //DataAndAddr = (Data<<16) | (NewOffset&0x3f); DataAndAddr = ((NewOffset<<20) | (Data&0x000fffff)) & 0x0fffffff; // T65 RF // // Write Operation // PHY_SetBBReg(Adapter, pPhyReg->rf3wireOffset|MaskforPhySet, bMaskDWord, DataAndAddr); // <20121026, Kordan> Restore the value on exit. if (IS_HARDWARE_TYPE_8192EU(Adapter)) PHY_SetBBReg(Adapter, ODM_AFE_SETTING, 0x20000, 0x1); } u32 PHY_QueryRFReg8192E( IN PADAPTER Adapter, IN u8 eRFPath, IN u32 RegAddr, IN u32 BitMask ) { u32 Original_Value, Readback_Value, BitShift; #if (DISABLE_BB_RF == 1) return 0; #endif Original_Value = phy_RFSerialRead(Adapter, eRFPath, RegAddr); BitShift = PHY_CalculateBitShift(BitMask); Readback_Value = (Original_Value & BitMask) >> BitShift; return (Readback_Value); } VOID PHY_SetRFReg8192E( IN PADAPTER Adapter, IN u8 eRFPath, IN u32 RegAddr, IN u32 BitMask, IN u32 Data ) { u32 Original_Value, BitShift; #if (DISABLE_BB_RF == 1) return; #endif if(BitMask == 0) return; // RF data is 20 bits only if (BitMask != bRFRegOffsetMask) { Original_Value = phy_RFSerialRead(Adapter, eRFPath, RegAddr); BitShift = PHY_CalculateBitShift(BitMask); Data = ((Original_Value) & (~BitMask)) | (Data<< BitShift); } phy_RFSerialWrite(Adapter, eRFPath, RegAddr, Data); } // // 3. Initial MAC/BB/RF config by reading MAC/BB/RF txt. // s32 PHY_MACConfig8192E(PADAPTER Adapter) { int rtStatus = _SUCCESS; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); s8 *pszMACRegFile; s8 sz8192EMACRegFile[] = RTL8192E_PHY_MACREG; pszMACRegFile = sz8192EMACRegFile; // // Config MAC // #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE rtStatus = phy_ConfigMACWithParaFile(Adapter, pszMACRegFile); if (rtStatus == _FAIL) #endif { #ifdef CONFIG_EMBEDDED_FWIMG ODM_ConfigMACWithHeaderFile(&pHalData->odmpriv); rtStatus = _SUCCESS; #endif//CONFIG_EMBEDDED_FWIMG } return rtStatus; } static VOID phy_InitBBRFRegisterDefinition( IN PADAPTER Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); // RF Interface Sowrtware Control pHalData->PHYRegDef[RF_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW; // 16 LSBs if read 32-bit from 0x870 pHalData->PHYRegDef[RF_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW; // 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872) // RF Interface Output (and Enable) pHalData->PHYRegDef[RF_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE; // 16 LSBs if read 32-bit from 0x860 pHalData->PHYRegDef[RF_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE; // 16 LSBs if read 32-bit from 0x864 // RF Interface (Output and) Enable pHalData->PHYRegDef[RF_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE; // 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862) pHalData->PHYRegDef[RF_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE; // 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866) pHalData->PHYRegDef[RF_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter; //LSSI Parameter pHalData->PHYRegDef[RF_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter; pHalData->PHYRegDef[RF_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2; //wire control parameter2 pHalData->PHYRegDef[RF_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2; //wire control parameter2 // Tranceiver Readback LSSI/HSPI mode pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack; pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack; pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBackPi = TransceiverA_HSPI_Readback; pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBackPi = TransceiverB_HSPI_Readback; //pHalData->bPhyValueInitReady=TRUE; } static int phy_BB8192E_Config_ParaFile( IN PADAPTER Adapter ) { EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(Adapter); HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); int rtStatus = _SUCCESS; s8 sz8192EBBRegFile[] = RTL8192E_PHY_REG; s8 sz8192EAGCTableFile[] = RTL8192E_AGC_TAB; s8 sz8192EBBRegPgFile[] = RTL8192E_PHY_REG_PG; s8 sz8192EBBRegMpFile[] = RTL8192E_PHY_REG_MP; s8 sz8192ERFRegLimitFile[] = RTL8192E_TXPWR_LMT; s8 *pszBBRegFile = NULL, *pszAGCTableFile = NULL, *pszBBRegPgFile = NULL, *pszBBRegMpFile=NULL, *pszBBRegLimitFile = NULL,*pszRFTxPwrLmtFile = NULL; //DBG_871X("==>phy_BB8192E_Config_ParaFile\n"); pszBBRegFile=sz8192EBBRegFile ; pszAGCTableFile =sz8192EAGCTableFile; pszBBRegPgFile = sz8192EBBRegPgFile; pszBBRegMpFile = sz8192EBBRegMpFile; pszRFTxPwrLmtFile = sz8192ERFRegLimitFile; DBG_871X("===> phy_BB8192E_Config_ParaFile() EEPROMRegulatory %d\n", pHalData->EEPROMRegulatory ); //DBG_871X(" ===> phy_BB8192E_Config_ParaFile() phy_reg:%s\n",pszBBRegFile); //DBG_871X(" ===> phy_BB8192E_Config_ParaFile() phy_reg_pg:%s\n",pszBBRegPgFile); //DBG_871X(" ===> phy_BB8192E_Config_ParaFile() txpwr_lmt_table:%s\n",pszRFTxPwrLmtFile); PHY_InitTxPowerLimit( Adapter ); // EEPROMRegulatory: // "0" enables PowerByRate, // "1" enables both PowerByRate and PowerLimit, // "2" disables both. if ( Adapter->registrypriv.RegEnableTxPowerLimit == 1 || ( Adapter->registrypriv.RegEnableTxPowerLimit == 2 && pHalData->EEPROMRegulatory == 1 ) ) { #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE if (PHY_ConfigRFWithPowerLimitTableParaFile( Adapter, pszRFTxPwrLmtFile )== _FAIL) #endif { #ifdef CONFIG_EMBEDDED_FWIMG if (HAL_STATUS_SUCCESS != ODM_ConfigRFWithHeaderFile(&pHalData->odmpriv, CONFIG_RF_TXPWR_LMT, (ODM_RF_RADIO_PATH_E)0)) rtStatus = _FAIL; #endif } if(rtStatus != _SUCCESS){ DBG_871X("phy_BB8192E_Config_ParaFile():Read Tx power limit fail\n"); goto phy_BB_Config_ParaFile_Fail; } } // Read PHY_REG.TXT BB INIT!! #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE if (phy_ConfigBBWithParaFile(Adapter, pszBBRegFile, CONFIG_BB_PHY_REG) == _FAIL) #endif { #ifdef CONFIG_EMBEDDED_FWIMG if (HAL_STATUS_SUCCESS != ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG)) rtStatus = _FAIL; #endif } if(rtStatus != _SUCCESS){ DBG_871X("phy_BB8192E_Config_ParaFile():Write BB Reg Fail!!\n"); goto phy_BB_Config_ParaFile_Fail; } // Read PHY_REG_MP.TXT BB INIT!! #if (MP_DRIVER == 1) if (Adapter->registrypriv.mp_mode == 1) { #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE if (phy_ConfigBBWithMpParaFile(Adapter, pszBBRegMpFile) == _FAIL) #endif { #ifdef CONFIG_EMBEDDED_FWIMG if (HAL_STATUS_SUCCESS != ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG_MP)) rtStatus = _FAIL; #endif } if(rtStatus != _SUCCESS){ DBG_871X("%s():Write BB Reg MP Fail!!\n",__FUNCTION__); goto phy_BB_Config_ParaFile_Fail; } } #endif // #if (MP_DRIVER == 1) // If EEPROM or EFUSE autoload OK, We must config by PHY_REG_PG.txt PHY_InitTxPowerByRate( Adapter ); if ( Adapter->registrypriv.RegEnableTxPowerByRate== 1 || ( Adapter->registrypriv.RegEnableTxPowerByRate== 2 && pHalData->EEPROMRegulatory != 2 ) ) { #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE if (phy_ConfigBBWithPgParaFile(Adapter, pszBBRegPgFile) == _FAIL) #endif { #ifdef CONFIG_EMBEDDED_FWIMG if (HAL_STATUS_SUCCESS != ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG_PG)) rtStatus = _FAIL; #endif } if ( pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_EXACT_VALUE ) PHY_TxPowerByRateConfiguration( Adapter ); if ( Adapter->registrypriv.RegEnableTxPowerLimit == 1 || ( Adapter->registrypriv.RegEnableTxPowerLimit == 2 && pHalData->EEPROMRegulatory == 1 ) ) PHY_ConvertTxPowerLimitToPowerIndex( Adapter ); if(rtStatus != _SUCCESS){ DBG_871X("%s(): CONFIG_BB_PHY_REG_PG Fail!!\n",__FUNCTION__); goto phy_BB_Config_ParaFile_Fail; } } // BB AGC table Initialization #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE if (phy_ConfigBBWithParaFile(Adapter, pszAGCTableFile, CONFIG_BB_AGC_TAB) == _FAIL) #endif { #ifdef CONFIG_EMBEDDED_FWIMG if (HAL_STATUS_SUCCESS != ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_AGC_TAB)) rtStatus = _FAIL; #endif } if(rtStatus != _SUCCESS){ DBG_871X("phy_BB8192E_Config_ParaFile():AGC Table Fail\n"); } phy_BB_Config_ParaFile_Fail: return rtStatus; } int PHY_BBConfig8192E( IN PADAPTER Adapter ) { int rtStatus = _SUCCESS; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u16 TmpU2B=0; u8 CrystalCap; phy_InitBBRFRegisterDefinition(Adapter); // Enable BB and RF TmpU2B = rtw_read16(Adapter, REG_SYS_FUNC_EN); #ifdef CONFIG_PCI_HCI if(IS_HARDWARE_TYPE_8192EE(Adapter)) TmpU2B |= (FEN_PPLL|FEN_PCIEA|FEN_DIO_PCIE); #endif #ifdef CONFIG_USB_HCI if(IS_HARDWARE_TYPE_8192EU(Adapter)) TmpU2B |= (FEN_USBA| FEN_USBD); #endif TmpU2B |= (FEN_EN_25_1|FEN_BB_GLB_RSTn|FEN_BBRSTB); rtw_write16(Adapter, REG_SYS_FUNC_EN, TmpU2B); //6. 0x1f[7:0] = 0x07 PathA RF Power On rtw_write8(Adapter, REG_RF_CTRL, RF_EN|RF_RSTB|RF_SDMRSTB); //rtw_write8(Adapter, REG_AFE_XTAL_CTRL+1, 0x80); // // Config BB and AGC // rtStatus = phy_BB8192E_Config_ParaFile(Adapter); CrystalCap = pHalData->CrystalCap & 0x3F; #if 1 // write 0x2C[17:12] = 0x2C[23:18] = CrystalCap [6 bits] if(CrystalCap == 0) CrystalCap = EEPROM_Default_CrystalCap_8192E; DBG_871X( "%s ==> CrystalCap:0x%02x \n",__FUNCTION__,CrystalCap); PHY_SetBBReg(Adapter, REG_AFE_CTRL3_8192E, 0xFFF000, (CrystalCap | (CrystalCap << 6))); // write 0x24= 000f81fb ,suggest by Ed rtw_write32(Adapter,REG_AFE_CTRL1_8192E,0x000f81fb); #endif return rtStatus; } #if 0 // <20130320, VincentLan> A workaround to eliminate the 2480MHz spur for 92E void phy_FixSpur_8192E( IN PADAPTER Adapter, IN SPUR_CAL_METHOD Method ) { u32 reg0x18 = 0; u8 retryNum = 0; u8 MaxRetryCount = 8; u8 Pass_A = FALSE, Pass_B = FALSE; u8 SpurOccur = FALSE; u32 PSDReport = 0; //DBG_871X("==0419v2==Vincent== FixSpur_8192E \n"); if (Method == PLL_RESET){ MaxRetryCount = 3; } else if (Method == AFE_PHASE_SEL){ //PHY_SetMacReg(Adapter, RF_TX_G1, BIT4, 0x1); // enable rtw_write8(Adapter, RF_TX_G1, (rtw_read8(Adapter, RF_TX_G1)|BIT4)); // enable //DBG_871X("===0x20 = %x \n", rtw_read8(Adapter, RF_TX_G1)); } // Backup current channel reg0x18 = PHY_QueryRFReg(Adapter, ODM_RF_PATH_A, RF_CHNLBW, bRFRegOffsetMask); while ((retryNum++ < MaxRetryCount)) { PHY_SetRFReg(Adapter, ODM_RF_PATH_A, RF_CHNLBW, bRFRegOffsetMask, 0x7C0D); //CH13 PHY_SetBBReg(Adapter, rOFDM0_XAAGCCore1, bMaskByte0, 0x30); //Path A initial gain PHY_SetBBReg(Adapter, rOFDM0_XBAGCCore1, bMaskByte0, 0x30); //Path B initial gain PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter4, bMaskDWord, 0xccf000c0); // disable 3-wire // Path A PHY_SetBBReg(Adapter, rFPGA0_TxInfo, bMaskByte0, 0x3); //DBG_871X(" 0x804 = 0x%x\n",PHY_QueryBBReg(Adapter, rFPGA0_TxInfo, bMaskByte0)); PHY_SetBBReg(Adapter, rFPGA0_PSDFunction, bMaskDWord, 0xfccd); //DBG_871X(" 0x808 = 0x%x\n",PHY_QueryBBReg(Adapter, rFPGA0_PSDFunction, bMaskDWord)); PHY_SetBBReg(Adapter, rFPGA0_PSDFunction, bMaskDWord, 0x40fccd); //DBG_871X(" 0x808 = 0x%x\n",PHY_QueryBBReg(Adapter, rFPGA0_PSDFunction, bMaskDWord)); //rtw_msleep_os(100); rtw_mdelay_os(100); PSDReport = PHY_QueryBBReg(Adapter, rFPGA0_PSDReport, bMaskDWord); //DBG_871X(" Path A== PSDReport = 0x%x\n",PSDReport); if (PSDReport < 0x16) Pass_A = TRUE; // Path B PHY_SetBBReg(Adapter, rFPGA0_TxInfo, bMaskByte0, 0x13); PHY_SetBBReg(Adapter, rFPGA0_PSDFunction, bMaskDWord, 0xfccd); PHY_SetBBReg(Adapter, rFPGA0_PSDFunction, bMaskDWord, 0x40fccd); //rtw_msleep_os(100); rtw_mdelay_os(100); PSDReport = PHY_QueryBBReg(Adapter, rFPGA0_PSDReport, bMaskDWord); //DBG_871X(" Path B== PSDReport = 0x%x\n",PSDReport); if (PSDReport < 0x16) Pass_B = TRUE; if (Pass_A && Pass_B) { //DBG_871X("=== PathA=%d, PathB=%d\n", Pass_A, Pass_B); DBG_871X("===FixSpur Pass!\n"); PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter4, bMaskDWord, 0xcc0000c0); // enable 3-wire PHY_SetBBReg(Adapter, rFPGA0_PSDFunction, bMaskDWord, 0xfc00); PHY_SetBBReg(Adapter, rOFDM0_XAAGCCore1, bMaskByte0, 0x20); PHY_SetBBReg(Adapter, rOFDM0_XBAGCCore1, bMaskByte0, 0x20); break; } else { Pass_A = FALSE; Pass_B = FALSE; if (Method == PLL_RESET) { //PHY_SetMacReg(Adapter, 0x28, bMaskByte1, 0x7); // PLL gated 320M CLK disable //PHY_SetMacReg(Adapter, 0x28, bMaskByte1, 0x47); // PLL gated 320M CLK enable rtw_write8(Adapter,0x29, 0x7); // PLL gated 320M CLK disable rtw_write8(Adapter,0x29, 0x47); // PLL gated 320M CLK enable } else if (Method == AFE_PHASE_SEL) { if (!SpurOccur) { SpurOccur = TRUE; DBG_871X("===FixSpur NOT Pass!\n"); //PHY_SetMacReg(Adapter, RF_TX_G1, BIT4, 0x1); //PHY_SetMacReg(Adapter, 0x28, bMaskByte0, 0x80); //PHY_SetMacReg(Adapter, 0x28, bMaskByte0, 0x83); rtw_write8(Adapter, RF_TX_G1, (rtw_read8(Adapter, RF_TX_G1)|BIT4)); // enable rtw_write8(Adapter, 0x28, 0x80); rtw_write8(Adapter, 0x28, 0x83); } //DBG_871X("===Round %d\n", retryNum+1); if (retryNum < 6){ //PHY_SetMacReg(Adapter, RF_TX_G1, BIT5|BIT6|BIT7, 1+retryNum); rtw_write8(Adapter, RF_TX_G1, (rtw_read8(Adapter, RF_TX_G1)&0x1F)|((1+retryNum)<<5)); } else{ break; } } } } PHY_SetBBReg(Adapter, rFPGA0_PSDFunction, bMaskDWord, 0xfccd); // reset PSD PHY_SetRFReg(Adapter, ODM_RF_PATH_A, RF_CHNLBW, bRFRegOffsetMask, reg0x18); //restore chnl // 0x20 NOT RESET // PHY_SetMacReg(Adapter, RF_TX_G1, BIT4, 0x0); // reset 0x20 } #endif int PHY_RFConfig8192E( IN PADAPTER Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); int rtStatus = _SUCCESS; if (Adapter->bSurpriseRemoved) return _FAIL; switch(pHalData->rf_chip) { case RF_6052: rtStatus = PHY_RF6052_Config_8192E(Adapter); break; case RF_PSEUDO_11N: break; default: //for MacOs Warning: "RF_TYPE_MIN" not handled in switch break; } // <20121002, Kordan> Do LCK, because the PHY reg files make no effect. (Asked by Edlu) // Only Test chip need set 0xb1= 0x55418, (Edlu) //PHY_SetRFReg(Adapter, RF_PATH_A, RF_LDO, bRFRegOffsetMask, 0x55418); //PHY_SetRFReg(Adapter, RF_PATH_B, RF_LDO, bRFRegOffsetMask, 0x55418); return rtStatus; } VOID PHY_GetTxPowerLevel8192E( IN PADAPTER Adapter, OUT s32* powerlevel ) { #if 0 HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); PMGNT_INFO pMgntInfo = &(Adapter->MgntInfo); s4Byte TxPwrDbm = 13; RT_TRACE(COMP_TXAGC, DBG_LOUD, ("PHY_GetTxPowerLevel8192E(): TxPowerLevel: %#x\n", TxPwrDbm)); if ( pMgntInfo->ClientConfigPwrInDbm != UNSPECIFIED_PWR_DBM ) *powerlevel = pMgntInfo->ClientConfigPwrInDbm; else *powerlevel = TxPwrDbm; #endif } VOID PHY_SetTxPowerIndex_8192E( IN PADAPTER Adapter, IN u32 PowerIndex, IN u8 RFPath, IN u8 Rate ) { if (RFPath == ODM_RF_PATH_A) { switch (Rate) { case MGN_1M: PHY_SetBBReg(Adapter, rTxAGC_A_CCK1_Mcs32, bMaskByte1, PowerIndex); break; case MGN_2M: PHY_SetBBReg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte1, PowerIndex); break; case MGN_5_5M: PHY_SetBBReg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte2, PowerIndex); break; case MGN_11M: PHY_SetBBReg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte3, PowerIndex); break; case MGN_6M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate18_06, bMaskByte0, PowerIndex); break; case MGN_9M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate18_06, bMaskByte1, PowerIndex); break; case MGN_12M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate18_06, bMaskByte2, PowerIndex); break; case MGN_18M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate18_06, bMaskByte3, PowerIndex); break; case MGN_24M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate54_24, bMaskByte0, PowerIndex); break; case MGN_36M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate54_24, bMaskByte1, PowerIndex); break; case MGN_48M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate54_24, bMaskByte2, PowerIndex); break; case MGN_54M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate54_24, bMaskByte3, PowerIndex); break; case MGN_MCS0: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte0, PowerIndex); break; case MGN_MCS1: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte1, PowerIndex); break; case MGN_MCS2: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte2, PowerIndex); break; case MGN_MCS3: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte3, PowerIndex); break; case MGN_MCS4: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte0, PowerIndex); break; case MGN_MCS5: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte1, PowerIndex); break; case MGN_MCS6: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte2, PowerIndex); break; case MGN_MCS7: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte3, PowerIndex); break; case MGN_MCS8: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs11_Mcs08, bMaskByte0, PowerIndex); break; case MGN_MCS9: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs11_Mcs08, bMaskByte1, PowerIndex); break; case MGN_MCS10: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs11_Mcs08, bMaskByte2, PowerIndex); break; case MGN_MCS11: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs11_Mcs08, bMaskByte3, PowerIndex); break; case MGN_MCS12: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs15_Mcs12, bMaskByte0, PowerIndex); break; case MGN_MCS13: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs15_Mcs12, bMaskByte1, PowerIndex); break; case MGN_MCS14: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs15_Mcs12, bMaskByte2, PowerIndex); break; case MGN_MCS15: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs15_Mcs12, bMaskByte3, PowerIndex); break; default: DBG_871X("Invalid Rate!!\n"); break; } } else if (RFPath == ODM_RF_PATH_B) { switch (Rate) { case MGN_1M: PHY_SetBBReg(Adapter, rTxAGC_B_CCK1_55_Mcs32, bMaskByte1, PowerIndex); break; case MGN_2M: PHY_SetBBReg(Adapter, rTxAGC_B_CCK1_55_Mcs32, bMaskByte2, PowerIndex); break; case MGN_5_5M: PHY_SetBBReg(Adapter, rTxAGC_B_CCK1_55_Mcs32, bMaskByte3, PowerIndex); break; case MGN_11M: PHY_SetBBReg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte0, PowerIndex); break; case MGN_6M: PHY_SetBBReg(Adapter, rTxAGC_B_Rate18_06, bMaskByte0, PowerIndex); break; case MGN_9M: PHY_SetBBReg(Adapter, rTxAGC_B_Rate18_06, bMaskByte1, PowerIndex); break; case MGN_12M: PHY_SetBBReg(Adapter, rTxAGC_B_Rate18_06, bMaskByte2, PowerIndex); break; case MGN_18M: PHY_SetBBReg(Adapter, rTxAGC_B_Rate18_06, bMaskByte3, PowerIndex); break; case MGN_24M: PHY_SetBBReg(Adapter, rTxAGC_B_Rate54_24, bMaskByte0, PowerIndex); break; case MGN_36M: PHY_SetBBReg(Adapter, rTxAGC_B_Rate54_24, bMaskByte1, PowerIndex); break; case MGN_48M: PHY_SetBBReg(Adapter, rTxAGC_B_Rate54_24, bMaskByte2, PowerIndex); break; case MGN_54M: PHY_SetBBReg(Adapter, rTxAGC_B_Rate54_24, bMaskByte3, PowerIndex); break; case MGN_MCS0: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs03_Mcs00, bMaskByte0, PowerIndex); break; case MGN_MCS1: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs03_Mcs00, bMaskByte1, PowerIndex); break; case MGN_MCS2: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs03_Mcs00, bMaskByte2, PowerIndex); break; case MGN_MCS3: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs03_Mcs00, bMaskByte3, PowerIndex); break; case MGN_MCS4: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs07_Mcs04, bMaskByte0, PowerIndex); break; case MGN_MCS5: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs07_Mcs04, bMaskByte1, PowerIndex); break; case MGN_MCS6: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs07_Mcs04, bMaskByte2, PowerIndex); break; case MGN_MCS7: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs07_Mcs04, bMaskByte3, PowerIndex); break; case MGN_MCS8: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs11_Mcs08, bMaskByte0, PowerIndex); break; case MGN_MCS9: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs11_Mcs08, bMaskByte1, PowerIndex); break; case MGN_MCS10: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs11_Mcs08, bMaskByte2, PowerIndex); break; case MGN_MCS11: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs11_Mcs08, bMaskByte3, PowerIndex); break; case MGN_MCS12: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs15_Mcs12, bMaskByte0, PowerIndex); break; case MGN_MCS13: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs15_Mcs12, bMaskByte1, PowerIndex); break; case MGN_MCS14: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs15_Mcs12, bMaskByte2, PowerIndex); break; case MGN_MCS15: PHY_SetBBReg(Adapter, rTxAGC_B_Mcs15_Mcs12, bMaskByte3, PowerIndex); break; default: DBG_871X("Invalid Rate!!\n"); break; } } else { DBG_871X("Invalid RFPath!!\n"); } } u8 phy_GetCurrentTxNum_8192E( IN PADAPTER pAdapter, IN u8 Rate ) { u8 tmpByte = 0; u32 tmpDWord = 0; u8 TxNum = RF_TX_NUM_NONIMPLEMENT; if ( ( Rate >= MGN_MCS8 && Rate <= MGN_MCS15 ) ) TxNum = RF_2TX; else TxNum = RF_1TX; #if 0 if ( RateSection == CCK ) { tmpByte = PlatformIORead1Byte( pAdapter , 0xA07 ); if ( ( tmpByte >> 4 ) == 0x8 || ( tmpByte >> 4 ) == 0x4 ) TxNum = RF_1TX; else if ( ( tmpByte >> 4 ) == 0xC ) TxNum = RF_2TX; } else if ( RateSection == OFDM ) { tmpDWord = PlatformIORead4Byte( pAdapter , 0x90C ); if ( ( ( tmpByte & 0x00F0 ) >> 4 ) & == 0x1 || ( ( tmpByte & 0x00F0 ) >> 4 ) & == 0x2 ) TxNum = RF_1TX; else if ( ( ( tmpByte & 0x00F0 ) >> 4 ) & == 0x3 ) TxNum = RF_2TX; } else if ( RateSection == HT_MCS0_MCS7 ) { tmpDWord = PlatformIORead4Byte( pAdapter , 0x90C ); if ( ( ( tmpByte & 0x0FF00000 ) >> 4 ) & == 0x11 || ( ( tmpByte & 0x0FF00000 ) >> 4 ) & == 0x22 ) TxNum = RF_1TX; else if ( ( ( tmpByte & 0x0FF00000 ) >> 4 ) & == 0x33 ) TxNum = RF_2TX; } else { RT_DISP( FPHY, PHY_TXPWR ( "Invalide RateSection %d in phy_GetCurrentTxNum_8192E()\n", RateSection ) ); } #endif return TxNum; } u8 PHY_GetTxPowerIndex_8192E( IN PADAPTER pAdapter, IN u8 RFPath, IN u8 Rate, IN CHANNEL_WIDTH BandWidth, IN u8 Channel ) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter); s8 txPower = 0, powerDiffByRate = 0, limit = 0,tpt_offset=0; u8 txNum = phy_GetCurrentTxNum_8192E( pAdapter, Rate ); BOOLEAN bIn24G = _FALSE; //DBG_871X("===> PHY_GetTxPowerIndex_8192E\n"); txPower = (s8) PHY_GetTxPowerIndexBase( pAdapter,RFPath, Rate, BandWidth, Channel, &bIn24G ); powerDiffByRate = PHY_GetTxPowerByRate( pAdapter, BAND_ON_2_4G, RFPath, txNum, Rate ); limit = PHY_GetTxPowerLimit( pAdapter, pAdapter->registrypriv.RegPwrTblSel, (u8)(!bIn24G), pHalData->CurrentChannelBW, RFPath, Rate, pHalData->CurrentChannel); tpt_offset = PHY_GetTxPowerTrackingOffset( pAdapter, RFPath, Rate ); #if defined(DBG_TX_POWER_IDX) DBG_871X("%s (RF-%c, Channel: %d, BW:0x%02x ,Rate:0x%02x) \n==> txPower= (0x%02x),powerDiffByRate= (0x%02x),limit= (0x%02x),tpt_offset=(0x%02x)\n", __FUNCTION__,((RFPath==0)?'A':'B'), Channel,BandWidth,Rate,txPower,powerDiffByRate,limit,tpt_offset); #endif powerDiffByRate = powerDiffByRate > limit ? limit : powerDiffByRate; txPower += powerDiffByRate; txPower += tpt_offset; if(txPower > MAX_POWER_INDEX) txPower = MAX_POWER_INDEX; #if defined(DBG_TX_POWER_IDX) DBG_871X("Final Tx Power(RF-%c, Channel: %d) = %d(0x%X)\n\n", ((RFPath==0)?'A':'B'), Channel, txPower, txPower); #endif return (u8)txPower; } VOID PHY_SetTxPowerLevel8192E( IN PADAPTER Adapter, IN u8 Channel ) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter); u8 path = 0; //DBG_871X("==>PHY_SetTxPowerLevel8192E()\n"); for( path = ODM_RF_PATH_A; path < pHalData->NumTotalRFPath; ++path ) { PHY_SetTxPowerLevelByPath(Adapter, Channel, path); } //DBG_871X("<==PHY_SetTxPowerLevel8192E()\n"); } u8 phy_GetSecondaryChnl_8192E( IN PADAPTER Adapter ) { u8 SCSettingOf40 = 0, SCSettingOf20 = 0; PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter); //DBG_871X("SCMapping: VHT Case: pHalData->CurrentChannelBW %d, pHalData->nCur80MhzPrimeSC %d, pHalData->nCur40MhzPrimeSC %d \n",pHalData->CurrentChannelBW,pHalData->nCur80MhzPrimeSC,pHalData->nCur40MhzPrimeSC); if(pHalData->CurrentChannelBW== CHANNEL_WIDTH_80) { if(pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) SCSettingOf40 = VHT_DATA_SC_40_LOWER_OF_80MHZ; else if(pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) SCSettingOf40 = VHT_DATA_SC_40_UPPER_OF_80MHZ; else DBG_871X("%s- CurrentChannelBW:%d, SCMapping: Not Correct Primary40MHz Setting \n",__FUNCTION__,pHalData->CurrentChannelBW); if((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)) SCSettingOf20 = VHT_DATA_SC_20_LOWEST_OF_80MHZ; else if((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)) SCSettingOf20 = VHT_DATA_SC_20_LOWER_OF_80MHZ; else if((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)) SCSettingOf20 = VHT_DATA_SC_20_UPPER_OF_80MHZ; else if((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)) SCSettingOf20 = VHT_DATA_SC_20_UPPERST_OF_80MHZ; else DBG_871X("%s- CurrentChannelBW:%d, SCMapping: Not Correct Primary40MHz Setting \n",__FUNCTION__,pHalData->CurrentChannelBW); } else if(pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) { //DBG_871X("SCMapping: VHT Case: pHalData->CurrentChannelBW %d, pHalData->nCur40MhzPrimeSC %d \n",pHalData->CurrentChannelBW,pHalData->nCur40MhzPrimeSC); if(pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) SCSettingOf20 = VHT_DATA_SC_20_UPPER_OF_80MHZ; else if(pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) SCSettingOf20 = VHT_DATA_SC_20_LOWER_OF_80MHZ; else if(pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_DONT_CARE) DBG_871X("%s- CurrentChannelBW:%d, PRIME_CHNL_OFFSET_DONT_CARE \n",__FUNCTION__,pHalData->CurrentChannelBW); else DBG_871X("%s- CurrentChannelBW:%d, SCMapping: Not Correct Primary40MHz Setting \n",__FUNCTION__,pHalData->CurrentChannelBW); } //DBG_871X("SCMapping: SC Value %x \n", ( (SCSettingOf40 << 4) | SCSettingOf20)); return ( (SCSettingOf40 << 4) | SCSettingOf20); } VOID phy_SetRegBW_8192E( IN PADAPTER Adapter, CHANNEL_WIDTH CurrentBW ) { u16 RegRfMod_BW, u2tmp = 0; RegRfMod_BW = rtw_read16(Adapter, REG_TRXPTCL_CTL_8192E); switch(CurrentBW) { case CHANNEL_WIDTH_20: rtw_write16(Adapter, REG_TRXPTCL_CTL_8192E, (RegRfMod_BW & 0xFE7F)); // BIT 7 = 0, BIT 8 = 0 break; case CHANNEL_WIDTH_40: u2tmp = RegRfMod_BW | BIT7; rtw_write16(Adapter, REG_TRXPTCL_CTL_8192E, (u2tmp & 0xFEFF)); // BIT 7 = 1, BIT 8 = 0 break; case CHANNEL_WIDTH_80: u2tmp = RegRfMod_BW | BIT8; rtw_write16(Adapter, REG_TRXPTCL_CTL_8192E, (u2tmp & 0xFF7F)); // BIT 7 = 0, BIT 8 = 1 break; default: DBG_871X("phy_PostSetBWMode8812(): unknown Bandwidth: %#X\n",CurrentBW); break; } } VOID phy_PostSetBwMode8192E( IN PADAPTER Adapter ) { u1Byte SubChnlNum = 0; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); //3 Set Reg668 Reg440 BW phy_SetRegBW_8192E(Adapter, pHalData->CurrentChannelBW); //3 Set Reg483 SubChnlNum = phy_GetSecondaryChnl_8192E(Adapter); rtw_write8(Adapter, REG_DATA_SC_8192E, SubChnlNum); switch(pHalData->CurrentChannelBW) { case CHANNEL_WIDTH_20: PHY_SetBBReg(Adapter, rFPGA0_RFMOD, BIT0, 0x0); PHY_SetBBReg(Adapter, rFPGA1_RFMOD, BIT0, 0x0); PHY_SetRFReg(Adapter, RF_PATH_A, RF_CHNLBW, BIT11|BIT10, 0x3); PHY_SetRFReg(Adapter, RF_PATH_B, RF_CHNLBW, BIT11|BIT10, 0x3); //PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter2, BIT10, 1); PHY_SetBBReg(Adapter, rOFDM0_TxPseudoNoiseWgt, (BIT31|BIT30), 0x0); break; case CHANNEL_WIDTH_40: PHY_SetBBReg(Adapter, rFPGA0_RFMOD, BIT0, 0x1); PHY_SetBBReg(Adapter, rFPGA1_RFMOD, BIT0, 0x1); PHY_SetRFReg(Adapter, RF_PATH_A, RF_CHNLBW, BIT11|BIT10, 0x1); PHY_SetRFReg(Adapter, RF_PATH_B, RF_CHNLBW, BIT11|BIT10, 0x1); // Set Control channel to upper or lower. These settings are required only for 40MHz PHY_SetBBReg(Adapter, rCCK0_System, bCCKSideBand, (pHalData->nCur40MhzPrimeSC>>1)); PHY_SetBBReg(Adapter, rOFDM1_LSTF, 0xC00, pHalData->nCur40MhzPrimeSC); // PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter2, BIT10, 0); PHY_SetBBReg(Adapter, 0x818, (BIT26|BIT27), (pHalData->nCur40MhzPrimeSC==HAL_PRIME_CHNL_OFFSET_LOWER)?2:1); break; default: //RT_DISP(FPHY, PHY_BBW, ("phy_PostSetBWMode8192E(): unknown Bandwidth: %#X\n",pHalData->CurrentChannelBW)); break; } } // <20130320, VincentLan> A workaround to eliminate the 2480MHz spur for 92E void phy_SpurCalibration_8192E( IN PADAPTER Adapter, IN SPUR_CAL_METHOD Method ) { u32 reg0x18 = 0; u8 retryNum = 0; u8 MaxRetryCount = 8; u8 Pass_A = _FALSE, Pass_B = _FALSE; u8 SpurOccur = _FALSE; u32 PSDReport = 0; u32 Best_PSD_PathA = 999; u32 Best_Phase_PathA = 0; if (Method == PLL_RESET){ MaxRetryCount = 3; DBG_871X("%s =>PLL_RESET \n",__FUNCTION__); } else if (Method == AFE_PHASE_SEL){ rtw_write8(Adapter, RF_TX_G1,rtw_read8(Adapter, RF_TX_G1)|BIT4); // enable 0x20[4] DBG_871X("%s =>AFE_PHASE_SEL \n",__FUNCTION__); } // Backup current channel reg0x18 = PHY_QueryRFReg(Adapter, ODM_RF_PATH_A, RF_CHNLBW, bRFRegOffsetMask); while (retryNum++ < MaxRetryCount) { PHY_SetRFReg(Adapter, ODM_RF_PATH_A, RF_CHNLBW, bRFRegOffsetMask, 0x7C0D); //CH13 PHY_SetBBReg(Adapter, rOFDM0_XAAGCCore1, bMaskByte0, 0x30); //Path A initial gain PHY_SetBBReg(Adapter, rOFDM0_XBAGCCore1, bMaskByte0, 0x30); //Path B initial gain PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter4, bMaskDWord, 0xccf000c0); // disable 3-wire // Path A PHY_SetBBReg(Adapter, rFPGA0_TxInfo, bMaskByte0, 0x3); PHY_SetBBReg(Adapter, rFPGA0_PSDFunction, bMaskDWord, 0xfccd); PHY_SetBBReg(Adapter, rFPGA0_PSDFunction, bMaskDWord, 0x40fccd); //rtw_msleep_os(30); rtw_mdelay_os(30); PSDReport = PHY_QueryBBReg(Adapter, rFPGA0_PSDReport, bMaskDWord); //DBG_871X(" Path A== PSDReport = 0x%x (%d)\n",PSDReport,PSDReport); if (PSDReport < 0x16) Pass_A = _TRUE; if (PSDReport < Best_PSD_PathA){ Best_PSD_PathA = PSDReport; Best_Phase_PathA = rtw_read8(Adapter, RF_TX_G1)>>5; } // Path B PHY_SetBBReg(Adapter, rFPGA0_TxInfo, bMaskByte0, 0x13); PHY_SetBBReg(Adapter, rFPGA0_PSDFunction, bMaskDWord, 0xfccd); PHY_SetBBReg(Adapter, rFPGA0_PSDFunction, bMaskDWord, 0x40fccd); //rtw_msleep_os(30); rtw_mdelay_os(30); PSDReport = PHY_QueryBBReg(Adapter, rFPGA0_PSDReport, bMaskDWord); //DBG_871X(" Path B== PSDReport = 0x%x (%d)\n",PSDReport,PSDReport); if (PSDReport < 0x16) Pass_B = _TRUE; if (Pass_A && Pass_B) { DBG_871X("=== PathA=%d, PathB=%d\n", Pass_A, Pass_B); DBG_871X("===FixSpur Pass!\n"); PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter4, bMaskDWord, 0xcc0000c0); // enable 3-wire PHY_SetBBReg(Adapter, rFPGA0_PSDFunction, bMaskDWord, 0xfc00); PHY_SetBBReg(Adapter, rOFDM0_XAAGCCore1, bMaskByte0, 0x20); PHY_SetBBReg(Adapter, rOFDM0_XBAGCCore1, bMaskByte0, 0x20); break; } else { Pass_A = _FALSE; Pass_B = _FALSE; if (Method == PLL_RESET) { //PHY_SetMacReg(Adapter, 0x28, bMaskByte1, 0x7); // PLL gated 320M CLK disable //PHY_SetMacReg(Adapter, 0x28, bMaskByte1, 0x47); // PLL gated 320M CLK enable rtw_write8(Adapter, 0x29, 0x7); // PLL gated 320M CLK disable rtw_write8(Adapter, 0x29, 0x47); // PLL gated 320M CLK enable } else if (Method == AFE_PHASE_SEL) { if (!SpurOccur) { SpurOccur = _TRUE; DBG_871X("===FixSpur NOT Pass!\n"); //PHY_SetMacReg(Adapter, RF_TX_G1, BIT4, 0x1); //PHY_SetMacReg(Adapter, 0x28, bMaskByte0, 0x80); //PHY_SetMacReg(Adapter, 0x28, bMaskByte0, 0x83); rtw_write8(Adapter, RF_TX_G1,rtw_read8(Adapter, RF_TX_G1)|BIT4); // enable 0x20[4] rtw_write8(Adapter, 0x28, 0x80); rtw_write8(Adapter, 0x28, 0x83); } //DBG_871X("===Round %d\n", retryNum+1); if (retryNum < 7) //PHY_SetMacReg(Adapter, RF_TX_G1, BIT5|BIT6|BIT7, 1+retryNum); rtw_write8(Adapter,RF_TX_G1,(rtw_read8(Adapter, RF_TX_G1)&0x1F)|((1+retryNum)<<5)); else break; } } } if (Pass_A && Pass_B) ; // 0x20 Selection Focus on Path A PSD Result else if (Method == AFE_PHASE_SEL){ if (Best_Phase_PathA < 8) //PHY_SetMacReg(Adapter, RF_TX_G1, BIT5|BIT6|BIT7, Best_Phase_PathA); rtw_write8(Adapter,RF_TX_G1,(rtw_read8(Adapter, RF_TX_G1)&0x1F)|(Best_Phase_PathA<<5)); else //PHY_SetMacReg(Adapter, RF_TX_G1, BIT5|BIT6|BIT7, 0); rtw_write8(Adapter,RF_TX_G1,(rtw_read8(Adapter, RF_TX_G1)&0x1F)); } // Restore the settings PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter4, bMaskDWord, 0xcc0000c0); // enable 3-wire PHY_SetBBReg(Adapter, rFPGA0_PSDFunction, bMaskDWord, 0xfccd); // reset PSD PHY_SetBBReg(Adapter, rOFDM0_XAAGCCore1, bMaskByte0, 0x20); PHY_SetBBReg(Adapter, rOFDM0_XBAGCCore1, bMaskByte0, 0x20); PHY_SetRFReg(Adapter, ODM_RF_PATH_A, RF_CHNLBW, bRFRegOffsetMask, reg0x18); //restore chnl } VOID phy_SwChnl8192E( IN PADAPTER pAdapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); u8 channelToSW = pHalData->CurrentChannel; if(pHalData->rf_chip == RF_PSEUDO_11N) { //RT_TRACE(COMP_MLME,DBG_LOUD,("phy_SwChnl8192E: return for PSEUDO \n")); return; } pHalData->RfRegChnlVal[0] = ((pHalData->RfRegChnlVal[0] & 0xfffff00) | channelToSW ); PHY_SetRFReg(pAdapter, RF_PATH_A, RF_CHNLBW, 0x3FF, pHalData->RfRegChnlVal[0] ); PHY_SetRFReg(pAdapter, RF_PATH_B, RF_CHNLBW, 0x3FF, pHalData->RfRegChnlVal[0] ); #if 0 //to do // <20130422, VincentLan> A workaround to eliminate the 2480MHz spur for 92E if (channelToSW == 13) { if (pMgntInfo->RegSpurCalMethod == 1)//if AFE == 40MHz,MAC REG_0X78 phy_SpurCalibration_8192E(pAdapter, AFE_PHASE_SEL); else phy_SpurCalibration_8192E(pAdapter, PLL_RESET); } #endif } VOID phy_SwChnlAndSetBwMode8192E( IN PADAPTER Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); //DBG_871X("phy_SwChnlAndSetBwMode8192E(): bSwChnl %d, bSetChnlBW %d \n", pHalData->bSwChnl, pHalData->bSetChnlBW); if ( Adapter->bNotifyChannelChange ) { DBG_871X( "[%s] bSwChnl=%d, ch=%d, bSetChnlBW=%d, bw=%d\n", __FUNCTION__, pHalData->bSwChnl, pHalData->CurrentChannel, pHalData->bSetChnlBW, pHalData->CurrentChannelBW); } if((Adapter->bDriverStopped) || (Adapter->bSurpriseRemoved)) { return; } if(pHalData->bSwChnl) { phy_SwChnl8192E(Adapter); pHalData->bSwChnl = _FALSE; } if(pHalData->bSetChnlBW) { phy_PostSetBwMode8192E(Adapter); pHalData->bSetChnlBW = _FALSE; } PHY_SetTxPowerLevel8192E(Adapter, pHalData->CurrentChannel); } VOID PHY_HandleSwChnlAndSetBW8192E( IN PADAPTER Adapter, IN BOOLEAN bSwitchChannel, IN BOOLEAN bSetBandWidth, IN u8 ChannelNum, IN CHANNEL_WIDTH ChnlWidth, IN EXTCHNL_OFFSET ExtChnlOffsetOf40MHz, IN EXTCHNL_OFFSET ExtChnlOffsetOf80MHz, IN u8 CenterFrequencyIndex1 ) { //static BOOLEAN bInitialzed = _FALSE; PADAPTER pDefAdapter = GetDefaultAdapter(Adapter); PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pDefAdapter); u8 tmpChannel = pHalData->CurrentChannel; CHANNEL_WIDTH tmpBW= pHalData->CurrentChannelBW; u8 tmpnCur40MhzPrimeSC = pHalData->nCur40MhzPrimeSC; u8 tmpnCur80MhzPrimeSC = pHalData->nCur80MhzPrimeSC; u8 tmpCenterFrequencyIndex1 =pHalData->CurrentCenterFrequencyIndex1; struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv; //DBG_871X("=> PHY_HandleSwChnlAndSetBW8812: bSwitchChannel %d, bSetBandWidth %d \n",bSwitchChannel,bSetBandWidth); //check is swchnl or setbw if(!bSwitchChannel && !bSetBandWidth) { DBG_871X("PHY_HandleSwChnlAndSetBW8812: not switch channel and not set bandwidth \n"); return; } //skip change for channel or bandwidth is the same if(bSwitchChannel) { if(pHalData->CurrentChannel != ChannelNum) { if (HAL_IsLegalChannel(Adapter, ChannelNum)) pHalData->bSwChnl = _TRUE; } } if(bSetBandWidth) { #if 0 if(bInitialzed == _FALSE) { bInitialzed = _TRUE; pHalData->bSetChnlBW = _TRUE; } else if((pHalData->CurrentChannelBW != ChnlWidth) ||(pHalData->nCur40MhzPrimeSC != ExtChnlOffsetOf40MHz) || (pHalData->CurrentCenterFrequencyIndex1!= CenterFrequencyIndex1)) { pHalData->bSetChnlBW = _TRUE; } #else pHalData->bSetChnlBW = _TRUE; #endif } if(!pHalData->bSetChnlBW && !pHalData->bSwChnl) { //DBG_871X("<= PHY_HandleSwChnlAndSetBW8812: bSwChnl %d, bSetChnlBW %d \n",pHalData->bSwChnl,pHalData->bSetChnlBW); return; } if(pHalData->bSwChnl) { pHalData->CurrentChannel=ChannelNum; pHalData->CurrentCenterFrequencyIndex1 = ChannelNum; } if(pHalData->bSetChnlBW) { pHalData->CurrentChannelBW = ChnlWidth; #if 0 if(ExtChnlOffsetOf40MHz==EXTCHNL_OFFSET_LOWER) pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_UPPER; else if(ExtChnlOffsetOf40MHz==EXTCHNL_OFFSET_UPPER) pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_LOWER; else pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_DONT_CARE; if(ExtChnlOffsetOf80MHz==EXTCHNL_OFFSET_LOWER) pHalData->nCur80MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_UPPER; else if(ExtChnlOffsetOf80MHz==EXTCHNL_OFFSET_UPPER) pHalData->nCur80MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_LOWER; else pHalData->nCur80MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_DONT_CARE; #else pHalData->nCur40MhzPrimeSC = ExtChnlOffsetOf40MHz; pHalData->nCur80MhzPrimeSC = ExtChnlOffsetOf80MHz; #endif pHalData->CurrentCenterFrequencyIndex1 = CenterFrequencyIndex1; } //Switch workitem or set timer to do switch channel or setbandwidth operation if((!pDefAdapter->bDriverStopped) && (!pDefAdapter->bSurpriseRemoved)) { phy_SwChnlAndSetBwMode8192E(Adapter); } else { if(pHalData->bSwChnl) { pHalData->CurrentChannel = tmpChannel; pHalData->CurrentCenterFrequencyIndex1 = tmpChannel; } if(pHalData->bSetChnlBW) { pHalData->CurrentChannelBW = tmpBW; pHalData->nCur40MhzPrimeSC = tmpnCur40MhzPrimeSC; pHalData->nCur80MhzPrimeSC = tmpnCur80MhzPrimeSC; pHalData->CurrentCenterFrequencyIndex1 = tmpCenterFrequencyIndex1; } } //DBG_871X("Channel %d ChannelBW %d ",pHalData->CurrentChannel, pHalData->CurrentChannelBW); //DBG_871X("40MhzPrimeSC %d 80MhzPrimeSC %d ",pHalData->nCur40MhzPrimeSC, pHalData->nCur80MhzPrimeSC); //DBG_871X("CenterFrequencyIndex1 %d \n",pHalData->CurrentCenterFrequencyIndex1); //DBG_871X("<= PHY_HandleSwChnlAndSetBW8812: bSwChnl %d, bSetChnlBW %d \n",pHalData->bSwChnl,pHalData->bSetChnlBW); } VOID PHY_SwChnl8192E( IN PADAPTER Adapter, IN u8 channel ) { //DBG_871X("%s()===>\n",__FUNCTION__); PHY_HandleSwChnlAndSetBW8192E(Adapter, _TRUE, _FALSE, channel, 0, 0, 0, channel); #if (MP_DRIVER == 1) // <20120712, Kordan> IQK on each channel, asked by James. //PHY_IQCalibrate(Adapter, _FALSE); #endif //DBG_871X("<==%s()\n",__FUNCTION__); } VOID PHY_SetBWMode8192E( IN PADAPTER Adapter, IN CHANNEL_WIDTH Bandwidth, // 20M or 40M IN u8 Offset // Upper, Lower, or Don't care ) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter); //DBG_871X("%s()===>\n",__FUNCTION__); PHY_HandleSwChnlAndSetBW8192E(Adapter, _FALSE, _TRUE, pHalData->CurrentChannel, Bandwidth, Offset, Offset, pHalData->CurrentChannel); //DBG_871X("<==%s()\n",__FUNCTION__); } VOID PHY_SetSwChnlBWMode8192E( IN PADAPTER Adapter, IN u8 channel, IN CHANNEL_WIDTH Bandwidth, IN u8 Offset40, IN u8 Offset80 ) { //DBG_871X("%s()===>\n",__FUNCTION__); PHY_HandleSwChnlAndSetBW8192E(Adapter, _TRUE, _TRUE, channel, Bandwidth, Offset40, Offset80, channel); //DBG_871X("<==%s()\n",__FUNCTION__); } #if 0 static VOID _PHY_SetBWMode8192E( IN PADAPTER Adapter ) { // PADAPTER Adapter = (PADAPTER)pTimer->Adapter; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 regBwOpMode; u8 regRRSR_RSC; //return; // Added it for 20/40 mhz switch time evaluation by guangan 070531 //u4Byte NowL, NowH; //u8Byte BeginTime, EndTime; /*RT_TRACE(COMP_SCAN, DBG_LOUD, ("==>PHY_SetBWModeCallback8192C() Switch to %s bandwidth\n", \ pHalData->CurrentChannelBW == CHANNEL_WIDTH_20?"20MHz":"40MHz"))*/ if(pHalData->rf_chip == RF_PSEUDO_11N) { //pHalData->SetBWModeInProgress= _FALSE; return; } // There is no 40MHz mode in RF_8225. if(pHalData->rf_chip==RF_8225) return; if(Adapter->bDriverStopped) return; // Added it for 20/40 mhz switch time evaluation by guangan 070531 //NowL = PlatformEFIORead4Byte(Adapter, TSFR); //NowH = PlatformEFIORead4Byte(Adapter, TSFR+4); //BeginTime = ((u8Byte)NowH << 32) + NowL; //3// //3//<1>Set MAC register //3// //Adapter->HalFunc.SetBWModeHandler(); regBwOpMode = rtw_read8(Adapter, REG_BWOPMODE); regRRSR_RSC = rtw_read8(Adapter, REG_RRSR+2); //regBwOpMode = rtw_hal_get_hwreg(Adapter,HW_VAR_BWMODE,(pu1Byte)®BwOpMode); switch(pHalData->CurrentChannelBW) { case CHANNEL_WIDTH_20: regBwOpMode |= BW_OPMODE_20MHZ; // 2007/02/07 Mark by Emily becasue we have not verify whether this register works rtw_write8(Adapter, REG_BWOPMODE, regBwOpMode); break; case CHANNEL_WIDTH_40: regBwOpMode &= ~BW_OPMODE_20MHZ; // 2007/02/07 Mark by Emily becasue we have not verify whether this register works rtw_write8(Adapter, REG_BWOPMODE, regBwOpMode); regRRSR_RSC = (regRRSR_RSC&0x90) |(pHalData->nCur40MhzPrimeSC<<5); rtw_write8(Adapter, REG_RRSR+2, regRRSR_RSC); break; default: /*RT_TRACE(COMP_DBG, DBG_LOUD, ("PHY_SetBWModeCallback8192C(): unknown Bandwidth: %#X\n",pHalData->CurrentChannelBW));*/ break; } //3// //3//<2>Set PHY related register //3// switch(pHalData->CurrentChannelBW) { /* 20 MHz channel*/ case CHANNEL_WIDTH_20: PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x0); PHY_SetBBReg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x0); //PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter2, BIT10, 1); PHY_SetBBReg(Adapter, rOFDM0_TxPseudoNoiseWgt, (BIT31|BIT30), 0x0); break; /* 40 MHz channel*/ case CHANNEL_WIDTH_40: PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x1); PHY_SetBBReg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x1); // Set Control channel to upper or lower. These settings are required only for 40MHz PHY_SetBBReg(Adapter, rCCK0_System, bCCKSideBand, (pHalData->nCur40MhzPrimeSC>>1)); PHY_SetBBReg(Adapter, rOFDM1_LSTF, 0xC00, pHalData->nCur40MhzPrimeSC); //PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter2, BIT10, 0); PHY_SetBBReg(Adapter, 0x818, (BIT26|BIT27), (pHalData->nCur40MhzPrimeSC==HAL_PRIME_CHNL_OFFSET_LOWER)?2:1); break; default: /*RT_TRACE(COMP_DBG, DBG_LOUD, ("PHY_SetBWModeCallback8192C(): unknown Bandwidth: %#X\n"\ ,pHalData->CurrentChannelBW));*/ break; } //Skip over setting of J-mode in BB register here. Default value is "None J mode". Emily 20070315 // Added it for 20/40 mhz switch time evaluation by guangan 070531 //NowL = PlatformEFIORead4Byte(Adapter, TSFR); //NowH = PlatformEFIORead4Byte(Adapter, TSFR+4); //EndTime = ((u8Byte)NowH << 32) + NowL; //RT_TRACE(COMP_SCAN, DBG_LOUD, ("SetBWModeCallback8190Pci: time of SetBWMode = %I64d us!\n", (EndTime - BeginTime))); //3<3>Set RF related register switch(pHalData->rf_chip) { case RF_PSEUDO_11N: // Do Nothing break; case RF_6052: PHY_RF6052SetBandwidth8192E(Adapter, pHalData->CurrentChannelBW); break; default: //RT_ASSERT(FALSE, ("Unknown RFChipID: %d\n", pHalData->rfchip)); break; } //pHalData->SetBWModeInProgress= FALSE; //RT_TRACE(COMP_SCAN, DBG_LOUD, ("<==PHY_SetBWModeCallback8192C() \n" )); } VOID PHY_SetBWMode8192E( IN PADAPTER Adapter, IN CHANNEL_WIDTH Bandwidth, // 20M or 40M IN u8 Offset // Upper, Lower, or Don't care ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); CHANNEL_WIDTH tmpBW= pHalData->CurrentChannelBW; // Modified it for 20/40 mhz switch by guangan 070531 //PMGNT_INFO pMgntInfo=&Adapter->MgntInfo; //return; //if(pHalData->SwChnlInProgress) // if(pMgntInfo->bScanInProgress) // { // RT_TRACE(COMP_SCAN, DBG_LOUD, ("PHY_SetBWMode8192C() %s Exit because bScanInProgress!\n", // Bandwidth == CHANNEL_WIDTH_20?"20MHz":"40MHz")); // return; // } // if(pHalData->SetBWModeInProgress) // { // // Modified it for 20/40 mhz switch by guangan 070531 // RT_TRACE(COMP_SCAN, DBG_LOUD, ("PHY_SetBWMode8192C() %s cancel last timer because SetBWModeInProgress!\n", // Bandwidth == CHANNEL_WIDTH_20?"20MHz":"40MHz")); // PlatformCancelTimer(Adapter, &pHalData->SetBWModeTimer); // //return; // } //if(pHalData->SetBWModeInProgress) // return; //pHalData->SetBWModeInProgress= TRUE; pHalData->CurrentChannelBW = Bandwidth; #if 0 if(Offset==EXTCHNL_OFFSET_LOWER) pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_UPPER; else if(Offset==EXTCHNL_OFFSET_UPPER) pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_LOWER; else pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_DONT_CARE; #else pHalData->nCur40MhzPrimeSC = Offset; #endif if((!Adapter->bDriverStopped) && (!Adapter->bSurpriseRemoved)) { #if 0 //PlatformSetTimer(Adapter, &(pHalData->SetBWModeTimer), 0); #else _PHY_SetBWMode8192E(Adapter); #endif } else { //RT_TRACE(COMP_SCAN, DBG_LOUD, ("PHY_SetBWMode8192C() SetBWModeInProgress FALSE driver sleep or unload\n")); //pHalData->SetBWModeInProgress= FALSE; pHalData->CurrentChannelBW = tmpBW; } } #endif