/****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #define _HAL_COM_PHYCFG_C_ #include #include // // Description: // Map Tx power index into dBm according to // current HW model, for example, RF and PA, and // current wireless mode. // By Bruce, 2008-01-29. // s32 phy_TxPwrIdxToDbm( IN PADAPTER Adapter, IN WIRELESS_MODE WirelessMode, IN u8 TxPwrIdx ) { s32 Offset = 0; s32 PwrOutDbm = 0; // // Tested by MP, we found that CCK Index 0 equals to -7dbm, OFDM legacy equals to -8dbm. // Note: // The mapping may be different by different NICs. Do not use this formula for what needs accurate result. // By Bruce, 2008-01-29. // switch(WirelessMode) { case WIRELESS_MODE_B: Offset = -7; break; case WIRELESS_MODE_G: case WIRELESS_MODE_N_24G: Offset = -8; break; default: //for MacOSX compiler warning break; } PwrOutDbm = TxPwrIdx / 2 + Offset; // Discard the decimal part. return PwrOutDbm; } u8 PHY_GetTxPowerByRateBase( IN PADAPTER Adapter, IN u8 Band, IN u8 RfPath, IN u8 TxNum, IN RATE_SECTION RateSection ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 value = 0; if ( RfPath > ODM_RF_PATH_D ) { DBG_871X("Invalid Rf Path %d in PHY_GetTxPowerByRateBase()\n", RfPath ); return 0; } if ( Band == BAND_ON_2_4G ) { switch ( RateSection ) { case CCK: value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][0]; break; case OFDM: value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][1]; break; case HT_MCS0_MCS7: value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][2]; break; case HT_MCS8_MCS15: value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][3]; break; case HT_MCS16_MCS23: value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][4]; break; case HT_MCS24_MCS31: value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][5]; break; case VHT_1SSMCS0_1SSMCS9: value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][6]; break; case VHT_2SSMCS0_2SSMCS9: value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][7]; break; case VHT_3SSMCS0_3SSMCS9: value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][8]; break; case VHT_4SSMCS0_4SSMCS9: value = pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][9]; break; default: DBG_871X("Invalid RateSection %d in Band 2.4G, Rf Path %d, %dTx in PHY_GetTxPowerByRateBase()\n", RateSection, RfPath, TxNum ); break; }; } else if ( Band == BAND_ON_5G ) { switch ( RateSection ) { case OFDM: value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][0]; break; case HT_MCS0_MCS7: value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][1]; break; case HT_MCS8_MCS15: value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][2]; break; case HT_MCS16_MCS23: value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][3]; break; case HT_MCS24_MCS31: value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][4]; break; case VHT_1SSMCS0_1SSMCS9: value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][5]; break; case VHT_2SSMCS0_2SSMCS9: value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][6]; break; case VHT_3SSMCS0_3SSMCS9: value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][7]; break; case VHT_4SSMCS0_4SSMCS9: value = pHalData->TxPwrByRateBase5G[RfPath][TxNum][8]; break; default: DBG_871X("Invalid RateSection %d in Band 5G, Rf Path %d, %dTx in PHY_GetTxPowerByRateBase()\n", RateSection, RfPath, TxNum ); break; }; } else { DBG_871X("Invalid Band %d in PHY_GetTxPowerByRateBase()\n", Band ); } return value; } VOID phy_SetTxPowerByRateBase( IN PADAPTER Adapter, IN u8 Band, IN u8 RfPath, IN RATE_SECTION RateSection, IN u8 TxNum, IN u8 Value ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); if ( RfPath > ODM_RF_PATH_D ) { DBG_871X("Invalid Rf Path %d in phy_SetTxPowerByRatBase()\n", RfPath ); return; } if ( Band == BAND_ON_2_4G ) { switch ( RateSection ) { case CCK: pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][0] = Value; break; case OFDM: pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][1] = Value; break; case HT_MCS0_MCS7: pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][2] = Value; break; case HT_MCS8_MCS15: pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][3] = Value; break; case HT_MCS16_MCS23: pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][4] = Value; break; case HT_MCS24_MCS31: pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][5] = Value; break; case VHT_1SSMCS0_1SSMCS9: pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][6] = Value; break; case VHT_2SSMCS0_2SSMCS9: pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][7] = Value; break; case VHT_3SSMCS0_3SSMCS9: pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][8] = Value; break; case VHT_4SSMCS0_4SSMCS9: pHalData->TxPwrByRateBase2_4G[RfPath][TxNum][9] = Value; break; default: DBG_871X("Invalid RateSection %d in Band 2.4G, Rf Path %d, %dTx in phy_SetTxPowerByRateBase()\n", RateSection, RfPath, TxNum ); break; }; } else if ( Band == BAND_ON_5G ) { switch ( RateSection ) { case OFDM: pHalData->TxPwrByRateBase5G[RfPath][TxNum][0] = Value; break; case HT_MCS0_MCS7: pHalData->TxPwrByRateBase5G[RfPath][TxNum][1] = Value; break; case HT_MCS8_MCS15: pHalData->TxPwrByRateBase5G[RfPath][TxNum][2] = Value; break; case HT_MCS16_MCS23: pHalData->TxPwrByRateBase5G[RfPath][TxNum][3] = Value; break; case HT_MCS24_MCS31: pHalData->TxPwrByRateBase5G[RfPath][TxNum][4] = Value; break; case VHT_1SSMCS0_1SSMCS9: pHalData->TxPwrByRateBase5G[RfPath][TxNum][5] = Value; break; case VHT_2SSMCS0_2SSMCS9: pHalData->TxPwrByRateBase5G[RfPath][TxNum][6] = Value; break; case VHT_3SSMCS0_3SSMCS9: pHalData->TxPwrByRateBase5G[RfPath][TxNum][7] = Value; break; case VHT_4SSMCS0_4SSMCS9: pHalData->TxPwrByRateBase5G[RfPath][TxNum][8] = Value; break; default: DBG_871X("Invalid RateSection %d in Band 5G, Rf Path %d, %dTx in phy_SetTxPowerByRateBase()\n", RateSection, RfPath, TxNum ); break; }; } else { DBG_871X("Invalid Band %d in phy_SetTxPowerByRateBase()\n", Band ); } } VOID phy_StoreTxPowerByRateBaseOld( IN PADAPTER pAdapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA( pAdapter ); u16 rawValue = 0; u8 base = 0; u8 path = 0; rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][7] >> 8 ) & 0xFF; base = ( rawValue >> 4 ) * 10 + ( rawValue & 0xF ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, CCK, RF_1TX, base ); rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][1] >> 24 ) & 0xFF; base = ( rawValue >> 4 ) * 10 + ( rawValue & 0xF ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, OFDM, RF_1TX, base ); rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][3] >> 24 ) & 0xFF; base = ( rawValue >> 4 ) * 10 + ( rawValue & 0xF ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, HT_MCS0_MCS7, RF_1TX, base ); rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][5] >> 24 ) & 0xFF; base = ( rawValue >> 4) * 10 + ( rawValue & 0xF ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, HT_MCS8_MCS15, RF_2TX, base ); rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][7] & 0xFF ); base = ( rawValue >> 4 ) * 10 + ( rawValue & 0xF ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, CCK, RF_1TX, base ); rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][9] >> 24 ) & 0xFF; base = ( rawValue >> 4 ) * 10 + ( rawValue & 0xF ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, OFDM, RF_1TX, base ); rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][11] >> 24 ) & 0xFF; base = ( rawValue >> 4 ) * 10 + ( rawValue & 0xF ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, HT_MCS0_MCS7, RF_1TX, base ); rawValue = ( u16 ) ( pHalData->MCSTxPowerLevelOriginalOffset[0][13] >> 24 ) & 0xFF; base = ( rawValue >> 4 ) * 10 + ( rawValue & 0xF ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, HT_MCS8_MCS15, RF_2TX, base ); } VOID phy_StoreTxPowerByRateBase( IN PADAPTER pAdapter ) { u8 path = 0, base = 0, index = 0; //DBG_871X( "===>%s\n", __FUNCTION__ ); for ( path = ODM_RF_PATH_A; path <= ODM_RF_PATH_B; ++path ) { base = PHY_GetTxPowerByRate( pAdapter, BAND_ON_2_4G, path, RF_1TX, MGN_11M ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, path, CCK, RF_1TX, base ); //DBG_871X("Power index base of 2.4G path %d 1Tx CCK = > 0x%x\n", path, base ); base = PHY_GetTxPowerByRate( pAdapter, BAND_ON_2_4G, path, RF_1TX, MGN_54M ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, path, OFDM, RF_1TX, base ); //DBG_871X("Power index base of 2.4G path %d 1Tx OFDM = > 0x%x\n", path, base ); base = PHY_GetTxPowerByRate( pAdapter, BAND_ON_2_4G, path, RF_1TX, MGN_MCS7 ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, path, HT_MCS0_MCS7, RF_1TX, base ); //DBG_871X("Power index base of 2.4G path %d 1Tx MCS0-7 = > 0x%x\n", path, base ); base = PHY_GetTxPowerByRate( pAdapter, BAND_ON_2_4G, path, RF_2TX, MGN_MCS15 ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, path, HT_MCS8_MCS15, RF_2TX, base ); //DBG_871X("Power index base of 2.4G path %d 2Tx MCS8-15 = > 0x%x\n", path, base ); base = PHY_GetTxPowerByRate( pAdapter, BAND_ON_2_4G, path, RF_3TX, MGN_MCS23 ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, path, HT_MCS16_MCS23, RF_3TX, base ); //DBG_871X("Power index base of 2.4G path %d 3Tx MCS16-23 = > 0x%x\n", path, base ); base = PHY_GetTxPowerByRate( pAdapter, BAND_ON_2_4G, path, RF_1TX, MGN_VHT1SS_MCS7 ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, path, VHT_1SSMCS0_1SSMCS9, RF_1TX, base ); //DBG_871X("Power index base of 2.4G path %d 1Tx VHT1SS = > 0x%x\n", path, base ); base = PHY_GetTxPowerByRate( pAdapter, BAND_ON_2_4G, path, RF_2TX, MGN_VHT2SS_MCS7 ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, path, VHT_2SSMCS0_2SSMCS9, RF_2TX, base ); //DBG_871X("Power index base of 2.4G path %d 2Tx VHT2SS = > 0x%x\n", path, base ); base = PHY_GetTxPowerByRate( pAdapter, BAND_ON_2_4G, path, RF_3TX, MGN_VHT3SS_MCS7 ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, path, VHT_3SSMCS0_3SSMCS9, RF_3TX, base ); //DBG_871X("Power index base of 2.4G path %d 3Tx VHT3SS = > 0x%x\n", path, base ); base = PHY_GetTxPowerByRate( pAdapter, BAND_ON_5G, path, RF_1TX, MGN_54M ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_5G, path, OFDM, RF_1TX, base ); //DBG_871X("Power index base of 5G path %d 1Tx OFDM = > 0x%x\n", path, base ); base = PHY_GetTxPowerByRate( pAdapter, BAND_ON_5G, path, RF_1TX, MGN_MCS7 ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_5G, path, HT_MCS0_MCS7, RF_1TX, base ); //DBG_871X("Power index base of 5G path %d 1Tx MCS0~7 = > 0x%x\n", path, base ); base = PHY_GetTxPowerByRate( pAdapter, BAND_ON_5G, path, RF_2TX, MGN_MCS15 ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_5G, path, HT_MCS8_MCS15, RF_2TX, base ); //DBG_871X("Power index base of 5G path %d 2Tx MCS8~15 = > 0x%x\n", path, base ); base = PHY_GetTxPowerByRate( pAdapter, BAND_ON_5G, path, RF_3TX, MGN_MCS23 ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_5G, path, HT_MCS16_MCS23, RF_3TX, base ); //DBG_871X("Power index base of 5G path %d 3Tx MCS16~23 = > 0x%x\n", path, base ); base = PHY_GetTxPowerByRate( pAdapter, BAND_ON_5G, path, RF_1TX, MGN_VHT1SS_MCS7 ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_5G, path, VHT_1SSMCS0_1SSMCS9, RF_1TX, base ); //DBG_871X("Power index base of 5G path %d 1Tx VHT1SS = > 0x%x\n", path, base ); base = PHY_GetTxPowerByRate( pAdapter, BAND_ON_5G, path, RF_2TX, MGN_VHT2SS_MCS7 ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_5G, path, VHT_2SSMCS0_2SSMCS9, RF_2TX, base ); //DBG_871X("Power index base of 5G path %d 2Tx VHT2SS = > 0x%x\n", path, base ); base = PHY_GetTxPowerByRate( pAdapter, BAND_ON_5G, path, RF_3TX, MGN_VHT2SS_MCS7 ); phy_SetTxPowerByRateBase( pAdapter, BAND_ON_5G, path, VHT_3SSMCS0_3SSMCS9, RF_3TX, base ); //DBG_871X("Power index base of 5G path %d 3Tx VHT3SS = > 0x%x\n", path, base ); } //DBG_871X("<===%s\n", __FUNCTION__ ); } u8 PHY_GetRateSectionIndexOfTxPowerByRate( IN PADAPTER pAdapter, IN u32 RegAddr, IN u32 BitMask ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA( pAdapter ); PDM_ODM_T pDM_Odm = &pHalData->odmpriv; u8 index = 0; if ( pDM_Odm->PhyRegPgVersion == 0 ) { switch ( RegAddr ) { case rTxAGC_A_Rate18_06: index = 0; break; case rTxAGC_A_Rate54_24: index = 1; break; case rTxAGC_A_CCK1_Mcs32: index = 6; break; case rTxAGC_B_CCK11_A_CCK2_11: if ( BitMask == 0xffffff00 ) index = 7; else if ( BitMask == 0x000000ff ) index = 15; break; case rTxAGC_A_Mcs03_Mcs00: index = 2; break; case rTxAGC_A_Mcs07_Mcs04: index = 3; break; case rTxAGC_A_Mcs11_Mcs08: index = 4; break; case rTxAGC_A_Mcs15_Mcs12: index = 5; break; case rTxAGC_B_Rate18_06: index = 8; break; case rTxAGC_B_Rate54_24: index = 9; break; case rTxAGC_B_CCK1_55_Mcs32: index = 14; break; case rTxAGC_B_Mcs03_Mcs00: index = 10; break; case rTxAGC_B_Mcs07_Mcs04: index = 11; break; case rTxAGC_B_Mcs11_Mcs08: index = 12; break; case rTxAGC_B_Mcs15_Mcs12: index = 13; break; default: DBG_871X("Invalid RegAddr 0x3%x in PHY_GetRateSectionIndexOfTxPowerByRate()", RegAddr ); break; }; } return index; } VOID PHY_GetRateValuesOfTxPowerByRate( IN PADAPTER pAdapter, IN u32 RegAddr, IN u32 BitMask, IN u32 Value, OUT u8* RateIndex, OUT s8* PwrByRateVal, OUT u8* RateNum ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA( pAdapter ); PDM_ODM_T pDM_Odm = &pHalData->odmpriv; u8 index = 0, i = 0; switch ( RegAddr ) { case rTxAGC_A_Rate18_06: case rTxAGC_B_Rate18_06: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_6M ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_9M ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_12M ); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate( MGN_18M ); for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case rTxAGC_A_Rate54_24: case rTxAGC_B_Rate54_24: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_24M ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_36M ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_48M ); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate( MGN_54M ); for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case rTxAGC_A_CCK1_Mcs32: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_1M ); PwrByRateVal[0] = ( s8 ) ( ( ( ( Value >> (8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> 8 ) & 0xF ) ); *RateNum = 1; break; case rTxAGC_B_CCK11_A_CCK2_11: if ( BitMask == 0xffffff00 ) { RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_2M ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_5_5M ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_11M ); for ( i = 1; i < 4; ++ i ) { PwrByRateVal[i - 1] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 3; } else if ( BitMask == 0x000000ff ) { RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_11M ); PwrByRateVal[0] = ( s8 ) ( ( ( ( Value >> 4 ) & 0xF ) ) * 10 + ( Value & 0xF ) ); *RateNum = 1; } break; case rTxAGC_A_Mcs03_Mcs00: case rTxAGC_B_Mcs03_Mcs00: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS0 ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS1 ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS2 ); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS3 ); for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case rTxAGC_A_Mcs07_Mcs04: case rTxAGC_B_Mcs07_Mcs04: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS4 ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS5 ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS6 ); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS7 ); for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case rTxAGC_A_Mcs11_Mcs08: case rTxAGC_B_Mcs11_Mcs08: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS8 ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS9 ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS10 ); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS11 ); for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case rTxAGC_A_Mcs15_Mcs12: case rTxAGC_B_Mcs15_Mcs12: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS12 ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS13 ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS14 ); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS15 ); for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case rTxAGC_B_CCK1_55_Mcs32: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_1M ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_2M ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_5_5M ); for ( i = 1; i < 4; ++ i ) { PwrByRateVal[i - 1] = ( s8 ) ( ( ( ( Value >> ( i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> ( i * 8) ) & 0xF ) ); } *RateNum = 3; break; case 0xC20: case 0xE20: case 0x1820: case 0x1a20: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_1M ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_2M ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_5_5M ); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate( MGN_11M ); for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xC24: case 0xE24: case 0x1824: case 0x1a24: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_6M ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_9M ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_12M ); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate( MGN_18M ); for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xC28: case 0xE28: case 0x1828: case 0x1a28: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_24M ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_36M ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_48M ); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate( MGN_54M ); for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xC2C: case 0xE2C: case 0x182C: case 0x1a2C: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS0 ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS1 ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS2 ); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS3 ); for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xC30: case 0xE30: case 0x1830: case 0x1a30: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS4 ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS5 ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS6 ); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS7 ); for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xC34: case 0xE34: case 0x1834: case 0x1a34: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS8 ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS9 ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS10 ); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS11 ); for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xC38: case 0xE38: case 0x1838: case 0x1a38: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS12 ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS13 ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS14 ); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS15 ); for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xC3C: case 0xE3C: case 0x183C: case 0x1a3C: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT1SS_MCS0 ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT1SS_MCS1 ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT1SS_MCS2 ); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT1SS_MCS3 ); for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xC40: case 0xE40: case 0x1840: case 0x1a40: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT1SS_MCS4 ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT1SS_MCS5 ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT1SS_MCS6 ); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT1SS_MCS7 ); for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xC44: case 0xE44: case 0x1844: case 0x1a44: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT1SS_MCS8 ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT1SS_MCS9 ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT2SS_MCS0 ); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT2SS_MCS1 ); for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xC48: case 0xE48: case 0x1848: case 0x1a48: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT2SS_MCS2 ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT2SS_MCS3 ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT2SS_MCS4 ); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT2SS_MCS5 ); for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xC4C: case 0xE4C: case 0x184C: case 0x1a4C: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT2SS_MCS6 ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT2SS_MCS7 ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT2SS_MCS8 ); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT2SS_MCS9 ); for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xCD8: case 0xED8: case 0x18D8: case 0x1aD8: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS16 ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS17 ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS18 ); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS19 ); for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xCDC: case 0xEDC: case 0x18DC: case 0x1aDC: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS20 ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS21 ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS22 ); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate( MGN_MCS23 ); for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xCE0: case 0xEE0: case 0x18E0: case 0x1aE0: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT3SS_MCS0 ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT3SS_MCS1 ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT3SS_MCS2 ); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT3SS_MCS3 ); for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xCE4: case 0xEE4: case 0x18E4: case 0x1aE4: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT3SS_MCS4 ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT3SS_MCS5 ); RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT3SS_MCS6 ); RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT3SS_MCS7 ); for ( i = 0; i < 4; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; case 0xCE8: case 0xEE8: case 0x18E8: case 0x1aE8: RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT3SS_MCS8 ); RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate( MGN_VHT3SS_MCS9 ); for ( i = 0; i < 2; ++ i ) { PwrByRateVal[i] = ( s8 ) ( ( ( ( Value >> (i * 8 + 4) ) & 0xF ) ) * 10 + ( ( Value >> (i * 8) ) & 0xF ) ); } *RateNum = 4; break; default: DBG_871X("Invalid RegAddr 0x%x in %s()\n", RegAddr, __FUNCTION__); break; }; } void PHY_StoreTxPowerByRateNew( IN PADAPTER pAdapter, IN u32 Band, IN u32 RfPath, IN u32 TxNum, IN u32 RegAddr, IN u32 BitMask, IN u32 Data ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); u8 i = 0, rateIndex[4] = {0}, rateNum = 0; s8 PwrByRateVal[4] = {0}; PHY_GetRateValuesOfTxPowerByRate( pAdapter, RegAddr, BitMask, Data, rateIndex, PwrByRateVal, &rateNum ); if ( Band != BAND_ON_2_4G && Band != BAND_ON_5G ) { DBG_871X("Invalid Band %d\n", Band ); return; } if ( RfPath > ODM_RF_PATH_D ) { DBG_871X("Invalid RfPath %d\n", RfPath ); return; } if ( TxNum > ODM_RF_PATH_D ) { DBG_871X("Invalid TxNum %d\n", TxNum ); return; } for ( i = 0; i < rateNum; ++i ) { if ( rateIndex[i] == PHY_GetRateIndexOfTxPowerByRate( MGN_VHT2SS_MCS0) || rateIndex[i] == PHY_GetRateIndexOfTxPowerByRate( MGN_VHT2SS_MCS1) ) { TxNum = RF_2TX; } pHalData->TxPwrByRateOffset[Band][RfPath][TxNum][rateIndex[i]] = PwrByRateVal[i]; } } void PHY_StoreTxPowerByRateOld( IN PADAPTER pAdapter, IN u32 RegAddr, IN u32 BitMask, IN u32 Data ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); u8 index = PHY_GetRateSectionIndexOfTxPowerByRate( pAdapter, RegAddr, BitMask ); pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][index] = Data; //DBG_871X("MCSTxPowerLevelOriginalOffset[%d][0] = 0x%x\n", pHalData->pwrGroupCnt, // pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][0]); } VOID PHY_InitTxPowerByRate( IN PADAPTER pAdapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); u8 band = 0, rfPath = 0, TxNum = 0, rate = 0, i = 0, j = 0; if ( IS_HARDWARE_TYPE_8188E( pAdapter ) || IS_HARDWARE_TYPE_8723A( pAdapter ) ) { for ( i = 0; i < MAX_PG_GROUP; ++i ) for ( j = 0; j < 16; ++j ) pHalData->MCSTxPowerLevelOriginalOffset[i][j] = 0; } else { for ( band = BAND_ON_2_4G; band <= BAND_ON_5G; ++band ) for ( rfPath = 0; rfPath < TX_PWR_BY_RATE_NUM_RF; ++rfPath ) for ( TxNum = 0; TxNum < TX_PWR_BY_RATE_NUM_RF; ++TxNum ) for ( rate = 0; rate < TX_PWR_BY_RATE_NUM_RATE; ++rate ) pHalData->TxPwrByRateOffset[band][rfPath][TxNum][rate] = 0; } } VOID PHY_StoreTxPowerByRate( IN PADAPTER pAdapter, IN u32 Band, IN u32 RfPath, IN u32 TxNum, IN u32 RegAddr, IN u32 BitMask, IN u32 Data ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); PDM_ODM_T pDM_Odm = &pHalData->odmpriv; if ( pDM_Odm->PhyRegPgVersion > 0 ) { PHY_StoreTxPowerByRateNew( pAdapter, Band, RfPath, TxNum, RegAddr, BitMask, Data ); } else if ( pDM_Odm->PhyRegPgVersion == 0 ) { PHY_StoreTxPowerByRateOld( pAdapter, RegAddr, BitMask, Data ); if ( RegAddr == rTxAGC_A_Mcs15_Mcs12 && pHalData->rf_type == RF_1T1R ) pHalData->pwrGroupCnt++; else if ( RegAddr == rTxAGC_B_Mcs15_Mcs12 && pHalData->rf_type != RF_1T1R ) pHalData->pwrGroupCnt++; } else DBG_871X("Invalid PHY_REG_PG.txt version %d\n", pDM_Odm->PhyRegPgVersion ); } VOID phy_ConvertTxPowerByRateByBase( IN u32* pData, IN u8 Start, IN u8 End, IN u8 BaseValue ) { s8 i = 0; u8 TempValue = 0; u32 TempData = 0; for ( i = 3; i >= 0; --i ) { if ( i >= Start && i <= End ) { // Get the exact value TempValue = ( u8 ) ( *pData >> ( i * 8 ) ) & 0xF; TempValue += ( ( u8 ) ( ( *pData >> ( i * 8 + 4 ) ) & 0xF ) ) * 10; // Change the value to a relative value TempValue = ( TempValue > BaseValue ) ? TempValue - BaseValue : BaseValue - TempValue; } else { TempValue = ( u8 ) ( *pData >> ( i * 8 ) ) & 0xFF; } TempData <<= 8; TempData |= TempValue; } *pData = TempData; } VOID PHY_ConvertTxPowerByRateInDbmToRelativeValuesOld( IN PADAPTER pAdapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA( pAdapter ); u8 base = 0; //DBG_871X("===>PHY_ConvertTxPowerByRateInDbmToRelativeValuesOld()\n" ); // CCK base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, RF_1TX, CCK ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][6] ), 1, 1, base ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][7] ), 1, 3, base ); // OFDM base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, RF_1TX, OFDM ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][0] ), 0, 3, base ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][1] ), 0, 3, base ); // HT MCS0~7 base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, RF_1TX, HT_MCS0_MCS7 ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][2] ), 0, 3, base ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][3] ), 0, 3, base ); // HT MCS8~15 base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_A, RF_2TX, HT_MCS8_MCS15 ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][4] ), 0, 3, base ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][5] ), 0, 3, base ); // CCK base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, RF_1TX, CCK ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][14] ), 1, 3, base ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][15] ), 0, 0, base ); // OFDM base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, RF_1TX, OFDM ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][8] ), 0, 3, base ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][9] ), 0, 3, base ); // HT MCS0~7 base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, RF_1TX, HT_MCS0_MCS7 ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][10] ), 0, 3, base ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][11] ), 0, 3, base ); // HT MCS8~15 base = PHY_GetTxPowerByRateBase( pAdapter, BAND_ON_2_4G, ODM_RF_PATH_B, RF_2TX, HT_MCS8_MCS15 ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][12] ), 0, 3, base ); phy_ConvertTxPowerByRateByBase( &( pHalData->MCSTxPowerLevelOriginalOffset[0][13] ), 0, 3, base ); //DBG_871X("<===PHY_ConvertTxPowerByRateInDbmToRelativeValuesOld()\n" ); } VOID phy_ConvertTxPowerByRateInDbmToRelativeValues( IN PADAPTER pAdapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA( pAdapter ); u8 base = 0, i = 0, value = 0, band = 0, path = 0, txNum = 0, index = 0, startIndex = 0, endIndex = 0; u8 cckRates[4] = {MGN_1M, MGN_2M, MGN_5_5M, MGN_11M}, ofdmRates[8] = {MGN_6M, MGN_9M, MGN_12M, MGN_18M, MGN_24M, MGN_36M, MGN_48M, MGN_54M}, mcs0_7Rates[8] = {MGN_MCS0, MGN_MCS1, MGN_MCS2, MGN_MCS3, MGN_MCS4, MGN_MCS5, MGN_MCS6, MGN_MCS7}, mcs8_15Rates[8] = {MGN_MCS8, MGN_MCS9, MGN_MCS10, MGN_MCS11, MGN_MCS12, MGN_MCS13, MGN_MCS14, MGN_MCS15}, mcs16_23Rates[8] = {MGN_MCS16, MGN_MCS17, MGN_MCS18, MGN_MCS19, MGN_MCS20, MGN_MCS21, MGN_MCS22, MGN_MCS23}, vht1ssRates[10] = {MGN_VHT1SS_MCS0, MGN_VHT1SS_MCS1, MGN_VHT1SS_MCS2, MGN_VHT1SS_MCS3, MGN_VHT1SS_MCS4, MGN_VHT1SS_MCS5, MGN_VHT1SS_MCS6, MGN_VHT1SS_MCS7, MGN_VHT1SS_MCS8, MGN_VHT1SS_MCS9}, vht2ssRates[10] = {MGN_VHT2SS_MCS0, MGN_VHT2SS_MCS1, MGN_VHT2SS_MCS2, MGN_VHT2SS_MCS3, MGN_VHT2SS_MCS4, MGN_VHT2SS_MCS5, MGN_VHT2SS_MCS6, MGN_VHT2SS_MCS7, MGN_VHT2SS_MCS8, MGN_VHT2SS_MCS9}, vht3ssRates[10] = {MGN_VHT3SS_MCS0, MGN_VHT3SS_MCS1, MGN_VHT3SS_MCS2, MGN_VHT3SS_MCS3, MGN_VHT3SS_MCS4, MGN_VHT3SS_MCS5, MGN_VHT3SS_MCS6, MGN_VHT3SS_MCS7, MGN_VHT3SS_MCS8, MGN_VHT3SS_MCS9}; //DBG_871X("===>PHY_ConvertTxPowerByRateInDbmToRelativeValues()\n" ); for ( band = BAND_ON_2_4G; band <= BAND_ON_5G; ++band ) { for ( path = ODM_RF_PATH_A; path <= ODM_RF_PATH_D; ++path ) { for ( txNum = RF_1TX; txNum < RF_MAX_TX_NUM; ++txNum ) { // CCK base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_11M ); for ( i = 0; i < sizeof( cckRates ); ++i ) { value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, cckRates[i] ); PHY_SetTxPowerByRate( pAdapter, band, path, txNum, cckRates[i], value - base ); } // OFDM base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_54M ); for ( i = 0; i < sizeof( ofdmRates ); ++i ) { value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, ofdmRates[i] ); PHY_SetTxPowerByRate( pAdapter, band, path, txNum, ofdmRates[i], value - base ); } // HT MCS0~7 base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_MCS7 ); for ( i = 0; i < sizeof( mcs0_7Rates ); ++i ) { value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, mcs0_7Rates[i] ); PHY_SetTxPowerByRate( pAdapter, band, path, txNum, mcs0_7Rates[i], value - base ); } // HT MCS8~15 base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_MCS15 ); for ( i = 0; i < sizeof( mcs8_15Rates ); ++i ) { value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, mcs8_15Rates[i] ); PHY_SetTxPowerByRate( pAdapter, band, path, txNum, mcs8_15Rates[i], value - base ); } // HT MCS16~23 base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_MCS23 ); for ( i = 0; i < sizeof( mcs16_23Rates ); ++i ) { value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, mcs16_23Rates[i] ); PHY_SetTxPowerByRate( pAdapter, band, path, txNum, mcs16_23Rates[i], value - base ); } // VHT 1SS base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_VHT1SS_MCS7 ); for ( i = 0; i < sizeof( vht1ssRates ); ++i ) { value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, vht1ssRates[i] ); PHY_SetTxPowerByRate( pAdapter, band, path, txNum, vht1ssRates[i], value - base ); } // VHT 2SS base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_VHT2SS_MCS7 ); for ( i = 0; i < sizeof( vht2ssRates ); ++i ) { value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, vht2ssRates[i] ); PHY_SetTxPowerByRate( pAdapter, band, path, txNum, vht2ssRates[i], value - base ); } // VHT 3SS base = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, MGN_VHT3SS_MCS7 ); for ( i = 0; i < sizeof( vht3ssRates ); ++i ) { value = PHY_GetTxPowerByRate( pAdapter, band, path, txNum, vht3ssRates[i] ); PHY_SetTxPowerByRate( pAdapter, band, path, txNum, vht3ssRates[i], value - base ); } } } } //DBG_871X("<===PHY_ConvertTxPowerByRateInDbmToRelativeValues()\n" ); } /* * This function must be called if the value in the PHY_REG_PG.txt(or header) * is exact dBm values */ VOID PHY_TxPowerByRateConfiguration( IN PADAPTER pAdapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA( pAdapter); phy_StoreTxPowerByRateBase( pAdapter ); phy_ConvertTxPowerByRateInDbmToRelativeValues( pAdapter ); } VOID PHY_SetTxPowerIndexByRateSection( IN PADAPTER pAdapter, IN u8 RFPath, IN u8 Channel, IN u8 RateSection ) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter); if ( RateSection == CCK ) { u8 cckRates[] = {MGN_1M, MGN_2M, MGN_5_5M, MGN_11M}; if ( pHalData->CurrentBandType == BAND_ON_2_4G ) PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel, cckRates, sizeof(cckRates)/sizeof(u8) ); } else if ( RateSection == OFDM ) { u8 ofdmRates[] = {MGN_6M, MGN_9M, MGN_12M, MGN_18M, MGN_24M, MGN_36M, MGN_48M, MGN_54M}; PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel, ofdmRates, sizeof(ofdmRates)/sizeof(u8)); } else if ( RateSection == HT_MCS0_MCS7 ) { u8 htRates1T[] = {MGN_MCS0, MGN_MCS1, MGN_MCS2, MGN_MCS3, MGN_MCS4, MGN_MCS5, MGN_MCS6, MGN_MCS7}; PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel, htRates1T, sizeof(htRates1T)/sizeof(u8)); } else if ( RateSection == HT_MCS8_MCS15 ) { u8 htRates2T[] = {MGN_MCS8, MGN_MCS9, MGN_MCS10, MGN_MCS11, MGN_MCS12, MGN_MCS13, MGN_MCS14, MGN_MCS15}; PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel, htRates2T, sizeof(htRates2T)/sizeof(u8)); } else if ( RateSection == HT_MCS16_MCS23 ) { u1Byte htRates3T[] = {MGN_MCS16, MGN_MCS17, MGN_MCS18, MGN_MCS19, MGN_MCS20, MGN_MCS21, MGN_MCS22, MGN_MCS23}; PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel, htRates3T, sizeof(htRates3T)/sizeof(u1Byte)); } else if ( RateSection == HT_MCS24_MCS31 ) { u1Byte htRates4T[] = {MGN_MCS24, MGN_MCS25, MGN_MCS26, MGN_MCS27, MGN_MCS28, MGN_MCS29, MGN_MCS30, MGN_MCS31}; PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel, htRates4T, sizeof(htRates4T)/sizeof(u1Byte)); } else if ( RateSection == VHT_1SSMCS0_1SSMCS9 ) { u8 vhtRates1T[] = {MGN_VHT1SS_MCS0, MGN_VHT1SS_MCS1, MGN_VHT1SS_MCS2, MGN_VHT1SS_MCS3, MGN_VHT1SS_MCS4, MGN_VHT1SS_MCS5, MGN_VHT1SS_MCS6, MGN_VHT1SS_MCS7, MGN_VHT1SS_MCS8, MGN_VHT1SS_MCS9}; PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel, vhtRates1T, sizeof(vhtRates1T)/sizeof(u8)); } else if ( RateSection == VHT_2SSMCS0_2SSMCS9 ) { u8 vhtRates2T[] = {MGN_VHT2SS_MCS0, MGN_VHT2SS_MCS1, MGN_VHT2SS_MCS2, MGN_VHT2SS_MCS3, MGN_VHT2SS_MCS4, MGN_VHT2SS_MCS5, MGN_VHT2SS_MCS6, MGN_VHT2SS_MCS7, MGN_VHT2SS_MCS8, MGN_VHT2SS_MCS9}; PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel, vhtRates2T, sizeof(vhtRates2T)/sizeof(u8)); } else if ( RateSection == VHT_3SSMCS0_3SSMCS9 ) { u1Byte vhtRates3T[] = {MGN_VHT3SS_MCS0, MGN_VHT3SS_MCS1, MGN_VHT3SS_MCS2, MGN_VHT3SS_MCS3, MGN_VHT3SS_MCS4, MGN_VHT3SS_MCS5, MGN_VHT3SS_MCS6, MGN_VHT3SS_MCS7, MGN_VHT3SS_MCS8, MGN_VHT3SS_MCS9}; PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel, vhtRates3T, sizeof(vhtRates3T)/sizeof(u1Byte)); } else if ( RateSection == VHT_4SSMCS0_4SSMCS9 ) { u1Byte vhtRates4T[] = {MGN_VHT4SS_MCS0, MGN_VHT4SS_MCS1, MGN_VHT4SS_MCS2, MGN_VHT4SS_MCS3, MGN_VHT4SS_MCS4, MGN_VHT4SS_MCS5, MGN_VHT4SS_MCS6, MGN_VHT4SS_MCS7, MGN_VHT4SS_MCS8, MGN_VHT4SS_MCS9}; PHY_SetTxPowerIndexByRateArray( pAdapter, RFPath, pHalData->CurrentChannelBW, Channel, vhtRates4T, sizeof(vhtRates4T)/sizeof(u1Byte)); } else { DBG_871X("Invalid RateSection %d in %s", RateSection, __FUNCTION__ ); } } BOOLEAN phy_GetChnlIndex( IN u8 Channel, OUT u8* ChannelIdx ) { u8 channel5G[CHANNEL_MAX_NUMBER_5G] = {36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,100,102,104,106,108,110,112, 114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,149,151, 153,155,157,159,161,163,165,167,168,169,171,173,175,177}; u8 i = 0; BOOLEAN bIn24G=_TRUE; if(Channel <= 14) { bIn24G=_TRUE; *ChannelIdx = Channel -1; } else { bIn24G = _FALSE; for (i = 0; i < sizeof(channel5G)/sizeof(u8); ++i) { if ( channel5G[i] == Channel) { *ChannelIdx = i; return bIn24G; } } } return bIn24G; } u8 PHY_GetTxPowerIndexBase( IN PADAPTER pAdapter, IN u8 RFPath, IN u8 Rate, IN CHANNEL_WIDTH BandWidth, IN u8 Channel, OUT PBOOLEAN bIn24G ) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter); PDM_ODM_T pDM_Odm = &pHalData->odmpriv; u8 i = 0; //default set to 1S u8 txPower = 0; u8 chnlIdx = (Channel-1); if (HAL_IsLegalChannel(pAdapter, Channel) == _FALSE) { chnlIdx = 0; DBG_871X("Illegal channel!!\n"); } *bIn24G = phy_GetChnlIndex(Channel, &chnlIdx); //DBG_871X("[%s] Channel Index: %d\n", (*bIn24G?"2.4G":"5G"), chnlIdx); if (*bIn24G) //3 ============================== 2.4 G ============================== { if ( IS_CCK_RATE(Rate) ) { txPower = pHalData->Index24G_CCK_Base[RFPath][chnlIdx]; } else if ( MGN_6M <= Rate ) { txPower = pHalData->Index24G_BW40_Base[RFPath][chnlIdx]; } else { DBG_871X("PHY_GetTxPowerIndexBase: INVALID Rate.\n"); } //DBG_871X("Base Tx power(RF-%c, Rate #%d, Channel Index %d) = 0x%X\n", // ((RFPath==0)?'A':'B'), Rate, chnlIdx, txPower); // OFDM-1T if ( (MGN_6M <= Rate && Rate <= MGN_54M) && ! IS_CCK_RATE(Rate) ) { txPower += pHalData->OFDM_24G_Diff[RFPath][TX_1S]; //DBG_871X("+PowerDiff 2.4G (RF-%c): (OFDM-1T) = (%d)\n", ((RFPath==0)?'A':'B'), pHalData->OFDM_24G_Diff[RFPath][TX_1S]); } // BW20-1S, BW20-2S if (BandWidth == CHANNEL_WIDTH_20) { if ( (MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_24G_Diff[RFPath][TX_1S]; if ( (MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_24G_Diff[RFPath][TX_2S]; if ( (MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_24G_Diff[RFPath][TX_3S]; if ( (MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_24G_Diff[RFPath][TX_4S]; //DBG_871X("+PowerDiff 2.4G (RF-%c): (BW20-1S, BW20-2S, BW20-3S, BW20-4S) = (%d, %d, %d, %d)\n", ((RFPath==0)?'A':(RFPath==1)?'B':(RFPath==2)?'C':'D'), // pHalData->BW20_24G_Diff[RFPath][TX_1S], pHalData->BW20_24G_Diff[RFPath][TX_2S], // pHalData->BW20_24G_Diff[RFPath][TX_3S], pHalData->BW20_24G_Diff[RFPath][TX_4S]); } // BW40-1S, BW40-2S else if (BandWidth == CHANNEL_WIDTH_40) { if ( (MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_1S]; if ( (MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_2S]; if ( (MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_3S]; if ( (MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_4S]; //DBG_871X("+PowerDiff 2.4G (RF-%c): (BW40-1S, BW40-2S, BW40-3S, BW40-4S) = (%d, %d, %d, %d)\n", ((RFPath==0)?'A':(RFPath==1)?'B':(RFPath==2)?'C':'D'), // pHalData->BW40_24G_Diff[RFPath][TX_1S], pHalData->BW40_24G_Diff[RFPath][TX_2S], // pHalData->BW40_24G_Diff[RFPath][TX_3S], pHalData->BW40_24G_Diff[RFPath][TX_4S]); } // Willis suggest adopt BW 40M power index while in BW 80 mode else if ( BandWidth == CHANNEL_WIDTH_80 ) { if ( (MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_1S]; if ( (MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_2S]; if ( (MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_3S]; if ( (MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_24G_Diff[RFPath][TX_4S]; //DBG_871X("+PowerDiff 2.4G (RF-%c): (BW40-1S, BW40-2S, BW40-3S, BW40-4T) = (%d, %d, %d, %d) P.S. Current is in BW 80MHz\n", ((RFPath==0)?'A':(RFPath==1)?'B':(RFPath==2)?'C':'D'), // pHalData->BW40_24G_Diff[RFPath][TX_1S], pHalData->BW40_24G_Diff[RFPath][TX_2S], // pHalData->BW40_24G_Diff[RFPath][TX_3S], pHalData->BW40_24G_Diff[RFPath][TX_4S]); } } else //3 ============================== 5 G ============================== { if ( MGN_6M <= Rate ) { txPower = pHalData->Index5G_BW40_Base[RFPath][chnlIdx]; } else { DBG_871X("===> mpt_ProQueryCalTxPower_Jaguar: INVALID Rate.\n"); } //DBG_871X("Base Tx power(RF-%c, Rate #%d, Channel Index %d) = 0x%X\n", // ((RFPath==0)?'A':'B'), Rate, chnlIdx, txPower); // OFDM-1T if ( (MGN_6M <= Rate && Rate <= MGN_54M) && ! IS_CCK_RATE(Rate)) { txPower += pHalData->OFDM_5G_Diff[RFPath][TX_1S]; //DBG_871X("+PowerDiff 5G (RF-%c): (OFDM-1T) = (%d)\n", ((RFPath==0)?'A':'B'), pHalData->OFDM_5G_Diff[RFPath][TX_1S]); } // BW20-1S, BW20-2S if (BandWidth == CHANNEL_WIDTH_20) { if ( (MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_5G_Diff[RFPath][TX_1S]; if ( (MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_5G_Diff[RFPath][TX_2S]; if ( (MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_5G_Diff[RFPath][TX_3S]; if ( (MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW20_5G_Diff[RFPath][TX_4S]; //DBG_871X("+PowerDiff 5G (RF-%c): (BW20-1S, BW20-2S, BW20-3S, BW20-4S) = (%d, %d, %d, %d)\n", ((RFPath==0)?'A':(RFPath==1)?'B':(RFPath==2)?'C':'D'), // pHalData->BW20_5G_Diff[RFPath][TX_1S], pHalData->BW20_5G_Diff[RFPath][TX_2S], // pHalData->BW20_5G_Diff[RFPath][TX_3S], pHalData->BW20_5G_Diff[RFPath][TX_4S]); } // BW40-1S, BW40-2S else if (BandWidth == CHANNEL_WIDTH_40) { if ( (MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_5G_Diff[RFPath][TX_1S]; if ( (MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_5G_Diff[RFPath][TX_2S]; if ( (MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_5G_Diff[RFPath][TX_3S]; if ( (MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW40_5G_Diff[RFPath][TX_4S]; //DBG_871X("+PowerDiff 5G(RF-%c): (BW40-1S, BW40-2S) = (%d, %d, %d, %d)\n", ((RFPath==0)?'A':(RFPath==1)?'B':(RFPath==2)?'C':'D'), // pHalData->BW40_5G_Diff[RFPath][TX_1S], pHalData->BW40_5G_Diff[RFPath][TX_2S], // pHalData->BW40_5G_Diff[RFPath][TX_3S], pHalData->BW40_5G_Diff[RFPath][TX_4S]); } // BW80-1S, BW80-2S else if (BandWidth== CHANNEL_WIDTH_80) { // <20121220, Kordan> Get the index of array "Index5G_BW80_Base". u8 channel5G_80M[CHANNEL_MAX_NUMBER_5G_80M] = {42, 58, 106, 122, 138, 155, 171}; for (i = 0; i < sizeof(channel5G_80M)/sizeof(u8); ++i) if ( channel5G_80M[i] == Channel) chnlIdx = i; txPower = pHalData->Index5G_BW80_Base[RFPath][chnlIdx]; if ( (MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += + pHalData->BW80_5G_Diff[RFPath][TX_1S]; if ( (MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW80_5G_Diff[RFPath][TX_2S]; if ( (MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW80_5G_Diff[RFPath][TX_3S]; if ( (MGN_MCS23 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9)) txPower += pHalData->BW80_5G_Diff[RFPath][TX_4S]; //DBG_871X("+PowerDiff 5G(RF-%c): (BW80-1S, BW80-2S, BW80-3S, BW80-4S) = (%d, %d, %d, %d)\n",((RFPath==0)?'A':(RFPath==1)?'B':(RFPath==2)?'C':'D'), // pHalData->BW80_5G_Diff[RFPath][TX_1S], pHalData->BW80_5G_Diff[RFPath][TX_2S], // pHalData->BW80_5G_Diff[RFPath][TX_3S], pHalData->BW80_5G_Diff[RFPath][TX_4S]); } } return txPower; } s8 PHY_GetTxPowerTrackingOffset( PADAPTER pAdapter, u8 RFPath, u8 Rate ) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter); PDM_ODM_T pDM_Odm = &pHalData->odmpriv; s8 offset = 0; if( pDM_Odm->RFCalibrateInfo.TxPowerTrackControl == _FALSE) return offset; if ((Rate == MGN_1M) ||(Rate == MGN_2M)||(Rate == MGN_5_5M)||(Rate == MGN_11M)) { offset = pDM_Odm->Remnant_CCKSwingIdx; //DBG_871X("+Remnant_CCKSwingIdx = 0x%x\n", RFPath, Rate, pDM_Odm->Remnant_CCKSwingIdx); } else { offset = pDM_Odm->Remnant_OFDMSwingIdx[RFPath]; //DBG_871X("+Remanant_OFDMSwingIdx[RFPath %u][Rate 0x%x] = 0x%x\n", RFPath, Rate, pDM_Odm->Remnant_OFDMSwingIdx[RFPath]); } return offset; } u8 PHY_GetRateIndexOfTxPowerByRate( IN u8 Rate ) { u8 index = 0; switch ( Rate ) { case MGN_1M: index = 0; break; case MGN_2M: index = 1; break; case MGN_5_5M: index = 2; break; case MGN_11M: index = 3; break; case MGN_6M: index = 4; break; case MGN_9M: index = 5; break; case MGN_12M: index = 6; break; case MGN_18M: index = 7; break; case MGN_24M: index = 8; break; case MGN_36M: index = 9; break; case MGN_48M: index = 10; break; case MGN_54M: index = 11; break; case MGN_MCS0: index = 12; break; case MGN_MCS1: index = 13; break; case MGN_MCS2: index = 14; break; case MGN_MCS3: index = 15; break; case MGN_MCS4: index = 16; break; case MGN_MCS5: index = 17; break; case MGN_MCS6: index = 18; break; case MGN_MCS7: index = 19; break; case MGN_MCS8: index = 20; break; case MGN_MCS9: index = 21; break; case MGN_MCS10: index = 22; break; case MGN_MCS11: index = 23; break; case MGN_MCS12: index = 24; break; case MGN_MCS13: index = 25; break; case MGN_MCS14: index = 26; break; case MGN_MCS15: index = 27; break; case MGN_MCS16: index = 28; break; case MGN_MCS17: index = 29; break; case MGN_MCS18: index = 30; break; case MGN_MCS19: index = 31; break; case MGN_MCS20: index = 32; break; case MGN_MCS21: index = 33; break; case MGN_MCS22: index = 34; break; case MGN_MCS23: index = 35; break; case MGN_MCS24: index = 36; break; case MGN_MCS25: index = 37; break; case MGN_MCS26: index = 38; break; case MGN_MCS27: index = 39; break; case MGN_MCS28: index = 40; break; case MGN_MCS29: index = 41; break; case MGN_MCS30: index = 42; break; case MGN_MCS31: index = 43; break; case MGN_VHT1SS_MCS0: index = 44; break; case MGN_VHT1SS_MCS1: index = 45; break; case MGN_VHT1SS_MCS2: index = 46; break; case MGN_VHT1SS_MCS3: index = 47; break; case MGN_VHT1SS_MCS4: index = 48; break; case MGN_VHT1SS_MCS5: index = 49; break; case MGN_VHT1SS_MCS6: index = 50; break; case MGN_VHT1SS_MCS7: index = 51; break; case MGN_VHT1SS_MCS8: index = 52; break; case MGN_VHT1SS_MCS9: index = 53; break; case MGN_VHT2SS_MCS0: index = 54; break; case MGN_VHT2SS_MCS1: index = 55; break; case MGN_VHT2SS_MCS2: index = 56; break; case MGN_VHT2SS_MCS3: index = 57; break; case MGN_VHT2SS_MCS4: index = 58; break; case MGN_VHT2SS_MCS5: index = 59; break; case MGN_VHT2SS_MCS6: index = 60; break; case MGN_VHT2SS_MCS7: index = 61; break; case MGN_VHT2SS_MCS8: index = 62; break; case MGN_VHT2SS_MCS9: index = 63; break; case MGN_VHT3SS_MCS0: index = 64; break; case MGN_VHT3SS_MCS1: index = 65; break; case MGN_VHT3SS_MCS2: index = 66; break; case MGN_VHT3SS_MCS3: index = 67; break; case MGN_VHT3SS_MCS4: index = 68; break; case MGN_VHT3SS_MCS5: index = 69; break; case MGN_VHT3SS_MCS6: index = 70; break; case MGN_VHT3SS_MCS7: index = 71; break; case MGN_VHT3SS_MCS8: index = 72; break; case MGN_VHT3SS_MCS9: index = 73; break; case MGN_VHT4SS_MCS0: index = 74; break; case MGN_VHT4SS_MCS1: index = 75; break; case MGN_VHT4SS_MCS2: index = 76; break; case MGN_VHT4SS_MCS3: index = 77; break; case MGN_VHT4SS_MCS4: index = 78; break; case MGN_VHT4SS_MCS5: index = 79; break; case MGN_VHT4SS_MCS6: index = 80; break; case MGN_VHT4SS_MCS7: index = 81; break; case MGN_VHT4SS_MCS8: index = 82; break; case MGN_VHT4SS_MCS9: index = 83; break; default: DBG_871X("Invalid rate 0x%x in %s\n", Rate, __FUNCTION__ ); break; }; return index; } s8 PHY_GetTxPowerByRate( IN PADAPTER pAdapter, IN u8 Band, IN u8 RFPath, IN u8 TxNum, IN u8 Rate ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA( pAdapter ); s8 value = 0, limit = 0; u8 rateIndex = PHY_GetRateIndexOfTxPowerByRate( Rate ); if ( ( pAdapter->registrypriv.RegEnableTxPowerByRate == 2 && pHalData->EEPROMRegulatory == 2 ) || pAdapter->registrypriv.RegEnableTxPowerByRate == 0 ) return 0; if ( Band != BAND_ON_2_4G && Band != BAND_ON_5G ) { DBG_871X("Invalid band %d in %s\n", Band, __FUNCTION__ ); return value; } if ( RFPath > ODM_RF_PATH_D ) { DBG_871X("Invalid RfPath %d in %s\n", RFPath, __FUNCTION__ ); return value; } if ( TxNum >= RF_MAX_TX_NUM ) { DBG_871X("Invalid TxNum %d in %s\n", TxNum, __FUNCTION__ ); return value; } if ( rateIndex >= TX_PWR_BY_RATE_NUM_RATE ) { DBG_871X("Invalid RateIndex %d in %s\n", rateIndex, __FUNCTION__ ); return value; } value = pHalData->TxPwrByRateOffset[Band][RFPath][TxNum][rateIndex]; return value; } VOID PHY_SetTxPowerByRate( IN PADAPTER pAdapter, IN u8 Band, IN u8 RFPath, IN u8 TxNum, IN u8 Rate, IN s8 Value ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA( pAdapter ); u8 rateIndex = PHY_GetRateIndexOfTxPowerByRate( Rate ); if ( Band != BAND_ON_2_4G && Band != BAND_ON_5G ) { DBG_871X("Invalid band %d in %s\n", Band, __FUNCTION__ ); return; } if ( RFPath > ODM_RF_PATH_D ) { DBG_871X("Invalid RfPath %d in %s\n", RFPath, __FUNCTION__ ); return; } if ( TxNum >= RF_MAX_TX_NUM ) { DBG_871X( "Invalid TxNum %d in %s\n", TxNum, __FUNCTION__ ); return; } if ( rateIndex >= TX_PWR_BY_RATE_NUM_RATE ) { DBG_871X("Invalid RateIndex %d in %s\n", rateIndex, __FUNCTION__ ); return; } pHalData->TxPwrByRateOffset[Band][RFPath][TxNum][rateIndex] = Value; } VOID PHY_SetTxPowerLevelByPath( IN PADAPTER Adapter, IN u8 channel, IN u8 path ) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter); BOOLEAN bIsIn24G = (pHalData->CurrentBandType == BAND_ON_2_4G ); //if ( pMgntInfo->RegNByteAccess == 0 ) { if ( bIsIn24G ) PHY_SetTxPowerIndexByRateSection( Adapter, path, channel, CCK ); PHY_SetTxPowerIndexByRateSection( Adapter, path, channel, OFDM ); PHY_SetTxPowerIndexByRateSection( Adapter, path, channel, HT_MCS0_MCS7 ); if ( IS_HARDWARE_TYPE_JAGUAR( Adapter ) || IS_HARDWARE_TYPE_8813A( Adapter ) ) PHY_SetTxPowerIndexByRateSection( Adapter, path, channel, VHT_1SSMCS0_1SSMCS9 ); if ( pHalData->NumTotalRFPath >= 2 ) { PHY_SetTxPowerIndexByRateSection( Adapter, path, channel, HT_MCS8_MCS15 ); if ( IS_HARDWARE_TYPE_JAGUAR( Adapter ) || IS_HARDWARE_TYPE_8813A( Adapter ) ) PHY_SetTxPowerIndexByRateSection( Adapter, path, channel, VHT_2SSMCS0_2SSMCS9 ); if ( IS_HARDWARE_TYPE_8813A( Adapter ) ) { PHY_SetTxPowerIndexByRateSection( Adapter, path, channel, HT_MCS16_MCS23 ); PHY_SetTxPowerIndexByRateSection( Adapter, path, channel, VHT_3SSMCS0_3SSMCS9 ); } } } } VOID PHY_SetTxPowerIndexByRateArray( IN PADAPTER pAdapter, IN u8 RFPath, IN CHANNEL_WIDTH BandWidth, IN u8 Channel, IN u8* Rates, IN u8 RateArraySize ) { u32 powerIndex = 0; int i = 0; for (i = 0; i < RateArraySize; ++i) { powerIndex = PHY_GetTxPowerIndex(pAdapter, RFPath, Rates[i], BandWidth, Channel); PHY_SetTxPowerIndex(pAdapter, powerIndex, RFPath, Rates[i]); } } s8 phy_GetWorldWideLimit( s8* LimitTable ) { s8 min = LimitTable[0]; u8 i = 0; for (i = 0; i < MAX_REGULATION_NUM; ++i) { if (LimitTable[i] < min) min = LimitTable[i]; } return min; } s8 phy_GetChannelIndexOfTxPowerLimit( IN u8 Band, IN u8 Channel ) { s8 channelIndex = -1; u8 channel5G[CHANNEL_MAX_NUMBER_5G] = {36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,100,102,104,106,108,110,112, 114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,149,151, 153,155,157,159,161,163,165,167,168,169,171,173,175,177}; u8 i = 0; if ( Band == BAND_ON_2_4G ) { channelIndex = Channel - 1; } else if ( Band == BAND_ON_5G ) { for ( i = 0; i < sizeof(channel5G)/sizeof(u8); ++i ) { if ( channel5G[i] == Channel ) channelIndex = i; } } else { DBG_871X("Invalid Band %d in %s", Band, __FUNCTION__ ); } if ( channelIndex == -1 ) DBG_871X("Invalid Channel %d of Band %d in %s", Channel, Band, __FUNCTION__ ); return channelIndex; } s8 PHY_GetTxPowerLimit( IN PADAPTER Adapter, IN u32 RegPwrTblSel, IN BAND_TYPE Band, IN CHANNEL_WIDTH Bandwidth, IN u8 RfPath, IN u8 DataRate, IN u8 Channel ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); s16 band = -1, regulation = -1, bandwidth = -1, rateSection = -1, channel = -1; s8 powerLimit = MAX_POWER_INDEX; if ( ( Adapter->registrypriv.RegEnableTxPowerLimit == 2 && pHalData->EEPROMRegulatory != 1 ) || Adapter->registrypriv.RegEnableTxPowerLimit == 0 ) return MAX_POWER_INDEX; switch( Adapter->registrypriv.RegPwrTblSel ) { case 1: regulation = TXPWR_LMT_ETSI; break; case 2: regulation = TXPWR_LMT_MKK; break; case 3: regulation = TXPWR_LMT_FCC; break; case 4: regulation = TXPWR_LMT_WW; break; default: regulation = ( Band == BAND_ON_2_4G ) ? pHalData->Regulation2_4G : pHalData->Regulation5G; break; } //DBG_871X("pMgntInfo->RegPwrTblSel %d, final regulation %d\n", Adapter->registrypriv.RegPwrTblSel, regulation ); if ( Band == BAND_ON_2_4G ) band = 0; else if ( Band == BAND_ON_5G ) band = 1; if ( Bandwidth == CHANNEL_WIDTH_20 ) bandwidth = 0; else if ( Bandwidth == CHANNEL_WIDTH_40 ) bandwidth = 1; else if ( Bandwidth == CHANNEL_WIDTH_80 ) bandwidth = 2; else if ( Bandwidth == CHANNEL_WIDTH_160 ) bandwidth = 3; switch ( DataRate ) { case MGN_1M: case MGN_2M: case MGN_5_5M: case MGN_11M: rateSection = 0; break; case MGN_6M: case MGN_9M: case MGN_12M: case MGN_18M: case MGN_24M: case MGN_36M: case MGN_48M: case MGN_54M: rateSection = 1; break; case MGN_MCS0: case MGN_MCS1: case MGN_MCS2: case MGN_MCS3: case MGN_MCS4: case MGN_MCS5: case MGN_MCS6: case MGN_MCS7: rateSection = 2; break; case MGN_MCS8: case MGN_MCS9: case MGN_MCS10: case MGN_MCS11: case MGN_MCS12: case MGN_MCS13: case MGN_MCS14: case MGN_MCS15: rateSection = 3; break; case MGN_MCS16: case MGN_MCS17: case MGN_MCS18: case MGN_MCS19: case MGN_MCS20: case MGN_MCS21: case MGN_MCS22: case MGN_MCS23: rateSection = 4; break; case MGN_MCS24: case MGN_MCS25: case MGN_MCS26: case MGN_MCS27: case MGN_MCS28: case MGN_MCS29: case MGN_MCS30: case MGN_MCS31: rateSection = 5; break; case MGN_VHT1SS_MCS0: case MGN_VHT1SS_MCS1: case MGN_VHT1SS_MCS2: case MGN_VHT1SS_MCS3: case MGN_VHT1SS_MCS4: case MGN_VHT1SS_MCS5: case MGN_VHT1SS_MCS6: case MGN_VHT1SS_MCS7: case MGN_VHT1SS_MCS8: case MGN_VHT1SS_MCS9: rateSection = 6; break; case MGN_VHT2SS_MCS0: case MGN_VHT2SS_MCS1: case MGN_VHT2SS_MCS2: case MGN_VHT2SS_MCS3: case MGN_VHT2SS_MCS4: case MGN_VHT2SS_MCS5: case MGN_VHT2SS_MCS6: case MGN_VHT2SS_MCS7: case MGN_VHT2SS_MCS8: case MGN_VHT2SS_MCS9: rateSection = 7; break; case MGN_VHT3SS_MCS0: case MGN_VHT3SS_MCS1: case MGN_VHT3SS_MCS2: case MGN_VHT3SS_MCS3: case MGN_VHT3SS_MCS4: case MGN_VHT3SS_MCS5: case MGN_VHT3SS_MCS6: case MGN_VHT3SS_MCS7: case MGN_VHT3SS_MCS8: case MGN_VHT3SS_MCS9: rateSection = 8; break; case MGN_VHT4SS_MCS0: case MGN_VHT4SS_MCS1: case MGN_VHT4SS_MCS2: case MGN_VHT4SS_MCS3: case MGN_VHT4SS_MCS4: case MGN_VHT4SS_MCS5: case MGN_VHT4SS_MCS6: case MGN_VHT4SS_MCS7: case MGN_VHT4SS_MCS8: case MGN_VHT4SS_MCS9: rateSection = 9; break; default: DBG_871X("Wrong rate 0x%x\n", DataRate ); break; } if ( Band == BAND_ON_5G && rateSection == 0 ) DBG_871X("Wrong rate 0x%x: No CCK in 5G Band\n", DataRate ); // workaround for wrong index combination to obtain tx power limit, // OFDM only exists in BW 20M if ( rateSection == 1 ) bandwidth = 0; // workaround for wrong index combination to obtain tx power limit, // CCK table will only be given in BW 20M if ( rateSection == 0 ) bandwidth = 0; // workaround for wrong indxe combination to obtain tx power limit, // HT on 80M will reference to HT on 40M if ( ( rateSection == 2 || rateSection == 3 ) && Band == BAND_ON_5G && bandwidth == 2 ) { bandwidth = 1; } if ( Band == BAND_ON_2_4G ) channel = phy_GetChannelIndexOfTxPowerLimit( BAND_ON_2_4G, Channel ); else if ( Band == BAND_ON_5G ) channel = phy_GetChannelIndexOfTxPowerLimit( BAND_ON_5G, Channel ); else if ( Band == BAND_ON_BOTH ) { // BAND_ON_BOTH don't care temporarily } if ( band == -1 || regulation == -1 || bandwidth == -1 || rateSection == -1 || channel == -1 ) { //DBG_871X("Wrong index value to access power limit table [band %d][regulation %d][bandwidth %d][rf_path %d][rate_section %d][chnlGroup %d]\n", // band, regulation, bandwidth, RfPath, rateSection, channelGroup ); return MAX_POWER_INDEX; } if ( Band == BAND_ON_2_4G ) { s8 limits[10] = {0}; u8 i = 0; for (i = 0; i < MAX_REGULATION_NUM; ++i) limits[i] = pHalData->TxPwrLimit_2_4G[i][bandwidth][rateSection][channel][RfPath]; powerLimit = (regulation == TXPWR_LMT_WW) ? phy_GetWorldWideLimit(limits) : pHalData->TxPwrLimit_2_4G[regulation][bandwidth][rateSection][channel][RfPath]; } else if ( Band == BAND_ON_5G ) { s8 limits[10] = {0}; u8 i = 0; for (i = 0; i < MAX_REGULATION_NUM; ++i) limits[i] = pHalData->TxPwrLimit_5G[i][bandwidth][rateSection][channel][RfPath]; powerLimit = (regulation == TXPWR_LMT_WW) ? phy_GetWorldWideLimit(limits) : pHalData->TxPwrLimit_5G[regulation][bandwidth][rateSection][channel][RfPath]; } else DBG_871X("No power limit table of the specified band\n" ); // combine 5G VHT & HT rate // 5G 20M and 40M HT and VHT can cross reference /* if ( Band == BAND_ON_5G && powerLimit == MAX_POWER_INDEX ) { if ( bandwidth == 0 || bandwidth == 1 ) { RT_TRACE( COMP_INIT, DBG_LOUD, ( "No power limit table of the specified band %d, bandwidth %d, ratesection %d, rf path %d\n", band, bandwidth, rateSection, RfPath ) ); if ( rateSection == 2 ) powerLimit = pHalData->TxPwrLimit_5G[regulation] [bandwidth][4][channelGroup][RfPath]; else if ( rateSection == 4 ) powerLimit = pHalData->TxPwrLimit_5G[regulation] [bandwidth][2][channelGroup][RfPath]; else if ( rateSection == 3 ) powerLimit = pHalData->TxPwrLimit_5G[regulation] [bandwidth][5][channelGroup][RfPath]; else if ( rateSection == 5 ) powerLimit = pHalData->TxPwrLimit_5G[regulation] [bandwidth][3][channelGroup][RfPath]; } } */ //DBG_871X("TxPwrLmt[Regulation %d][Band %d][BW %d][RFPath %d][Rate 0x%x][Chnl %d] = %d\n", // regulation, pHalData->CurrentBandType, Bandwidth, RfPath, DataRate, Channel, powerLimit); return powerLimit; } VOID phy_CrossReferenceHTAndVHTTxPowerLimit( IN PADAPTER pAdapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); u8 regulation, bw, channel, rateSection; s8 tempPwrLmt = 0; for ( regulation = 0; regulation < MAX_REGULATION_NUM; ++regulation ) { for ( bw = 0; bw < MAX_5G_BANDWITH_NUM; ++bw ) { for ( channel = 0; channel < CHANNEL_MAX_NUMBER_5G; ++channel ) { for ( rateSection = 0; rateSection < MAX_RATE_SECTION_NUM; ++rateSection ) { tempPwrLmt = pHalData->TxPwrLimit_5G[regulation][bw][rateSection][channel][ODM_RF_PATH_A]; if ( tempPwrLmt == MAX_POWER_INDEX ) { u8 baseSection = 2, refSection = 6; if ( bw == 0 || bw == 1 ) { // 5G 20M 40M VHT and HT can cross reference //DBG_871X("No power limit table of the specified band %d, bandwidth %d, ratesection %d, channel %d, rf path %d\n", // 1, bw, rateSection, channel, ODM_RF_PATH_A ); if ( rateSection >= 2 && rateSection <= 9 ) { if ( rateSection == 2 ) { baseSection = 2; refSection = 6; } else if ( rateSection == 3 ) { baseSection = 3; refSection = 7; } else if ( rateSection == 4 ) { baseSection = 4; refSection = 8; } else if ( rateSection == 5 ) { baseSection = 5; refSection = 9; } else if ( rateSection == 6 ) { baseSection = 6; refSection = 2; } else if ( rateSection == 7 ) { baseSection = 7; refSection = 3; } else if ( rateSection == 8 ) { baseSection = 8; refSection = 4; } else if ( rateSection == 9 ) { baseSection = 9; refSection = 5; } pHalData->TxPwrLimit_5G[regulation][bw][baseSection][channel][ODM_RF_PATH_A] = pHalData->TxPwrLimit_5G[regulation][bw][refSection][channel][ODM_RF_PATH_A]; } //DBG_871X("use other value %d", tempPwrLmt ); } } } } } } } VOID PHY_ConvertTxPowerLimitToPowerIndex( IN PADAPTER Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 BW40PwrBasedBm2_4G = 0x2E, BW40PwrBasedBm5G = 0x2E; u8 regulation, bw, channel, rateSection; u8 baseIndex2_4G; u8 baseIndex5G; s8 tempValue = 0, tempPwrLmt = 0; u8 rfPath = 0; //DBG_871X("=====> PHY_ConvertTxPowerLimitToPowerIndex()\n" ); phy_CrossReferenceHTAndVHTTxPowerLimit( Adapter ); for ( regulation = 0; regulation < MAX_REGULATION_NUM; ++regulation ) { for ( bw = 0; bw < MAX_2_4G_BANDWITH_NUM; ++bw ) { for ( channel = 0; channel < CHANNEL_MAX_NUMBER_2G; ++channel ) { for ( rateSection = 0; rateSection < MAX_RATE_SECTION_NUM; ++rateSection ) { tempPwrLmt = pHalData->TxPwrLimit_2_4G[regulation][bw][rateSection][channel][ODM_RF_PATH_A]; for ( rfPath = ODM_RF_PATH_A; rfPath < MAX_RF_PATH_NUM; ++rfPath ) { if ( pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_EXACT_VALUE ) { if ( rateSection == 5 ) // HT 4T BW40PwrBasedBm2_4G = PHY_GetTxPowerByRateBase( Adapter, BAND_ON_2_4G, rfPath, RF_4TX, HT_MCS24_MCS31 ); else if ( rateSection == 4 ) // HT 3T BW40PwrBasedBm2_4G = PHY_GetTxPowerByRateBase( Adapter, BAND_ON_2_4G, rfPath, RF_3TX, HT_MCS16_MCS23 ); else if ( rateSection == 3 ) // HT 2T BW40PwrBasedBm2_4G = PHY_GetTxPowerByRateBase( Adapter, BAND_ON_2_4G, rfPath, RF_2TX, HT_MCS8_MCS15 ); else if ( rateSection == 2 ) // HT 1T BW40PwrBasedBm2_4G = PHY_GetTxPowerByRateBase( Adapter, BAND_ON_2_4G, rfPath, RF_1TX, HT_MCS0_MCS7 ); else if ( rateSection == 1 ) // OFDM BW40PwrBasedBm2_4G = PHY_GetTxPowerByRateBase( Adapter, BAND_ON_2_4G, rfPath, RF_1TX, OFDM ); else if ( rateSection == 0 ) // CCK BW40PwrBasedBm2_4G = PHY_GetTxPowerByRateBase( Adapter, BAND_ON_2_4G, rfPath, RF_1TX, CCK ); } else BW40PwrBasedBm2_4G = Adapter->registrypriv.RegPowerBase * 2; if ( tempPwrLmt != MAX_POWER_INDEX ) { tempValue = tempPwrLmt - BW40PwrBasedBm2_4G; pHalData->TxPwrLimit_2_4G[regulation][bw][rateSection][channel][rfPath] = tempValue; } } } } } } if ( IS_HARDWARE_TYPE_JAGUAR( Adapter ) || IS_HARDWARE_TYPE_8813A( Adapter ) ) { for ( regulation = 0; regulation < MAX_REGULATION_NUM; ++regulation ) { for ( bw = 0; bw < MAX_5G_BANDWITH_NUM; ++bw ) { for ( channel = 0; channel < CHANNEL_MAX_NUMBER_5G; ++channel ) { for ( rateSection = 0; rateSection < MAX_RATE_SECTION_NUM; ++rateSection ) { tempPwrLmt = pHalData->TxPwrLimit_5G[regulation][bw][rateSection][channel][ODM_RF_PATH_A]; for ( rfPath = ODM_RF_PATH_A; rfPath < MAX_RF_PATH_NUM; ++rfPath ) { if ( pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_EXACT_VALUE ) { if ( rateSection == 9 ) // VHT 4SS BW40PwrBasedBm5G = PHY_GetTxPowerByRateBase( Adapter, BAND_ON_2_4G, rfPath, RF_4TX, VHT_4SSMCS0_4SSMCS9); else if ( rateSection == 8 ) // VHT 3SS BW40PwrBasedBm5G = PHY_GetTxPowerByRateBase( Adapter, BAND_ON_2_4G, rfPath, RF_3TX, VHT_3SSMCS0_3SSMCS9 ); else if ( rateSection == 7 ) // VHT 2SS BW40PwrBasedBm5G = PHY_GetTxPowerByRateBase( Adapter, BAND_ON_2_4G, rfPath, RF_2TX, VHT_2SSMCS0_2SSMCS9 ); else if ( rateSection == 6 ) // VHT 1SS BW40PwrBasedBm5G = PHY_GetTxPowerByRateBase( Adapter, BAND_ON_2_4G, rfPath, RF_1TX, VHT_1SSMCS0_1SSMCS9 ); else if ( rateSection == 5 ) // HT 4T BW40PwrBasedBm5G = PHY_GetTxPowerByRateBase( Adapter, BAND_ON_2_4G, rfPath, RF_4TX, HT_MCS24_MCS31 ); else if ( rateSection == 4 ) // HT 3T BW40PwrBasedBm5G = PHY_GetTxPowerByRateBase( Adapter, BAND_ON_2_4G, rfPath, RF_3TX, HT_MCS16_MCS23 ); else if ( rateSection == 3 ) // HT 2T BW40PwrBasedBm5G = PHY_GetTxPowerByRateBase( Adapter, BAND_ON_2_4G, rfPath, RF_2TX, HT_MCS8_MCS15 ); else if ( rateSection == 2 ) // HT 1T BW40PwrBasedBm5G = PHY_GetTxPowerByRateBase( Adapter, BAND_ON_2_4G, rfPath, RF_1TX, HT_MCS0_MCS7 ); else if ( rateSection == 1 ) // OFDM BW40PwrBasedBm5G = PHY_GetTxPowerByRateBase( Adapter, BAND_ON_2_4G, rfPath, RF_1TX, OFDM ); } else BW40PwrBasedBm5G = Adapter->registrypriv.RegPowerBase * 2; if ( tempPwrLmt != MAX_POWER_INDEX ) { tempValue = tempPwrLmt - BW40PwrBasedBm5G; pHalData->TxPwrLimit_5G[regulation][bw][rateSection][channel][rfPath] = tempValue; } } } } } } } //DBG_871X("<===== PHY_ConvertTxPowerLimitToPowerIndex()\n" ); } VOID PHY_InitTxPowerLimit( IN PADAPTER Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 i, j, k, l, m; //DBG_871X("=====> PHY_InitTxPowerLimit()!\n" ); for ( i = 0; i < MAX_REGULATION_NUM; ++i ) { for ( j = 0; j < MAX_2_4G_BANDWITH_NUM; ++j ) for ( k = 0; k < MAX_RATE_SECTION_NUM; ++k ) for ( m = 0; m < CHANNEL_MAX_NUMBER_2G; ++m ) for ( l = 0; l < MAX_RF_PATH_NUM; ++l ) pHalData->TxPwrLimit_2_4G[i][j][k][m][l] = MAX_POWER_INDEX; } for ( i = 0; i < MAX_REGULATION_NUM; ++i ) { for ( j = 0; j < MAX_5G_BANDWITH_NUM; ++j ) for ( k = 0; k < MAX_RATE_SECTION_NUM; ++k ) for ( m = 0; m < CHANNEL_MAX_NUMBER_5G; ++m ) for ( l = 0; l < MAX_RF_PATH_NUM; ++l ) pHalData->TxPwrLimit_5G[i][j][k][m][l] = MAX_POWER_INDEX; } //DBG_871X("<===== PHY_InitTxPowerLimit()!\n" ); } VOID PHY_SetTxPowerLimit( IN PADAPTER Adapter, IN u8 *Regulation, IN u8 *Band, IN u8 *Bandwidth, IN u8 *RateSection, IN u8 *RfPath, IN u8 *Channel, IN u8 *PowerLimit ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA( Adapter ); u8 regulation=0, bandwidth=0, rateSection=0, channel; s8 powerLimit = 0, prevPowerLimit, channelIndex; //DBG_871X( "Index of power limit table [band %s][regulation %s][bw %s][rate section %s][rf path %s][chnl %s][val %s]\n", // Band, Regulation, Bandwidth, RateSection, RfPath, Channel, PowerLimit ); if ( !GetU1ByteIntegerFromStringInDecimal( (s8 *)Channel, &channel ) || !GetU1ByteIntegerFromStringInDecimal( (s8 *)PowerLimit, &powerLimit ) ) { DBG_871X("Illegal index of power limit table [chnl %s][val %s]\n", Channel, PowerLimit ); } powerLimit = powerLimit > MAX_POWER_INDEX ? MAX_POWER_INDEX : powerLimit; if ( eqNByte( Regulation, (u8 *)("FCC"), 3 ) ) regulation = 0; else if ( eqNByte( Regulation, (u8 *)("MKK"), 3 ) ) regulation = 1; else if ( eqNByte( Regulation, (u8 *)("ETSI"), 4 ) ) regulation = 2; else if ( eqNByte( Regulation, (u8 *)("WW13"), 4 ) ) regulation = 3; if ( eqNByte( RateSection, (u8 *)("CCK"), 3 ) && eqNByte( RfPath, (u8 *)("1T"), 2 ) ) rateSection = 0; else if ( eqNByte( RateSection, (u8 *)("OFDM"), 4 ) && eqNByte( RfPath, (u8 *)("1T"), 2 ) ) rateSection = 1; else if ( eqNByte( RateSection, (u8 *)("HT"), 2 ) && eqNByte( RfPath, (u8 *)("1T"), 2 ) ) rateSection = 2; else if ( eqNByte( RateSection, (u8 *)("HT"), 2 ) && eqNByte( RfPath, (u8 *)("2T"), 2 ) ) rateSection = 3; else if ( eqNByte( RateSection, (u8 *)("HT"), 2 ) && eqNByte( RfPath, (u8 *)("3T"), 2 ) ) rateSection = 4; else if ( eqNByte( RateSection, (u8 *)("HT"), 2 ) && eqNByte( RfPath, (u8 *)("4T"), 2 ) ) rateSection = 5; else if ( eqNByte( RateSection, (u8 *)("VHT"), 3 ) && eqNByte( RfPath, (u8 *)("1T"), 2 ) ) rateSection = 6; else if ( eqNByte( RateSection, (u8 *)("VHT"), 3 ) && eqNByte( RfPath, (u8 *)("2T"), 2 ) ) rateSection = 7; else if ( eqNByte( RateSection, (u8 *)("VHT"), 3 ) && eqNByte( RfPath, (u8 *)("3T"), 2 ) ) rateSection = 8; else if ( eqNByte( RateSection, (u8 *)("VHT"), 3 ) && eqNByte( RfPath, (u8 *)("4T"), 2 ) ) rateSection = 9; else { DBG_871X("Wrong rate section!\n"); return; } if ( eqNByte( Bandwidth, (u8 *)("20M"), 3 ) ) bandwidth = 0; else if ( eqNByte( Bandwidth, (u8 *)("40M"), 3 ) ) bandwidth = 1; else if ( eqNByte( Bandwidth, (u8 *)("80M"), 3 ) ) bandwidth = 2; else if ( eqNByte( Bandwidth, (u8 *)("160M"), 4 ) ) bandwidth = 3; if ( eqNByte( Band, (u8 *)("2.4G"), 4 ) ) { channelIndex = phy_GetChannelIndexOfTxPowerLimit( BAND_ON_2_4G, channel ); if ( channelIndex == -1 ) return; prevPowerLimit = pHalData->TxPwrLimit_2_4G[regulation][bandwidth][rateSection][channelIndex][ODM_RF_PATH_A]; if ( powerLimit < prevPowerLimit ) pHalData->TxPwrLimit_2_4G[regulation][bandwidth][rateSection][channelIndex][ODM_RF_PATH_A] = powerLimit; //DBG_871X( "2.4G Band value : [regulation %d][bw %d][rate_section %d][chnl %d][val %d]\n", // regulation, bandwidth, rateSection, channelIndex, pHalData->TxPwrLimit_2_4G[regulation][bandwidth][rateSection][channelIndex][ODM_RF_PATH_A] ); } else if ( eqNByte( Band, (u8 *)("5G"), 2 ) ) { channelIndex = phy_GetChannelIndexOfTxPowerLimit( BAND_ON_5G, channel ); if ( channelIndex == -1 ) return; prevPowerLimit = pHalData->TxPwrLimit_5G[regulation][bandwidth][rateSection][channelIndex][ODM_RF_PATH_A]; if ( powerLimit < prevPowerLimit ) pHalData->TxPwrLimit_5G[regulation][bandwidth][rateSection][channelIndex][ODM_RF_PATH_A] = powerLimit; //DBG_871X( "5G Band value : [regulation %d][bw %d][rate_section %d][chnl %d][val %d]\n", // regulation, bandwidth, rateSection, channel, pHalData->TxPwrLimit_5G[regulation][bandwidth][rateSection][channelIndex][ODM_RF_PATH_A] ); } else { DBG_871X("Cannot recognize the band info in %s\n", Band ); return; } } u8 PHY_GetTxPowerIndex( IN PADAPTER pAdapter, IN u8 RFPath, IN u8 Rate, IN CHANNEL_WIDTH BandWidth, IN u8 Channel ) { u8 txPower = 0x3E; if (IS_HARDWARE_TYPE_8813A(pAdapter)) { //#if (RTL8813A_SUPPORT==1) // txPower = PHY_GetTxPowerIndex_8813A( pAdapter, PowerIndex, RFPath, Rate ); //#endif } else if (IS_HARDWARE_TYPE_JAGUAR(pAdapter)) { #if ((RTL8812A_SUPPORT==1) || (RTL8821A_SUPPORT == 1)) txPower = PHY_GetTxPowerIndex_8812A(pAdapter, RFPath, Rate, BandWidth, Channel); #endif } else if (IS_HARDWARE_TYPE_8723B(pAdapter)) { #if (RTL8723B_SUPPORT==1) txPower = PHY_GetTxPowerIndex_8723B(pAdapter, RFPath, Rate, BandWidth, Channel); #endif } else if (IS_HARDWARE_TYPE_8192E(pAdapter)) { #if (RTL8192E_SUPPORT==1) txPower = PHY_GetTxPowerIndex_8192E(pAdapter, RFPath, Rate, BandWidth, Channel); #endif } else if (IS_HARDWARE_TYPE_8188E(pAdapter)) { #if (RTL8188E_SUPPORT==1) txPower = PHY_GetTxPowerIndex_8188E(pAdapter, RFPath, Rate, BandWidth, Channel); #endif } return txPower; } VOID PHY_SetTxPowerIndex( IN PADAPTER pAdapter, IN u32 PowerIndex, IN u8 RFPath, IN u8 Rate ) { if (IS_HARDWARE_TYPE_8813A(pAdapter)) { //#if (RTL8813A_SUPPORT==1) // PHY_SetTxPowerIndex_8813A( pAdapter, PowerIndex, RFPath, Rate ); //#endif } else if (IS_HARDWARE_TYPE_JAGUAR(pAdapter)) { #if ((RTL8812A_SUPPORT==1) || (RTL8821A_SUPPORT == 1)) PHY_SetTxPowerIndex_8812A( pAdapter, PowerIndex, RFPath, Rate ); #endif } else if (IS_HARDWARE_TYPE_8723B(pAdapter)) { #if (RTL8723B_SUPPORT==1) PHY_SetTxPowerIndex_8723B( pAdapter, PowerIndex, RFPath, Rate ); #endif } else if (IS_HARDWARE_TYPE_8192E(pAdapter)) { #if (RTL8192E_SUPPORT==1) PHY_SetTxPowerIndex_8192E( pAdapter, PowerIndex, RFPath, Rate ); #endif } else if (IS_HARDWARE_TYPE_8188E(pAdapter)) { #if (RTL8188E_SUPPORT==1) PHY_SetTxPowerIndex_8188E( pAdapter, PowerIndex, RFPath, Rate ); #endif } } VOID Hal_ChannelPlanToRegulation( IN PADAPTER Adapter, IN u16 ChannelPlan ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); pHalData->Regulation2_4G = TXPWR_LMT_WW; pHalData->Regulation5G = TXPWR_LMT_WW; switch(ChannelPlan) { case RT_CHANNEL_DOMAIN_WORLD_NULL: pHalData->Regulation2_4G = TXPWR_LMT_WW; break; case RT_CHANNEL_DOMAIN_ETSI1_NULL: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_FCC1_NULL: pHalData->Regulation2_4G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_MKK1_NULL: pHalData->Regulation2_4G = TXPWR_LMT_MKK; break; case RT_CHANNEL_DOMAIN_ETSI2_NULL: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_FCC1_FCC1: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI1: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_MKK1_MKK1: pHalData->Regulation2_4G = TXPWR_LMT_MKK; pHalData->Regulation5G = TXPWR_LMT_MKK; break; case RT_CHANNEL_DOMAIN_WORLD_KCC1: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_MKK; break; case RT_CHANNEL_DOMAIN_WORLD_FCC2: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_WORLD_FCC3: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_WORLD_FCC4: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_WORLD_FCC5: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_WORLD_FCC6: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_FCC1_FCC7: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI2: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI3: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_MKK1_MKK2: pHalData->Regulation2_4G = TXPWR_LMT_MKK; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_MKK1_MKK3: pHalData->Regulation2_4G = TXPWR_LMT_MKK; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_FCC1_NCC1: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_FCC1_NCC2: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_GLOBAL_NULL: pHalData->Regulation2_4G = TXPWR_LMT_WW; pHalData->Regulation5G = TXPWR_LMT_WW; break; case RT_CHANNEL_DOMAIN_ETSI1_ETSI4: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; pHalData->Regulation5G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_FCC1_FCC2: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_FCC1_NCC3: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI5: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; pHalData->Regulation5G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_FCC1_FCC8: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI6: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; pHalData->Regulation5G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI7: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; pHalData->Regulation5G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI8: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; pHalData->Regulation5G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI9: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; pHalData->Regulation5G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI10: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; pHalData->Regulation5G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI11: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; pHalData->Regulation5G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_FCC1_NCC4: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI12: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; pHalData->Regulation5G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_FCC1_FCC9: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_WORLD_ETSI13: pHalData->Regulation2_4G = TXPWR_LMT_ETSI; pHalData->Regulation5G = TXPWR_LMT_ETSI; break; case RT_CHANNEL_DOMAIN_FCC1_FCC10: pHalData->Regulation2_4G = TXPWR_LMT_FCC; pHalData->Regulation5G = TXPWR_LMT_FCC; break; case RT_CHANNEL_DOMAIN_REALTEK_DEFINE: //Realtek Reserve pHalData->Regulation2_4G = TXPWR_LMT_WW; pHalData->Regulation5G = TXPWR_LMT_WW; break; default: break; } } #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE extern char *rtw_phy_file_path; char file_path_bs[PATH_LENGTH_MAX]; #define GetLineFromBuffer(buffer) strsep(&buffer, "\n") int phy_ConfigMACWithParaFile( IN PADAPTER Adapter, IN char* pFileName ) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; char *szLine, *ptmp; u32 u4bRegOffset, u4bRegValue, u4bMove; if(!(Adapter->registrypriv.load_phy_file & LOAD_MAC_PARA_FILE)) return rtStatus; _rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if ((pHalData->mac_reg_len == 0) && (pHalData->mac_reg == NULL)) { rtw_merge_string(file_path_bs, PATH_LENGTH_MAX, rtw_phy_file_path, pFileName); if (rtw_is_file_readable(file_path_bs) == _TRUE) { rlen = rtw_retrive_from_file(file_path_bs, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pHalData->mac_reg = rtw_zvmalloc(rlen); if(pHalData->mac_reg) { _rtw_memcpy(pHalData->mac_reg, pHalData->para_file_buf, rlen); pHalData->mac_reg_len = rlen; } else { DBG_871X("%s mac_reg alloc fail !\n",__FUNCTION__); } } } } else { if ((pHalData->mac_reg_len != 0) && (pHalData->mac_reg != NULL)) { _rtw_memcpy(pHalData->para_file_buf, pHalData->mac_reg, pHalData->mac_reg_len); rtStatus = _SUCCESS; } else { DBG_871X("%s(): Critical Error !!!\n",__FUNCTION__); } } if (rtStatus == _SUCCESS) { ptmp = pHalData->para_file_buf; for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) { if(!IsCommentString(szLine)) { // Get 1st hex value as register offset if(GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) { if(u4bRegOffset == 0xffff) { // Ending. break; } // Get 2nd hex value as register value. szLine += u4bMove; if(GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) { rtw_write8(Adapter, u4bRegOffset, (u8)u4bRegValue); } } } } } else { DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName); } return rtStatus; } int phy_ConfigBBWithParaFile( IN PADAPTER Adapter, IN char* pFileName, IN u32 ConfigType ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; char *szLine, *ptmp; u32 u4bRegOffset, u4bRegValue, u4bMove; char *pBuf = NULL; u32 *pBufLen = NULL; if(!(Adapter->registrypriv.load_phy_file & LOAD_BB_PARA_FILE)) return rtStatus; switch(ConfigType) { case CONFIG_BB_PHY_REG: pBuf = pHalData->bb_phy_reg; pBufLen = &pHalData->bb_phy_reg_len; break; case CONFIG_BB_AGC_TAB: pBuf = pHalData->bb_agc_tab; pBufLen = &pHalData->bb_agc_tab_len; break; default: DBG_871X("Unknown ConfigType!! %d\r\n", ConfigType); break; } _rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if ((pBufLen != NULL) && (*pBufLen == 0) && (pBuf == NULL)) { rtw_merge_string(file_path_bs, PATH_LENGTH_MAX, rtw_phy_file_path, pFileName); if (rtw_is_file_readable(file_path_bs) == _TRUE) { rlen = rtw_retrive_from_file(file_path_bs, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pBuf = rtw_zvmalloc(rlen); if(pBuf) { _rtw_memcpy(pBuf, pHalData->para_file_buf, rlen); *pBufLen = rlen; switch(ConfigType) { case CONFIG_BB_PHY_REG: pHalData->bb_phy_reg = pBuf; break; case CONFIG_BB_AGC_TAB: pHalData->bb_agc_tab = pBuf; break; } } else { DBG_871X("%s(): ConfigType %d alloc fail !\n",__FUNCTION__,ConfigType); } } } } else { if ((pBufLen != NULL) && (*pBufLen == 0) && (pBuf == NULL)) { _rtw_memcpy(pHalData->para_file_buf, pBuf, *pBufLen); rtStatus = _SUCCESS; } else { DBG_871X("%s(): Critical Error !!!\n",__FUNCTION__); } } if (rtStatus == _SUCCESS) { ptmp = pHalData->para_file_buf; for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) { if(!IsCommentString(szLine)) { // Get 1st hex value as register offset. if(GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) { if(u4bRegOffset == 0xffff) { // Ending. break; } else if (u4bRegOffset == 0xfe || u4bRegOffset == 0xffe) { #ifdef CONFIG_LONG_DELAY_ISSUE rtw_msleep_os(50); #else rtw_mdelay_os(50); #endif } else if (u4bRegOffset == 0xfd) { rtw_mdelay_os(5); } else if (u4bRegOffset == 0xfc) { rtw_mdelay_os(1); } else if (u4bRegOffset == 0xfb) { rtw_udelay_os(50); } else if (u4bRegOffset == 0xfa) { rtw_udelay_os(5); } else if (u4bRegOffset == 0xf9) { rtw_udelay_os(1); } // Get 2nd hex value as register value. szLine += u4bMove; if(GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) { //DBG_871X("[BB-ADDR]%03lX=%08lX\n", u4bRegOffset, u4bRegValue); PHY_SetBBReg(Adapter, u4bRegOffset, bMaskDWord, u4bRegValue); if (u4bRegOffset == 0xa24) pHalData->odmpriv.RFCalibrateInfo.RegA24 = u4bRegValue; // Add 1us delay between BB/RF register setting. rtw_udelay_os(1); } } } } } else { DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName); } return rtStatus; } VOID phy_DecryptBBPgParaFile( PADAPTER Adapter, char* buffer ) { u32 i = 0, j = 0; u8 map[95] = {0}; u8 currentChar; char *BufOfLines, *ptmp; //DBG_871X("=====>phy_DecryptBBPgParaFile()\n"); // 32 the ascii code of the first visable char, 126 the last one for ( i = 0; i < 95; ++i ) map[i] = ( u8 ) ( 94 - i ); ptmp = buffer; i = 0; for (BufOfLines = GetLineFromBuffer(ptmp); BufOfLines != NULL; BufOfLines = GetLineFromBuffer(ptmp)) { //DBG_871X("Encrypted Line: %s\n", BufOfLines); for ( j = 0; j < strlen(BufOfLines); ++j ) { currentChar = BufOfLines[j]; if ( currentChar == '\0' ) break; currentChar -= (u8) ( ( ( ( i + j ) * 3 ) % 128 ) ); BufOfLines[j] = map[currentChar - 32] + 32; } //DBG_871X("Decrypted Line: %s\n", BufOfLines ); if (strlen(BufOfLines) != 0) i++; BufOfLines[strlen(BufOfLines)] = '\n'; } } int phy_ParseBBPgParaFile( PADAPTER Adapter, char* buffer ) { int rtStatus = _SUCCESS; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); char *szLine, *ptmp; u32 u4bRegOffset, u4bRegMask, u4bRegValue; u32 u4bMove; BOOLEAN firstLine = _TRUE; u8 tx_num = 0; u8 band = 0, rf_path = 0; //DBG_871X("=====>phy_ParseBBPgParaFile()\n"); if ( Adapter->registrypriv.RegDecryptCustomFile == 1 ) phy_DecryptBBPgParaFile( Adapter, buffer); ptmp = buffer; for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) { if(!IsCommentString(szLine)) { if( isAllSpaceOrTab( szLine, sizeof( *szLine ) ) ) continue; // Get header info (relative value or exact value) if ( firstLine ) { if ( eqNByte( szLine, (u8 *)("#[v1]"), 5 ) ) { pHalData->odmpriv.PhyRegPgVersion = szLine[3] - '0'; //DBG_871X("This is a new format PHY_REG_PG.txt \n"); } else if ( eqNByte( szLine, (u8 *)("#[v0]"), 5 )) { pHalData->odmpriv.PhyRegPgVersion = szLine[3] - '0'; //DBG_871X("This is a old format PHY_REG_PG.txt ok\n"); } else { DBG_871X("The format in PHY_REG_PG are invalid %s\n", szLine); return _FAIL; } if ( eqNByte( szLine + 5, (u8 *)("[Exact]#"), 8 ) ) { pHalData->odmpriv.PhyRegPgValueType = PHY_REG_PG_EXACT_VALUE; //DBG_871X("The values in PHY_REG_PG are exact values ok\n"); firstLine = _FALSE; continue; } else if ( eqNByte( szLine + 5, (pu1Byte)("[Relative]#"), 11 ) ) { pHalData->odmpriv.PhyRegPgValueType = PHY_REG_PG_RELATIVE_VALUE; //DBG_871X("The values in PHY_REG_PG are relative values ok\n"); firstLine = _FALSE; continue; } else { DBG_871X("The values in PHY_REG_PG are invalid %s\n", szLine); return _FAIL; } } if ( pHalData->odmpriv.PhyRegPgVersion == 0 ) { // Get 1st hex value as register offset. if(GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) { szLine += u4bMove; if(u4bRegOffset == 0xffff) { // Ending. break; } // Get 2nd hex value as register mask. if ( GetHexValueFromString(szLine, &u4bRegMask, &u4bMove) ) szLine += u4bMove; else return _FAIL; if ( pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_RELATIVE_VALUE ) { // Get 3rd hex value as register value. if(GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) { PHY_StoreTxPowerByRate(Adapter, 0, 0, 1, u4bRegOffset, u4bRegMask, u4bRegValue); //DBG_871X("[ADDR] %03X=%08X Mask=%08x\n", u4bRegOffset, u4bRegValue, u4bRegMask); } else { return _FAIL; } } else if ( pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_EXACT_VALUE ) { u32 combineValue = 0; u8 integer = 0, fraction = 0; if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) ) szLine += u4bMove; else return _FAIL; integer *= 2; if ( fraction == 5 ) integer += 1; combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) ); //DBG_871X(" %d", integer ); if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) ) szLine += u4bMove; else return _FAIL; integer *= 2; if ( fraction == 5 ) integer += 1; combineValue <<= 8; combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) ); //DBG_871X(" %d", integer ); if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) ) szLine += u4bMove; else return _FAIL; integer *= 2; if ( fraction == 5 ) integer += 1; combineValue <<= 8; combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) ); //DBG_871X(" %d", integer ); if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) ) szLine += u4bMove; else return _FAIL; integer *= 2; if ( fraction == 5 ) integer += 1; combineValue <<= 8; combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) ); //DBG_871X(" %d", integer ); PHY_StoreTxPowerByRate(Adapter, 0, 0, 1, u4bRegOffset, u4bRegMask, combineValue); //DBG_871X("[ADDR] 0x%3x = 0x%4x\n", u4bRegOffset, combineValue ); } } } else if ( pHalData->odmpriv.PhyRegPgVersion > 0 ) { u32 index = 0, cnt = 0; if ( eqNByte( szLine, "0xffff", 6 ) ) break; if( !eqNByte( "#[END]#", szLine, 7 ) ) { // load the table label info if ( szLine[0] == '#' ) { index = 0; if ( eqNByte( szLine, "#[2.4G]" , 7 ) ) { band = BAND_ON_2_4G; index += 8; } else if ( eqNByte( szLine, "#[5G]", 5) ) { band = BAND_ON_5G; index += 6; } else { DBG_871X("Invalid band %s in PHY_REG_PG.txt \n", szLine ); return _FAIL; } rf_path= szLine[index] - 'A'; //DBG_871X(" Table label Band %d, RfPath %d\n", band, rf_path ); } else // load rows of tables { if ( szLine[1] == '1' ) tx_num = RF_1TX; else if ( szLine[1] == '2' ) tx_num = RF_2TX; else if ( szLine[1] == '3' ) tx_num = RF_3TX; else if ( szLine[1] == '4' ) tx_num = RF_4TX; else { DBG_871X("Invalid row in PHY_REG_PG.txt %c\n", szLine[1] ); return _FAIL; } while ( szLine[index] != ']' ) ++index; ++index;// skip ] // Get 2nd hex value as register offset. szLine += index; if ( GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove) ) szLine += u4bMove; else return _FAIL; // Get 2nd hex value as register mask. if ( GetHexValueFromString(szLine, &u4bRegMask, &u4bMove) ) szLine += u4bMove; else return _FAIL; if ( pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_RELATIVE_VALUE ) { // Get 3rd hex value as register value. if(GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) { PHY_StoreTxPowerByRate(Adapter, band, rf_path, tx_num, u4bRegOffset, u4bRegMask, u4bRegValue); //DBG_871X("[ADDR] %03X (tx_num %d) =%08X Mask=%08x\n", u4bRegOffset, tx_num, u4bRegValue, u4bRegMask); } else { return _FAIL; } } else if ( pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_EXACT_VALUE ) { u32 combineValue = 0; u8 integer = 0, fraction = 0; if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) ) szLine += u4bMove; else return _FAIL; integer *= 2; if ( fraction == 5 ) integer += 1; combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) ); //DBG_871X(" %d", integer ); if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) ) szLine += u4bMove; else return _FAIL; integer *= 2; if ( fraction == 5 ) integer += 1; combineValue <<= 8; combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) ); //DBG_871X(" %d", integer ); if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) ) szLine += u4bMove; else return _FAIL; integer *= 2; if ( fraction == 5 ) integer += 1; combineValue <<= 8; combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) ); //DBG_871X(" %d", integer ); if ( GetFractionValueFromString( szLine, &integer, &fraction, &u4bMove ) ) szLine += u4bMove; else return _FAIL; integer *= 2; if ( fraction == 5 ) integer += 1; combineValue <<= 8; combineValue |= ( ( ( integer / 10 ) << 4 ) + ( integer % 10 ) ); //DBG_871X(" %d", integer ); PHY_StoreTxPowerByRate(Adapter, band, rf_path, tx_num, u4bRegOffset, u4bRegMask, combineValue); //DBG_871X("[ADDR] 0x%3x (tx_num %d) = 0x%4x\n", u4bRegOffset, tx_num, combineValue ); } } } } } } //DBG_871X("<=====phy_ParseBBPgParaFile()\n"); return rtStatus; } int phy_ConfigBBWithPgParaFile( IN PADAPTER Adapter, IN char* pFileName) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; if(!(Adapter->registrypriv.load_phy_file & LOAD_BB_PG_PARA_FILE)) return rtStatus; _rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if ((pHalData->bb_phy_reg_pg_len == 0) && (pHalData->bb_phy_reg_pg == NULL)) { rtw_merge_string(file_path_bs, PATH_LENGTH_MAX, rtw_phy_file_path, pFileName); if (rtw_is_file_readable(file_path_bs) == _TRUE) { rlen = rtw_retrive_from_file(file_path_bs, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pHalData->bb_phy_reg_pg = rtw_zvmalloc(rlen); if(pHalData->bb_phy_reg_pg) { _rtw_memcpy(pHalData->bb_phy_reg_pg, pHalData->para_file_buf, rlen); pHalData->bb_phy_reg_pg_len = rlen; } else { DBG_871X("%s bb_phy_reg_pg alloc fail !\n",__FUNCTION__); } } } } else { if ((pHalData->bb_phy_reg_pg_len != 0) && (pHalData->bb_phy_reg_pg != NULL)) { _rtw_memcpy(pHalData->para_file_buf, pHalData->bb_phy_reg_pg, pHalData->bb_phy_reg_pg_len); rtStatus = _SUCCESS; } else { DBG_871X("%s(): Critical Error !!!\n",__FUNCTION__); } } if(rtStatus == _SUCCESS) { //DBG_871X("phy_ConfigBBWithPgParaFile(): read %s ok\n", pFileName); phy_ParseBBPgParaFile(Adapter, pHalData->para_file_buf); } else { DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName); } return rtStatus; } #if (MP_DRIVER == 1 ) int phy_ConfigBBWithMpParaFile( IN PADAPTER Adapter, IN char* pFileName ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; char *szLine, *ptmp; u32 u4bRegOffset, u4bRegValue, u4bMove; if(!(Adapter->registrypriv.load_phy_file & LOAD_BB_MP_PARA_FILE)) return rtStatus; _rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if ((pHalData->bb_phy_reg_mp_len == 0) && (pHalData->bb_phy_reg_mp == NULL)) { rtw_merge_string(file_path_bs, PATH_LENGTH_MAX, rtw_phy_file_path, pFileName); if (rtw_is_file_readable(file_path_bs) == _TRUE) { rlen = rtw_retrive_from_file(file_path_bs, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pHalData->bb_phy_reg_mp = rtw_zvmalloc(rlen); if(pHalData->bb_phy_reg_mp) { _rtw_memcpy(pHalData->bb_phy_reg_mp, pHalData->para_file_buf, rlen); pHalData->bb_phy_reg_mp_len = rlen; } else { DBG_871X("%s bb_phy_reg_mp alloc fail !\n",__FUNCTION__); } } } } else { if ((pHalData->bb_phy_reg_mp_len != 0) && (pHalData->bb_phy_reg_mp != NULL)) { _rtw_memcpy(pHalData->para_file_buf, pHalData->bb_phy_reg_mp, pHalData->bb_phy_reg_mp_len); rtStatus = _SUCCESS; } else { DBG_871X("%s(): Critical Error !!!\n",__FUNCTION__); } } if(rtStatus == _SUCCESS) { //DBG_871X("phy_ConfigBBWithMpParaFile(): read %s ok\n", pFileName); ptmp = pHalData->para_file_buf; for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) { if(!IsCommentString(szLine)) { // Get 1st hex value as register offset. if(GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) { if(u4bRegOffset == 0xffff) { // Ending. break; } else if (u4bRegOffset == 0xfe || u4bRegOffset == 0xffe) { #ifdef CONFIG_LONG_DELAY_ISSUE rtw_msleep_os(50); #else rtw_mdelay_os(50); #endif } else if (u4bRegOffset == 0xfd) { rtw_mdelay_os(5); } else if (u4bRegOffset == 0xfc) { rtw_mdelay_os(1); } else if (u4bRegOffset == 0xfb) { rtw_udelay_os(50); } else if (u4bRegOffset == 0xfa) { rtw_udelay_os(5); } else if (u4bRegOffset == 0xf9) { rtw_udelay_os(1); } // Get 2nd hex value as register value. szLine += u4bMove; if(GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) { //DBG_871X("[ADDR]%03lX=%08lX\n", u4bRegOffset, u4bRegValue); PHY_SetBBReg(Adapter, u4bRegOffset, bMaskDWord, u4bRegValue); // Add 1us delay between BB/RF register setting. rtw_udelay_os(1); } } } } } else { DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName); } return rtStatus; } #endif int PHY_ConfigRFWithParaFile( IN PADAPTER Adapter, IN char* pFileName, IN u8 eRFPath ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; char *szLine, *ptmp; u32 u4bRegOffset, u4bRegValue, u4bMove; u16 i; char *pBuf = NULL; u32 *pBufLen = NULL; if(!(Adapter->registrypriv.load_phy_file & LOAD_RF_PARA_FILE)) return rtStatus; switch(eRFPath) { case ODM_RF_PATH_A: pBuf = pHalData->rf_radio_a; pBufLen = &pHalData->rf_radio_a_len; break; case ODM_RF_PATH_B: pBuf = pHalData->rf_radio_b; pBufLen = &pHalData->rf_radio_b_len; break; default: DBG_871X("Unknown RF path!! %d\r\n", eRFPath); break; } _rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if ((pBufLen != NULL) && (*pBufLen == 0) && (pBuf == NULL)) { rtw_merge_string(file_path_bs, PATH_LENGTH_MAX, rtw_phy_file_path, pFileName); if (rtw_is_file_readable(file_path_bs) == _TRUE) { rlen = rtw_retrive_from_file(file_path_bs, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pBuf = rtw_zvmalloc(rlen); if(pBuf) { _rtw_memcpy(pBuf, pHalData->para_file_buf, rlen); *pBufLen = rlen; switch(eRFPath) { case ODM_RF_PATH_A: pHalData->rf_radio_a = pBuf; break; case ODM_RF_PATH_B: pHalData->rf_radio_b = pBuf; break; } } else { DBG_871X("%s(): eRFPath=%d alloc fail !\n",__FUNCTION__,eRFPath); } } } } else { if ((pBufLen != NULL) && (*pBufLen == 0) && (pBuf == NULL)) { _rtw_memcpy(pHalData->para_file_buf, pBuf, *pBufLen); rtStatus = _SUCCESS; } else { DBG_871X("%s(): Critical Error !!!\n",__FUNCTION__); } } if(rtStatus == _SUCCESS) { //DBG_871X("%s(): read %s successfully\n", __FUNCTION__, pFileName); ptmp = pHalData->para_file_buf; for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) { if(!IsCommentString(szLine)) { // Get 1st hex value as register offset. if(GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) { if(u4bRegOffset == 0xfe || u4bRegOffset == 0xffe) { // Deay specific ms. Only RF configuration require delay. #ifdef CONFIG_LONG_DELAY_ISSUE rtw_msleep_os(50); #else rtw_mdelay_os(50); #endif } else if (u4bRegOffset == 0xfd) { //delay_ms(5); for(i=0;i<100;i++) rtw_udelay_os(MAX_STALL_TIME); } else if (u4bRegOffset == 0xfc) { //delay_ms(1); for(i=0;i<20;i++) rtw_udelay_os(MAX_STALL_TIME); } else if (u4bRegOffset == 0xfb) { rtw_udelay_os(50); } else if (u4bRegOffset == 0xfa) { rtw_udelay_os(5); } else if (u4bRegOffset == 0xf9) { rtw_udelay_os(1); } else if(u4bRegOffset == 0xffff) { break; } // Get 2nd hex value as register value. szLine += u4bMove; if(GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) { PHY_SetRFReg(Adapter, eRFPath, u4bRegOffset, bRFRegOffsetMask, u4bRegValue); // Temp add, for frequency lock, if no delay, that may cause // frequency shift, ex: 2412MHz => 2417MHz // If frequency shift, the following action may works. // Fractional-N table in radio_a.txt //0x2a 0x00001 // channel 1 //0x2b 0x00808 frequency divider. //0x2b 0x53333 //0x2c 0x0000c rtw_udelay_os(1); } } } } } else { DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName); } return rtStatus; } VOID initDeltaSwingIndexTables( PADAPTER Adapter, char* Band, char* Path, char* Sign, char* Channel, char* Rate, char* Data ) { #define STR_EQUAL_5G(_band, _path, _sign, _rate, _chnl) \ ((strcmp(Band, _band) == 0) && (strcmp(Path, _path) == 0) && (strcmp(Sign, _sign) == 0) &&\ (strcmp(Rate, _rate) == 0) && (strcmp(Channel, _chnl) == 0)\ ) #define STR_EQUAL_2G(_band, _path, _sign, _rate) \ ((strcmp(Band, _band) == 0) && (strcmp(Path, _path) == 0) && (strcmp(Sign, _sign) == 0) &&\ (strcmp(Rate, _rate) == 0)\ ) #define STORE_SWING_TABLE(_array, _iteratedIdx) \ for(token = strsep(&Data, delim); token != NULL; token = strsep(&Data, delim))\ {\ sscanf(token, "%d", &idx);\ _array[_iteratedIdx++] = (u8)idx;\ }\ HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); PDM_ODM_T pDM_Odm = &pHalData->odmpriv; PODM_RF_CAL_T pRFCalibrateInfo = &(pDM_Odm->RFCalibrateInfo); u32 j = 0; char *token; char delim[] = ","; u32 idx = 0; //DBG_871X("===>initDeltaSwingIndexTables(): Band: %s;\nPath: %s;\nSign: %s;\nChannel: %s;\nRate: %s;\n, Data: %s;\n", // Band, Path, Sign, Channel, Rate, Data); if ( STR_EQUAL_2G("2G", "A", "+", "CCK") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKA_P, j); } else if ( STR_EQUAL_2G("2G", "A", "-", "CCK") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKA_N, j); } else if ( STR_EQUAL_2G("2G", "B", "+", "CCK") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKB_P, j); } else if ( STR_EQUAL_2G("2G", "B", "-", "CCK") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKB_N, j); } else if ( STR_EQUAL_2G("2G", "A", "+", "ALL") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GA_P, j); } else if ( STR_EQUAL_2G("2G", "A", "-", "ALL") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GA_N, j); } else if ( STR_EQUAL_2G("2G", "B", "+", "ALL") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GB_P, j); } else if ( STR_EQUAL_2G("2G", "B", "-", "ALL") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_2GB_N, j); } else if ( STR_EQUAL_5G("5G", "A", "+", "ALL", "0") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[0], j); } else if ( STR_EQUAL_5G("5G", "A", "-", "ALL", "0") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[0], j); } else if ( STR_EQUAL_5G("5G", "B", "+", "ALL", "0") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[0], j); } else if ( STR_EQUAL_5G("5G", "B", "-", "ALL", "0") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[0], j); } else if ( STR_EQUAL_5G("5G", "A", "+", "ALL", "1") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[1], j); } else if ( STR_EQUAL_5G("5G", "A", "-", "ALL", "1") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[1], j); } else if ( STR_EQUAL_5G("5G", "B", "+", "ALL", "1") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[1], j); } else if ( STR_EQUAL_5G("5G", "B", "-", "ALL", "1") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[1], j); } else if ( STR_EQUAL_5G("5G", "A", "+", "ALL", "2") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[2], j); } else if ( STR_EQUAL_5G("5G", "A", "-", "ALL", "2") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[2], j); } else if ( STR_EQUAL_5G("5G", "B", "+", "ALL", "2") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[2], j); } else if ( STR_EQUAL_5G("5G", "B", "-", "ALL", "2") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[2], j); } else if ( STR_EQUAL_5G("5G", "A", "+", "ALL", "3") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[3], j); } else if ( STR_EQUAL_5G("5G", "A", "-", "ALL", "3") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[3], j); } else if ( STR_EQUAL_5G("5G", "B", "+", "ALL", "3") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[3], j); } else if ( STR_EQUAL_5G("5G", "B", "-", "ALL", "3") ) { STORE_SWING_TABLE(pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[3], j); } else { DBG_871X("===>initDeltaSwingIndexTables(): The input is invalid!!\n"); } } int PHY_ConfigRFWithTxPwrTrackParaFile( IN PADAPTER Adapter, IN char* pFileName ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); PDM_ODM_T pDM_Odm = &pHalData->odmpriv; PODM_RF_CAL_T pRFCalibrateInfo = &(pDM_Odm->RFCalibrateInfo); int rlen = 0, rtStatus = _FAIL; char *szLine, *ptmp; u32 i = 0, j = 0; char c = 0; if(!(Adapter->registrypriv.load_phy_file & LOAD_RF_TXPWR_TRACK_PARA_FILE)) return rtStatus; _rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if ((pHalData->rf_tx_pwr_track_len == 0) && (pHalData->rf_tx_pwr_track == NULL)) { rtw_merge_string(file_path_bs, PATH_LENGTH_MAX, rtw_phy_file_path, pFileName); if (rtw_is_file_readable(file_path_bs) == _TRUE) { rlen = rtw_retrive_from_file(file_path_bs, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pHalData->rf_tx_pwr_track = rtw_zvmalloc(rlen); if(pHalData->rf_tx_pwr_track) { _rtw_memcpy(pHalData->rf_tx_pwr_track, pHalData->para_file_buf, rlen); pHalData->rf_tx_pwr_track_len = rlen; } else { DBG_871X("%s rf_tx_pwr_track alloc fail !\n",__FUNCTION__); } } } } else { if ((pHalData->rf_tx_pwr_track_len != 0) && (pHalData->rf_tx_pwr_track != NULL)) { _rtw_memcpy(pHalData->para_file_buf, pHalData->rf_tx_pwr_track, pHalData->rf_tx_pwr_track_len); rtStatus = _SUCCESS; } else { DBG_871X("%s(): Critical Error !!!\n",__FUNCTION__); } } if(rtStatus == _SUCCESS) { //DBG_871X("%s(): read %s successfully\n", __FUNCTION__, pFileName); ptmp = pHalData->para_file_buf; for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) { if ( ! IsCommentString(szLine) ) { char band[5]="", path[5]="", sign[5] = ""; char chnl[5]="", rate[10]=""; char data[300]=""; // 100 is too small if (strlen(szLine) < 10 || szLine[0] != '[') continue; strncpy(band, szLine+1, 2); strncpy(path, szLine+5, 1); strncpy(sign, szLine+8, 1); i = 10; // szLine+10 if ( ! ParseQualifiedString(szLine, &i, rate, '[', ']') ) { //DBG_871X("Fail to parse rate!\n"); } if ( ! ParseQualifiedString(szLine, &i, chnl, '[', ']') ) { //DBG_871X("Fail to parse channel group!\n"); } while ( szLine[i] != '{' && i < strlen(szLine)) i++; if ( ! ParseQualifiedString(szLine, &i, data, '{', '}') ) { //DBG_871X("Fail to parse data!\n"); } initDeltaSwingIndexTables(Adapter, band, path, sign, chnl, rate, data); } } } else { DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName); } #if 0 for (i = 0; i < DELTA_SWINGIDX_SIZE; ++i) { DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GA_P[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GA_P[i]); DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GA_N[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GA_N[i]); DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GB_P[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GB_P[i]); DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GB_N[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GB_N[i]); DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKA_P[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKA_P[i]); DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKA_N[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKA_N[i]); DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKB_P[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKB_P[i]); DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKB_N[%d] = %d\n", i, pRFCalibrateInfo->DeltaSwingTableIdx_2GCCKB_N[i]); for (j = 0; j < 3; ++j) { DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[%d][%d] = %d\n", j, i, pRFCalibrateInfo->DeltaSwingTableIdx_5GA_P[j][i]); DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[%d][%d] = %d\n", j, i, pRFCalibrateInfo->DeltaSwingTableIdx_5GA_N[j][i]); DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[%d][%d] = %d\n", j, i, pRFCalibrateInfo->DeltaSwingTableIdx_5GB_P[j][i]); DBG_871X("pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[%d][%d] = %d\n", j, i, pRFCalibrateInfo->DeltaSwingTableIdx_5GB_N[j][i]); } } #endif return rtStatus; } int phy_ParsePowerLimitTableFile( PADAPTER Adapter, char* buffer ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u32 i = 0, forCnt = 0; u8 loadingStage = 0, limitValue = 0, fraction = 0; char *szLine, *ptmp; int rtStatus = _SUCCESS; char band[10], bandwidth[10], rateSection[10], regulation[TXPWR_LMT_MAX_REGULATION_NUM][10], rfPath[10],colNumBuf[10]; u8 colNum = 0; DBG_871X("===>phy_ParsePowerLimitTableFile()\n" ); if ( Adapter->registrypriv.RegDecryptCustomFile == 1 ) phy_DecryptBBPgParaFile( Adapter, buffer); ptmp = buffer; for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) { // skip comment if ( IsCommentString( szLine ) ) { continue; } if( loadingStage == 0 ) { for ( forCnt = 0; forCnt < TXPWR_LMT_MAX_REGULATION_NUM; ++forCnt ) _rtw_memset( ( PVOID ) regulation[forCnt], 0, 10 ); _rtw_memset( ( PVOID ) band, 0, 10 ); _rtw_memset( ( PVOID ) bandwidth, 0, 10 ); _rtw_memset( ( PVOID ) rateSection, 0, 10 ); _rtw_memset( ( PVOID ) rfPath, 0, 10 ); _rtw_memset( ( PVOID ) colNumBuf, 0, 10 ); if ( szLine[0] != '#' || szLine[1] != '#' ) continue; // skip the space i = 2; while ( szLine[i] == ' ' || szLine[i] == '\t' ) ++i; szLine[--i] = ' '; // return the space in front of the regulation info // Parse the label of the table if ( ! ParseQualifiedString( szLine, &i, band, ' ', ',' ) ) { DBG_871X( "Fail to parse band!\n"); return _FAIL; } if ( ! ParseQualifiedString( szLine, &i, bandwidth, ' ', ',' ) ) { DBG_871X("Fail to parse bandwidth!\n"); return _FAIL; } if ( ! ParseQualifiedString( szLine, &i, rfPath, ' ', ',' ) ) { DBG_871X("Fail to parse rf path!\n"); return _FAIL; } if ( ! ParseQualifiedString( szLine, &i, rateSection, ' ', ',' ) ) { DBG_871X("Fail to parse rate!\n"); return _FAIL; } loadingStage = 1; } else if ( loadingStage == 1 ) { if ( szLine[0] != '#' || szLine[1] != '#' ) continue; // skip the space i = 2; while ( szLine[i] == ' ' || szLine[i] == '\t' ) ++i; if ( !eqNByte( (u8 *)(szLine + i), (u8 *)("START"), 5 ) ) { DBG_871X("Lost \"## START\" label\n"); return _FAIL; } loadingStage = 2; } else if ( loadingStage == 2 ) { if ( szLine[0] != '#' || szLine[1] != '#' ) continue; // skip the space i = 2; while ( szLine[i] == ' ' || szLine[i] == '\t' ) ++i; if ( ! ParseQualifiedString( szLine, &i, colNumBuf, '#', '#' ) ) { DBG_871X("Fail to parse column number!\n"); return _FAIL; } if ( !GetU1ByteIntegerFromStringInDecimal( colNumBuf, &colNum ) ) return _FAIL; if ( colNum > TXPWR_LMT_MAX_REGULATION_NUM ) { DBG_871X("unvalid col number %d (greater than max %d)\n", colNum, TXPWR_LMT_MAX_REGULATION_NUM ); return _FAIL; } for ( forCnt = 0; forCnt < colNum; ++forCnt ) { u8 regulation_name_cnt = 0; // skip the space while ( szLine[i] == ' ' || szLine[i] == '\t' ) ++i; while ( szLine[i] != ' ' && szLine[i] != '\t' && szLine[i] != '\0' ) regulation[forCnt][regulation_name_cnt++] = szLine[i++]; //DBG_871X("regulation %s!\n", regulation[forCnt]); if ( regulation_name_cnt == 0 ) { DBG_871X("unvalid number of regulation!\n"); return _FAIL; } } loadingStage = 3; } else if ( loadingStage == 3 ) { char channel[10] = {0}, powerLimit[10] = {0}; u8 cnt = 0; // the table ends if ( szLine[0] == '#' && szLine[1] == '#' ) { i = 2; while ( szLine[i] == ' ' || szLine[i] == '\t' ) ++i; if ( eqNByte( (u8 *)(szLine + i), (u8 *)("END"), 3 ) ) { loadingStage = 0; continue; } else { DBG_871X("Wrong format\n"); DBG_871X("<===== phy_ParsePowerLimitTableFile()\n"); return _FAIL; } } if ( ( szLine[0] != 'c' && szLine[0] != 'C' ) || ( szLine[1] != 'h' && szLine[1] != 'H' ) ) { DBG_871X("Meet wrong channel => power limt pair\n"); continue; } i = 2;// move to the location behind 'h' // load the channel number cnt = 0; while ( szLine[i] >= '0' && szLine[i] <= '9' ) { channel[cnt] = szLine[i]; ++cnt; ++i; } //DBG_871X("chnl %s!\n", channel); for ( forCnt = 0; forCnt < colNum; ++forCnt ) { // skip the space between channel number and the power limit value while ( szLine[i] == ' ' || szLine[i] == '\t' ) ++i; // load the power limit value cnt = 0; fraction = 0; _rtw_memset( ( PVOID ) powerLimit, 0, 10 ); while ( ( szLine[i] >= '0' && szLine[i] <= '9' ) || szLine[i] == '.' ) { if ( szLine[i] == '.' ){ if ( ( szLine[i+1] >= '0' && szLine[i+1] <= '9' ) ) { fraction = szLine[i+1]; i += 2; } else { DBG_871X("Wrong fraction in TXPWR_LMT.txt\n"); return _FAIL; } break; } powerLimit[cnt] = szLine[i]; ++cnt; ++i; } if ( powerLimit[0] == '\0' ) { powerLimit[0] = '6'; powerLimit[1] = '3'; i += 2; } else { if ( !GetU1ByteIntegerFromStringInDecimal( powerLimit, &limitValue ) ) return _FAIL; limitValue *= 2; cnt = 0; if ( fraction == '5' ) ++limitValue; // the value is greater or equal to 100 if ( limitValue >= 100 ) { powerLimit[cnt++] = limitValue/100 + '0'; limitValue %= 100; if ( limitValue >= 10 ) { powerLimit[cnt++] = limitValue/10 + '0'; limitValue %= 10; } else { powerLimit[cnt++] = '0'; } powerLimit[cnt++] = limitValue + '0'; } // the value is greater or equal to 10 else if ( limitValue >= 10 ) { powerLimit[cnt++] = limitValue/10 + '0'; limitValue %= 10; powerLimit[cnt++] = limitValue + '0'; } // the value is less than 10 else powerLimit[cnt++] = limitValue + '0'; powerLimit[cnt] = '\0'; } //DBG_871X("ch%s => %s\n", channel, powerLimit); // store the power limit value PHY_SetTxPowerLimit( Adapter, (u8 *)regulation[forCnt], (u8 *)band, (u8 *)bandwidth, (u8 *)rateSection, (u8 *)rfPath, (u8 *)channel, (u8 *)powerLimit ); } } else { DBG_871X("Abnormal loading stage in phy_ParsePowerLimitTableFile()!\n"); rtStatus = _FAIL; break; } } DBG_871X("<===phy_ParsePowerLimitTableFile()\n"); return rtStatus; } int PHY_ConfigRFWithPowerLimitTableParaFile( IN PADAPTER Adapter, IN char* pFileName ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); int rlen = 0, rtStatus = _FAIL; if(!(Adapter->registrypriv.load_phy_file & LOAD_RF_TXPWR_LMT_PARA_FILE)) return rtStatus; _rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN); if ((pHalData->rf_tx_pwr_lmt_len == 0) && (pHalData->rf_tx_pwr_lmt == NULL)) { rtw_merge_string(file_path_bs, PATH_LENGTH_MAX, rtw_phy_file_path, pFileName); if (rtw_is_file_readable(file_path_bs) == _TRUE) { rlen = rtw_retrive_from_file(file_path_bs, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN); if (rlen > 0) { rtStatus = _SUCCESS; pHalData->rf_tx_pwr_lmt = rtw_zvmalloc(rlen); if(pHalData->rf_tx_pwr_lmt) { _rtw_memcpy(pHalData->rf_tx_pwr_lmt, pHalData->para_file_buf, rlen); pHalData->rf_tx_pwr_lmt_len = rlen; } else { DBG_871X("%s rf_tx_pwr_lmt alloc fail !\n",__FUNCTION__); } } } } else { if ((pHalData->rf_tx_pwr_lmt_len != 0) && (pHalData->rf_tx_pwr_lmt != NULL)) { _rtw_memcpy(pHalData->para_file_buf, pHalData->rf_tx_pwr_lmt, pHalData->rf_tx_pwr_lmt_len); rtStatus = _SUCCESS; } else { DBG_871X("%s(): Critical Error !!!\n",__FUNCTION__); } } if(rtStatus == _SUCCESS) { //DBG_871X("%s(): read %s ok\n", __FUNCTION__, pFileName); rtStatus = phy_ParsePowerLimitTableFile( Adapter, pHalData->para_file_buf ); } else { DBG_871X("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName); } return rtStatus; } void phy_free_filebuf(_adapter *padapter) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); if(pHalData->mac_reg) rtw_vmfree(pHalData->mac_reg, pHalData->mac_reg_len); if(pHalData->bb_phy_reg) rtw_vmfree(pHalData->bb_phy_reg, pHalData->bb_phy_reg_len); if(pHalData->bb_agc_tab) rtw_vmfree(pHalData->bb_agc_tab, pHalData->bb_agc_tab_len); if(pHalData->bb_phy_reg_pg) rtw_vmfree(pHalData->bb_phy_reg_pg, pHalData->bb_phy_reg_pg_len); if(pHalData->bb_phy_reg_mp) rtw_vmfree(pHalData->bb_phy_reg_mp, pHalData->bb_phy_reg_mp_len); if(pHalData->rf_radio_a) rtw_vmfree(pHalData->rf_radio_a, pHalData->rf_radio_a_len); if(pHalData->rf_radio_b) rtw_vmfree(pHalData->rf_radio_b, pHalData->rf_radio_b_len); if(pHalData->rf_tx_pwr_track) rtw_vmfree(pHalData->rf_tx_pwr_track, pHalData->rf_tx_pwr_track_len); if(pHalData->rf_tx_pwr_lmt) rtw_vmfree(pHalData->rf_tx_pwr_lmt, pHalData->rf_tx_pwr_lmt_len); } #endif