rtl8192eu-linux-driver/hal/hal_halmac.c

5556 lines
124 KiB
C
Raw Normal View History

2019-11-09 10:12:08 +00:00
/******************************************************************************
*
* Copyright(c) 2015 - 2018 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#define _HAL_HALMAC_C_
#include <drv_types.h> /* PADAPTER, struct dvobj_priv, SDIO_ERR_VAL8 and etc. */
#include <hal_data.h> /* efuse, PHAL_DATA_TYPE and etc. */
#include "hal_halmac.h" /* dvobj_to_halmac() and ect. */
/*
* HALMAC take return value 0 for fail and 1 for success to replace
* _FALSE/_TRUE after V1_04_09
*/
#define RTW_HALMAC_FAIL 0
#define RTW_HALMAC_SUCCESS 1
#define DEFAULT_INDICATOR_TIMELMT 1000 /* ms */
#define MSG_PREFIX "[HALMAC]"
#define RTW_HALMAC_DLFW_MEM_NO_STOP_TX
/*
* Driver API for HALMAC operations
*/
#ifdef CONFIG_SDIO_HCI
#include <rtw_sdio.h>
static u8 _halmac_mac_reg_page0_chk(const char *func, struct dvobj_priv *dvobj, u32 offset)
{
#if defined(CONFIG_IO_CHECK_IN_ANA_LOW_CLK) && defined(CONFIG_LPS_LCLK)
struct pwrctrl_priv *pwrpriv = &dvobj->pwrctl_priv;
u32 mac_reg_offset = 0;
if (pwrpriv->pwr_mode == PS_MODE_ACTIVE)
return _TRUE;
if (pwrpriv->lps_level == LPS_NORMAL)
return _TRUE;
if (pwrpriv->rpwm >= PS_STATE_S2)
return _TRUE;
if (offset & (WLAN_IOREG_DEVICE_ID << 13)) { /*WLAN_IOREG_OFFSET*/
mac_reg_offset = offset & HALMAC_WLAN_MAC_REG_MSK;
if (mac_reg_offset < 0x100) {
RTW_ERR(FUNC_ADPT_FMT
"access MAC REG -0x%04x in PS-mode:0x%02x (rpwm:0x%02x, lps_level:0x%02x)\n",
FUNC_ADPT_ARG(dvobj_get_primary_adapter(dvobj)), mac_reg_offset,
pwrpriv->pwr_mode, pwrpriv->rpwm, pwrpriv->lps_level);
rtw_warn_on(1);
return _FALSE;
}
}
#endif
return _TRUE;
}
static u8 _halmac_sdio_cmd52_read(void *p, u32 offset)
{
struct dvobj_priv *d;
u8 val;
u8 ret;
d = (struct dvobj_priv *)p;
_halmac_mac_reg_page0_chk(__func__, d, offset);
ret = rtw_sdio_read_cmd52(d, offset, &val, 1);
if (_FAIL == ret) {
RTW_ERR("%s: I/O FAIL!\n", __FUNCTION__);
return SDIO_ERR_VAL8;
}
return val;
}
static void _halmac_sdio_cmd52_write(void *p, u32 offset, u8 val)
{
struct dvobj_priv *d;
u8 ret;
d = (struct dvobj_priv *)p;
_halmac_mac_reg_page0_chk(__func__, d, offset);
ret = rtw_sdio_write_cmd52(d, offset, &val, 1);
if (_FAIL == ret)
RTW_ERR("%s: I/O FAIL!\n", __FUNCTION__);
}
static u8 _halmac_sdio_reg_read_8(void *p, u32 offset)
{
struct dvobj_priv *d;
u8 *pbuf;
u8 val;
u8 ret;
d = (struct dvobj_priv *)p;
val = SDIO_ERR_VAL8;
_halmac_mac_reg_page0_chk(__func__, d, offset);
pbuf = rtw_zmalloc(1);
if (!pbuf)
return val;
ret = rtw_sdio_read_cmd53(d, offset, pbuf, 1);
if (ret == _FAIL) {
RTW_ERR("%s: I/O FAIL!\n", __FUNCTION__);
goto exit;
}
val = *pbuf;
exit:
rtw_mfree(pbuf, 1);
return val;
}
static u16 _halmac_sdio_reg_read_16(void *p, u32 offset)
{
struct dvobj_priv *d;
u8 *pbuf;
u16 val;
u8 ret;
d = (struct dvobj_priv *)p;
val = SDIO_ERR_VAL16;
_halmac_mac_reg_page0_chk(__func__, d, offset);
pbuf = rtw_zmalloc(2);
if (!pbuf)
return val;
ret = rtw_sdio_read_cmd53(d, offset, pbuf, 2);
if (ret == _FAIL) {
RTW_ERR("%s: I/O FAIL!\n", __FUNCTION__);
goto exit;
}
val = le16_to_cpu(*(u16 *)pbuf);
exit:
rtw_mfree(pbuf, 2);
return val;
}
static u32 _halmac_sdio_reg_read_32(void *p, u32 offset)
{
struct dvobj_priv *d;
u8 *pbuf;
u32 val;
u8 ret;
d = (struct dvobj_priv *)p;
val = SDIO_ERR_VAL32;
_halmac_mac_reg_page0_chk(__func__, d, offset);
pbuf = rtw_zmalloc(4);
if (!pbuf)
return val;
ret = rtw_sdio_read_cmd53(d, offset, pbuf, 4);
if (ret == _FAIL) {
RTW_ERR("%s: I/O FAIL!\n", __FUNCTION__);
goto exit;
}
val = le32_to_cpu(*(u32 *)pbuf);
exit:
rtw_mfree(pbuf, 4);
return val;
}
static u8 _halmac_sdio_reg_read_n(void *p, u32 offset, u32 size, u8 *data)
{
struct dvobj_priv *d = (struct dvobj_priv *)p;
u8 *pbuf;
u8 ret;
u8 rst = RTW_HALMAC_FAIL;
u32 sdio_read_size;
if (!data)
return rst;
sdio_read_size = RND4(size);
sdio_read_size = rtw_sdio_cmd53_align_size(d, sdio_read_size);
pbuf = rtw_zmalloc(sdio_read_size);
if (!pbuf)
return rst;
ret = rtw_sdio_read_cmd53(d, offset, pbuf, sdio_read_size);
if (ret == _FAIL) {
RTW_ERR("%s: I/O FAIL!\n", __FUNCTION__);
goto exit;
}
_rtw_memcpy(data, pbuf, size);
rst = RTW_HALMAC_SUCCESS;
exit:
rtw_mfree(pbuf, sdio_read_size);
return rst;
}
static void _halmac_sdio_reg_write_8(void *p, u32 offset, u8 val)
{
struct dvobj_priv *d;
u8 *pbuf;
u8 ret;
d = (struct dvobj_priv *)p;
_halmac_mac_reg_page0_chk(__func__, d, offset);
pbuf = rtw_zmalloc(1);
if (!pbuf)
return;
_rtw_memcpy(pbuf, &val, 1);
ret = rtw_sdio_write_cmd53(d, offset, pbuf, 1);
if (ret == _FAIL)
RTW_ERR("%s: I/O FAIL!\n", __FUNCTION__);
rtw_mfree(pbuf, 1);
}
static void _halmac_sdio_reg_write_16(void *p, u32 offset, u16 val)
{
struct dvobj_priv *d;
u8 *pbuf;
u8 ret;
d = (struct dvobj_priv *)p;
_halmac_mac_reg_page0_chk(__func__, d, offset);
val = cpu_to_le16(val);
pbuf = rtw_zmalloc(2);
if (!pbuf)
return;
_rtw_memcpy(pbuf, &val, 2);
ret = rtw_sdio_write_cmd53(d, offset, pbuf, 2);
if (ret == _FAIL)
RTW_ERR("%s: I/O FAIL!\n", __FUNCTION__);
rtw_mfree(pbuf, 2);
}
static void _halmac_sdio_reg_write_32(void *p, u32 offset, u32 val)
{
struct dvobj_priv *d;
u8 *pbuf;
u8 ret;
d = (struct dvobj_priv *)p;
_halmac_mac_reg_page0_chk(__func__, d, offset);
val = cpu_to_le32(val);
pbuf = rtw_zmalloc(4);
if (!pbuf)
return;
_rtw_memcpy(pbuf, &val, 4);
ret = rtw_sdio_write_cmd53(d, offset, pbuf, 4);
if (ret == _FAIL)
RTW_ERR("%s: I/O FAIL!\n", __FUNCTION__);
rtw_mfree(pbuf, 4);
}
static u8 _halmac_sdio_read_cia(void *p, u32 offset)
{
struct dvobj_priv *d;
u8 data = 0;
u8 ret;
d = (struct dvobj_priv *)p;
ret = rtw_sdio_f0_read(d, offset, &data, 1);
if (ret == _FAIL)
RTW_ERR("%s: I/O FAIL!\n", __FUNCTION__);
return data;
}
#else /* !CONFIG_SDIO_HCI */
static u8 _halmac_reg_read_8(void *p, u32 offset)
{
struct dvobj_priv *d;
PADAPTER adapter;
d = (struct dvobj_priv *)p;
adapter = dvobj_get_primary_adapter(d);
return rtw_read8(adapter, offset);
}
static u16 _halmac_reg_read_16(void *p, u32 offset)
{
struct dvobj_priv *d;
PADAPTER adapter;
d = (struct dvobj_priv *)p;
adapter = dvobj_get_primary_adapter(d);
return rtw_read16(adapter, offset);
}
static u32 _halmac_reg_read_32(void *p, u32 offset)
{
struct dvobj_priv *d;
PADAPTER adapter;
d = (struct dvobj_priv *)p;
adapter = dvobj_get_primary_adapter(d);
return rtw_read32(adapter, offset);
}
static void _halmac_reg_write_8(void *p, u32 offset, u8 val)
{
struct dvobj_priv *d;
PADAPTER adapter;
int err;
d = (struct dvobj_priv *)p;
adapter = dvobj_get_primary_adapter(d);
err = rtw_write8(adapter, offset, val);
if (err == _FAIL)
RTW_ERR("%s: I/O FAIL!\n", __FUNCTION__);
}
static void _halmac_reg_write_16(void *p, u32 offset, u16 val)
{
struct dvobj_priv *d;
PADAPTER adapter;
int err;
d = (struct dvobj_priv *)p;
adapter = dvobj_get_primary_adapter(d);
err = rtw_write16(adapter, offset, val);
if (err == _FAIL)
RTW_ERR("%s: I/O FAIL!\n", __FUNCTION__);
}
static void _halmac_reg_write_32(void *p, u32 offset, u32 val)
{
struct dvobj_priv *d;
PADAPTER adapter;
int err;
d = (struct dvobj_priv *)p;
adapter = dvobj_get_primary_adapter(d);
err = rtw_write32(adapter, offset, val);
if (err == _FAIL)
RTW_ERR("%s: I/O FAIL!\n", __FUNCTION__);
}
#endif /* !CONFIG_SDIO_HCI */
static u8 _halmac_mfree(void *p, void *buffer, u32 size)
{
rtw_mfree(buffer, size);
return RTW_HALMAC_SUCCESS;
}
static void *_halmac_malloc(void *p, u32 size)
{
return rtw_zmalloc(size);
}
static u8 _halmac_memcpy(void *p, void *dest, void *src, u32 size)
{
_rtw_memcpy(dest, src, size);
return RTW_HALMAC_SUCCESS;
}
static u8 _halmac_memset(void *p, void *addr, u8 value, u32 size)
{
memset(addr, value, size);
2019-11-09 10:12:08 +00:00
return RTW_HALMAC_SUCCESS;
}
static void _halmac_udelay(void *p, u32 us)
{
/* Most hardware polling wait time < 50us) */
if (us <= 50)
udelay(us);
2019-11-09 10:12:08 +00:00
else if (us <= 1000)
rtw_usleep_os(us);
else
msleep(RTW_DIV_ROUND_UP(us, 1000));
2019-11-09 10:12:08 +00:00
}
static u8 _halmac_mutex_init(void *p, HALMAC_MUTEX *pMutex)
{
_rtw_mutex_init(pMutex);
return RTW_HALMAC_SUCCESS;
}
static u8 _halmac_mutex_deinit(void *p, HALMAC_MUTEX *pMutex)
{
_rtw_mutex_free(pMutex);
return RTW_HALMAC_SUCCESS;
}
static u8 _halmac_mutex_lock(void *p, HALMAC_MUTEX *pMutex)
{
int err;
err = _enter_critical_mutex(pMutex, NULL);
if (err)
return RTW_HALMAC_FAIL;
return RTW_HALMAC_SUCCESS;
}
static u8 _halmac_mutex_unlock(void *p, HALMAC_MUTEX *pMutex)
{
_exit_critical_mutex(pMutex, NULL);
return RTW_HALMAC_SUCCESS;
}
#ifndef CONFIG_SDIO_HCI
#define DBG_MSG_FILTER
#endif
#ifdef DBG_MSG_FILTER
static u8 is_msg_allowed(uint drv_lv, u8 msg_lv)
{
switch (drv_lv) {
case _DRV_NONE_:
return _FALSE;
case _DRV_ALWAYS_:
if (msg_lv > HALMAC_DBG_ALWAYS)
return _FALSE;
break;
case _DRV_ERR_:
if (msg_lv > HALMAC_DBG_ERR)
return _FALSE;
break;
case _DRV_WARNING_:
if (msg_lv > HALMAC_DBG_WARN)
return _FALSE;
break;
case _DRV_INFO_:
if (msg_lv >= HALMAC_DBG_TRACE)
return _FALSE;
break;
}
return _TRUE;
}
#endif /* DBG_MSG_FILTER */
static u8 _halmac_msg_print(void *p, u32 msg_type, u8 msg_level, s8 *fmt, ...)
{
#define MSG_LEN 100
va_list args;
u8 str[MSG_LEN] = {0};
#ifdef DBG_MSG_FILTER
uint drv_level = _DRV_NONE_;
#endif
int err;
u8 ret = RTW_HALMAC_SUCCESS;
#ifdef DBG_MSG_FILTER
#ifdef CONFIG_RTW_DEBUG
drv_level = rtw_drv_log_level;
#endif
if (is_msg_allowed(drv_level, msg_level) == _FALSE)
return ret;
#endif
str[0] = '\n';
va_start(args, fmt);
err = vsnprintf(str, MSG_LEN, fmt, args);
va_end(args);
/* An output error is encountered */
if (err < 0)
return RTW_HALMAC_FAIL;
/* Output may be truncated due to size limit */
if ((err == (MSG_LEN - 1)) && (str[MSG_LEN - 2] != '\n'))
ret = RTW_HALMAC_FAIL;
if (msg_level == HALMAC_DBG_ALWAYS)
RTW_PRINT(MSG_PREFIX "%s", str);
else if (msg_level <= HALMAC_DBG_ERR)
RTW_ERR(MSG_PREFIX "%s", str);
else if (msg_level <= HALMAC_DBG_WARN)
RTW_WARN(MSG_PREFIX "%s", str);
else
RTW_DBG(MSG_PREFIX "%s", str);
return ret;
}
static u8 _halmac_buff_print(void *p, u32 msg_type, u8 msg_level, s8 *buf, u32 size)
{
if (msg_level <= HALMAC_DBG_WARN)
RTW_INFO_DUMP(MSG_PREFIX, buf, size);
else
RTW_DBG_DUMP(MSG_PREFIX, buf, size);
return RTW_HALMAC_SUCCESS;
}
const char *const RTW_HALMAC_FEATURE_NAME[] = {
"HALMAC_FEATURE_CFG_PARA",
"HALMAC_FEATURE_DUMP_PHYSICAL_EFUSE",
"HALMAC_FEATURE_DUMP_LOGICAL_EFUSE",
"HALMAC_FEATURE_UPDATE_PACKET",
"HALMAC_FEATURE_UPDATE_DATAPACK",
"HALMAC_FEATURE_RUN_DATAPACK",
"HALMAC_FEATURE_CHANNEL_SWITCH",
"HALMAC_FEATURE_IQK",
"HALMAC_FEATURE_POWER_TRACKING",
"HALMAC_FEATURE_PSD",
"HALMAC_FEATURE_FW_SNDING",
"HALMAC_FEATURE_ALL"
};
static inline u8 is_valid_id_status(enum halmac_feature_id id, enum halmac_cmd_process_status status)
{
switch (id) {
case HALMAC_FEATURE_CFG_PARA:
RTW_DBG("%s: %s\n", __FUNCTION__, RTW_HALMAC_FEATURE_NAME[id]);
break;
case HALMAC_FEATURE_DUMP_PHYSICAL_EFUSE:
RTW_INFO("%s: %s\n", __FUNCTION__, RTW_HALMAC_FEATURE_NAME[id]);
if (HALMAC_CMD_PROCESS_DONE != status)
RTW_INFO("%s: id(%d) unspecified status(%d)!\n",
__FUNCTION__, id, status);
break;
case HALMAC_FEATURE_DUMP_LOGICAL_EFUSE:
RTW_INFO("%s: %s\n", __FUNCTION__, RTW_HALMAC_FEATURE_NAME[id]);
if (HALMAC_CMD_PROCESS_DONE != status)
RTW_INFO("%s: id(%d) unspecified status(%d)!\n",
__FUNCTION__, id, status);
break;
case HALMAC_FEATURE_UPDATE_PACKET:
RTW_INFO("%s: %s\n", __FUNCTION__, RTW_HALMAC_FEATURE_NAME[id]);
if (status != HALMAC_CMD_PROCESS_DONE)
RTW_INFO("%s: id(%d) unspecified status(%d)!\n",
__FUNCTION__, id, status);
break;
case HALMAC_FEATURE_UPDATE_DATAPACK:
RTW_INFO("%s: %s\n", __FUNCTION__, RTW_HALMAC_FEATURE_NAME[id]);
break;
case HALMAC_FEATURE_RUN_DATAPACK:
RTW_INFO("%s: %s\n", __FUNCTION__, RTW_HALMAC_FEATURE_NAME[id]);
break;
case HALMAC_FEATURE_CHANNEL_SWITCH:
RTW_INFO("%s: %s\n", __FUNCTION__, RTW_HALMAC_FEATURE_NAME[id]);
if ((status != HALMAC_CMD_PROCESS_DONE) && (status != HALMAC_CMD_PROCESS_RCVD))
RTW_INFO("%s: id(%d) unspecified status(%d)!\n",
__FUNCTION__, id, status);
if (status == HALMAC_CMD_PROCESS_DONE)
return _FALSE;
break;
case HALMAC_FEATURE_IQK:
RTW_INFO("%s: %s\n", __FUNCTION__, RTW_HALMAC_FEATURE_NAME[id]);
break;
case HALMAC_FEATURE_POWER_TRACKING:
RTW_INFO("%s: %s\n", __FUNCTION__, RTW_HALMAC_FEATURE_NAME[id]);
break;
case HALMAC_FEATURE_PSD:
RTW_INFO("%s: %s\n", __FUNCTION__, RTW_HALMAC_FEATURE_NAME[id]);
break;
case HALMAC_FEATURE_FW_SNDING:
RTW_INFO("%s: %s\n", __FUNCTION__, RTW_HALMAC_FEATURE_NAME[id]);
break;
case HALMAC_FEATURE_ALL:
RTW_INFO("%s: %s\n", __FUNCTION__, RTW_HALMAC_FEATURE_NAME[id]);
break;
default:
RTW_ERR("%s: unknown feature id(%d)\n", __FUNCTION__, id);
return _FALSE;
}
return _TRUE;
}
static int init_halmac_event_with_waittime(struct dvobj_priv *d, enum halmac_feature_id id, u8 *buf, u32 size, u32 time)
{
struct submit_ctx *sctx;
if (!d->hmpriv.indicator[id].sctx) {
sctx = (struct submit_ctx *)rtw_zmalloc(sizeof(*sctx));
if (!sctx)
return -1;
} else {
RTW_WARN("%s: id(%d) sctx is not NULL!!\n", __FUNCTION__, id);
sctx = d->hmpriv.indicator[id].sctx;
d->hmpriv.indicator[id].sctx = NULL;
}
rtw_sctx_init(sctx, time);
d->hmpriv.indicator[id].buffer = buf;
d->hmpriv.indicator[id].buf_size = size;
d->hmpriv.indicator[id].ret_size = 0;
d->hmpriv.indicator[id].status = 0;
/* fill sctx at least to sure other variables are all ready! */
d->hmpriv.indicator[id].sctx = sctx;
return 0;
}
static inline int init_halmac_event(struct dvobj_priv *d, enum halmac_feature_id id, u8 *buf, u32 size)
{
return init_halmac_event_with_waittime(d, id, buf, size, DEFAULT_INDICATOR_TIMELMT);
}
static void free_halmac_event(struct dvobj_priv *d, enum halmac_feature_id id)
{
struct submit_ctx *sctx;
if (!d->hmpriv.indicator[id].sctx)
return;
sctx = d->hmpriv.indicator[id].sctx;
d->hmpriv.indicator[id].sctx = NULL;
rtw_mfree((u8 *)sctx, sizeof(*sctx));
}
static int wait_halmac_event(struct dvobj_priv *d, enum halmac_feature_id id)
{
struct halmac_adapter *mac;
struct halmac_api *api;
struct submit_ctx *sctx;
int ret;
sctx = d->hmpriv.indicator[id].sctx;
if (!sctx)
return -1;
ret = rtw_sctx_wait(sctx, RTW_HALMAC_FEATURE_NAME[id]);
free_halmac_event(d, id);
if (_SUCCESS == ret)
return 0;
/* timeout! We have to reset halmac state */
RTW_ERR("%s: Wait id(%d, %s) TIMEOUT! Reset HALMAC state!\n",
__FUNCTION__, id, RTW_HALMAC_FEATURE_NAME[id]);
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
api->halmac_reset_feature(mac, id);
return -1;
}
/*
* Return:
* Always return RTW_HALMAC_SUCCESS, HALMAC don't care the return value.
*/
static u8 _halmac_event_indication(void *p, enum halmac_feature_id feature_id, enum halmac_cmd_process_status process_status, u8 *buf, u32 size)
{
struct dvobj_priv *d;
PADAPTER adapter;
PHAL_DATA_TYPE hal;
struct halmac_indicator *tbl, *indicator;
struct submit_ctx *sctx;
u32 cpsz;
u8 ret;
d = (struct dvobj_priv *)p;
adapter = dvobj_get_primary_adapter(d);
hal = GET_HAL_DATA(adapter);
tbl = d->hmpriv.indicator;
/* Filter(Skip) middle status indication */
ret = is_valid_id_status(feature_id, process_status);
if (_FALSE == ret)
goto exit;
indicator = &tbl[feature_id];
indicator->status = process_status;
indicator->ret_size = size;
if (!indicator->sctx) {
RTW_WARN("%s: No feature id(%d, %s) waiting!!\n", __FUNCTION__, feature_id, RTW_HALMAC_FEATURE_NAME[feature_id]);
goto exit;
}
sctx = indicator->sctx;
if (HALMAC_CMD_PROCESS_ERROR == process_status) {
RTW_ERR("%s: Something wrong id(%d, %s)!!\n", __FUNCTION__, feature_id, RTW_HALMAC_FEATURE_NAME[feature_id]);
rtw_sctx_done_err(&sctx, RTW_SCTX_DONE_UNKNOWN);
goto exit;
}
if (size > indicator->buf_size) {
RTW_WARN("%s: id(%d, %s) buffer is not enough(%d<%d), data will be truncated!\n",
__FUNCTION__, feature_id, RTW_HALMAC_FEATURE_NAME[feature_id], indicator->buf_size, size);
cpsz = indicator->buf_size;
} else {
cpsz = size;
}
if (cpsz && indicator->buffer)
_rtw_memcpy(indicator->buffer, buf, cpsz);
rtw_sctx_done(&sctx);
exit:
return RTW_HALMAC_SUCCESS;
}
struct halmac_platform_api rtw_halmac_platform_api = {
/* R/W register */
#ifdef CONFIG_SDIO_HCI
.SDIO_CMD52_READ = _halmac_sdio_cmd52_read,
.SDIO_CMD53_READ_8 = _halmac_sdio_reg_read_8,
.SDIO_CMD53_READ_16 = _halmac_sdio_reg_read_16,
.SDIO_CMD53_READ_32 = _halmac_sdio_reg_read_32,
.SDIO_CMD53_READ_N = _halmac_sdio_reg_read_n,
.SDIO_CMD52_WRITE = _halmac_sdio_cmd52_write,
.SDIO_CMD53_WRITE_8 = _halmac_sdio_reg_write_8,
.SDIO_CMD53_WRITE_16 = _halmac_sdio_reg_write_16,
.SDIO_CMD53_WRITE_32 = _halmac_sdio_reg_write_32,
.SDIO_CMD52_CIA_READ = _halmac_sdio_read_cia,
#endif /* CONFIG_SDIO_HCI */
#if defined(CONFIG_USB_HCI) || defined(CONFIG_PCI_HCI)
.REG_READ_8 = _halmac_reg_read_8,
.REG_READ_16 = _halmac_reg_read_16,
.REG_READ_32 = _halmac_reg_read_32,
.REG_WRITE_8 = _halmac_reg_write_8,
.REG_WRITE_16 = _halmac_reg_write_16,
.REG_WRITE_32 = _halmac_reg_write_32,
#endif /* CONFIG_USB_HCI || CONFIG_PCI_HCI */
/* Write data */
#if 0
/* impletement in HAL-IC level */
.SEND_RSVD_PAGE = sdio_write_data_rsvd_page,
.SEND_H2C_PKT = sdio_write_data_h2c,
#endif
/* Memory allocate */
.RTL_FREE = _halmac_mfree,
.RTL_MALLOC = _halmac_malloc,
.RTL_MEMCPY = _halmac_memcpy,
.RTL_MEMSET = _halmac_memset,
/* Sleep */
.RTL_DELAY_US = _halmac_udelay,
/* Process Synchronization */
.MUTEX_INIT = _halmac_mutex_init,
.MUTEX_DEINIT = _halmac_mutex_deinit,
.MUTEX_LOCK = _halmac_mutex_lock,
.MUTEX_UNLOCK = _halmac_mutex_unlock,
.MSG_PRINT = _halmac_msg_print,
.BUFF_PRINT = _halmac_buff_print,
.EVENT_INDICATION = _halmac_event_indication,
};
u8 rtw_halmac_read8(struct intf_hdl *pintfhdl, u32 addr)
{
struct halmac_adapter *mac;
struct halmac_api *api;
/* WARNING: pintf_dev should not be null! */
mac = dvobj_to_halmac(pintfhdl->pintf_dev);
api = HALMAC_GET_API(mac);
return api->halmac_reg_read_8(mac, addr);
}
u16 rtw_halmac_read16(struct intf_hdl *pintfhdl, u32 addr)
{
struct halmac_adapter *mac;
struct halmac_api *api;
/* WARNING: pintf_dev should not be null! */
mac = dvobj_to_halmac(pintfhdl->pintf_dev);
api = HALMAC_GET_API(mac);
return api->halmac_reg_read_16(mac, addr);
}
u32 rtw_halmac_read32(struct intf_hdl *pintfhdl, u32 addr)
{
struct halmac_adapter *mac;
struct halmac_api *api;
/* WARNING: pintf_dev should not be null! */
mac = dvobj_to_halmac(pintfhdl->pintf_dev);
api = HALMAC_GET_API(mac);
return api->halmac_reg_read_32(mac, addr);
}
static void _read_register(struct dvobj_priv *d, u32 addr, u32 cnt, u8 *buf)
{
#if 1
struct _ADAPTER *a;
u32 i, n;
u16 val16;
u32 val32;
a = dvobj_get_primary_adapter(d);
i = addr & 0x3;
/* Handle address not start from 4 bytes alignment case */
if (i) {
val32 = cpu_to_le32(rtw_read32(a, addr & ~0x3));
n = 4 - i;
_rtw_memcpy(buf, ((u8 *)&val32) + i, n);
i = n;
cnt -= n;
}
while (cnt) {
if (cnt >= 4)
n = 4;
else if (cnt >= 2)
n = 2;
else
n = 1;
cnt -= n;
switch (n) {
case 1:
buf[i] = rtw_read8(a, addr+i);
i++;
break;
case 2:
val16 = cpu_to_le16(rtw_read16(a, addr+i));
_rtw_memcpy(&buf[i], &val16, 2);
i += 2;
break;
case 4:
val32 = cpu_to_le32(rtw_read32(a, addr+i));
_rtw_memcpy(&buf[i], &val32, 4);
i += 4;
break;
}
}
#else
struct _ADAPTER *a;
u32 i;
a = dvobj_get_primary_adapter(d);
for (i = 0; i < cnt; i++)
buf[i] = rtw_read8(a, addr + i);
#endif
}
#ifdef CONFIG_SDIO_HCI
static int _sdio_read_local(struct dvobj_priv *d, u32 addr, u32 cnt, u8 *buf)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
if (buf == NULL)
return -1;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
status = api->halmac_reg_sdio_cmd53_read_n(mac, addr, cnt, buf);
if (status != HALMAC_RET_SUCCESS) {
RTW_ERR("%s: addr=0x%08x cnt=%d err=%d\n",
__FUNCTION__, addr, cnt, status);
return -1;
}
return 0;
}
#endif /* CONFIG_SDIO_HCI */
void rtw_halmac_read_mem(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem)
{
struct dvobj_priv *d;
if (pmem == NULL) {
RTW_ERR("pmem is NULL\n");
return;
}
d = pintfhdl->pintf_dev;
#ifdef CONFIG_SDIO_HCI
if (addr & 0xFFFF0000) {
int err = 0;
err = _sdio_read_local(d, addr, cnt, pmem);
if (!err)
return;
}
#endif /* CONFIG_SDIO_HCI */
_read_register(d, addr, cnt, pmem);
}
#ifdef CONFIG_SDIO_INDIRECT_ACCESS
u8 rtw_halmac_iread8(struct intf_hdl *pintfhdl, u32 addr)
{
struct halmac_adapter *mac;
struct halmac_api *api;
/* WARNING: pintf_dev should not be null! */
mac = dvobj_to_halmac(pintfhdl->pintf_dev);
api = HALMAC_GET_API(mac);
/*return api->halmac_reg_read_indirect_8(mac, addr);*/
return api->halmac_reg_read_8(mac, addr);
}
u16 rtw_halmac_iread16(struct intf_hdl *pintfhdl, u32 addr)
{
struct halmac_adapter *mac;
struct halmac_api *api;
u16 val16 = 0;
/* WARNING: pintf_dev should not be null! */
mac = dvobj_to_halmac(pintfhdl->pintf_dev);
api = HALMAC_GET_API(mac);
/*return api->halmac_reg_read_indirect_16(mac, addr);*/
return api->halmac_reg_read_16(mac, addr);
}
u32 rtw_halmac_iread32(struct intf_hdl *pintfhdl, u32 addr)
{
struct halmac_adapter *mac;
struct halmac_api *api;
/* WARNING: pintf_dev should not be null! */
mac = dvobj_to_halmac(pintfhdl->pintf_dev);
api = HALMAC_GET_API(mac);
return api->halmac_reg_read_indirect_32(mac, addr);
}
#endif /* CONFIG_SDIO_INDIRECT_ACCESS */
int rtw_halmac_write8(struct intf_hdl *pintfhdl, u32 addr, u8 value)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
/* WARNING: pintf_dev should not be null! */
mac = dvobj_to_halmac(pintfhdl->pintf_dev);
api = HALMAC_GET_API(mac);
status = api->halmac_reg_write_8(mac, addr, value);
if (status == HALMAC_RET_SUCCESS)
return 0;
return -1;
}
int rtw_halmac_write16(struct intf_hdl *pintfhdl, u32 addr, u16 value)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
/* WARNING: pintf_dev should not be null! */
mac = dvobj_to_halmac(pintfhdl->pintf_dev);
api = HALMAC_GET_API(mac);
status = api->halmac_reg_write_16(mac, addr, value);
if (status == HALMAC_RET_SUCCESS)
return 0;
return -1;
}
int rtw_halmac_write32(struct intf_hdl *pintfhdl, u32 addr, u32 value)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
/* WARNING: pintf_dev should not be null! */
mac = dvobj_to_halmac(pintfhdl->pintf_dev);
api = HALMAC_GET_API(mac);
status = api->halmac_reg_write_32(mac, addr, value);
if (status == HALMAC_RET_SUCCESS)
return 0;
return -1;
}
static int init_write_rsvd_page_size(struct dvobj_priv *d)
{
struct halmac_adapter *mac;
struct halmac_api *api;
u32 size = 0;
struct halmac_ofld_func_info ofld_info;
enum halmac_ret_status status;
int err = 0;
#ifdef CONFIG_USB_HCI
/* for USB do not exceed MAX_CMDBUF_SZ */
size = 0x1000;
#elif defined(CONFIG_PCI_HCI)
size = MAX_CMDBUF_SZ - TXDESC_OFFSET;
#elif defined(CONFIG_SDIO_HCI)
size = 0x7000; /* 28KB */
#endif
/* If size==0, use HALMAC default setting and don't call any function */
if (!size)
return 0;
err = rtw_halmac_set_max_dl_fw_size(d, size);
if (err) {
RTW_ERR("%s: Fail to set max download fw size!\n", __FUNCTION__);
return -1;
}
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
memset(&ofld_info, 0, sizeof(ofld_info));
2019-11-09 10:12:08 +00:00
ofld_info.halmac_malloc_max_sz = 0xFFFFFFFF;
ofld_info.rsvd_pg_drv_buf_max_sz = size;
status = api->halmac_ofld_func_cfg(mac, &ofld_info);
if (status != HALMAC_RET_SUCCESS) {
RTW_ERR("%s: Fail to config offload parameters!\n", __FUNCTION__);
return -1;
}
return 0;
}
static int init_priv(struct halmacpriv *priv)
{
struct halmac_indicator *indicator;
u32 count, size;
if (priv->indicator)
RTW_WARN("%s: HALMAC private data is not CLEAR!\n", __FUNCTION__);
count = HALMAC_FEATURE_ALL + 1;
size = sizeof(*indicator) * count;
indicator = (struct halmac_indicator *)rtw_zmalloc(size);
if (!indicator)
return -1;
priv->indicator = indicator;
return 0;
}
static void deinit_priv(struct halmacpriv *priv)
{
struct halmac_indicator *indicator;
indicator = priv->indicator;
priv->indicator = NULL;
if (indicator) {
u32 count, size;
count = HALMAC_FEATURE_ALL + 1;
#ifdef CONFIG_RTW_DEBUG
{
struct submit_ctx *sctx;
u32 i;
for (i = 0; i < count; i++) {
if (!indicator[i].sctx)
continue;
RTW_WARN("%s: %s id(%d) sctx still exist!!\n",
__FUNCTION__, RTW_HALMAC_FEATURE_NAME[i], i);
sctx = indicator[i].sctx;
indicator[i].sctx = NULL;
rtw_mfree((u8 *)sctx, sizeof(*sctx));
}
}
#endif /* !CONFIG_RTW_DEBUG */
size = sizeof(*indicator) * count;
rtw_mfree((u8 *)indicator, size);
}
}
#ifdef CONFIG_SDIO_HCI
static enum halmac_sdio_spec_ver _sdio_ver_drv2halmac(struct dvobj_priv *d)
{
bool v3;
enum halmac_sdio_spec_ver ver;
v3 = rtw_is_sdio30(dvobj_get_primary_adapter(d));
if (v3)
ver = HALMAC_SDIO_SPEC_VER_3_00;
else
ver = HALMAC_SDIO_SPEC_VER_2_00;
return ver;
}
#endif /* CONFIG_SDIO_HCI */
void rtw_halmac_get_version(char *str, u32 len)
{
enum halmac_ret_status status;
struct halmac_ver ver;
status = halmac_get_version(&ver);
if (status != HALMAC_RET_SUCCESS)
return;
rtw_sprintf(str, len, "V%d_%02d_%02d",
ver.major_ver, ver.prototype_ver, ver.minor_ver);
}
int rtw_halmac_init_adapter(struct dvobj_priv *d, struct halmac_platform_api *pf_api)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_interface intf;
enum halmac_ret_status status;
int err = 0;
#ifdef CONFIG_SDIO_HCI
struct halmac_sdio_hw_info info;
#endif /* CONFIG_SDIO_HCI */
halmac = dvobj_to_halmac(d);
if (halmac) {
RTW_WARN("%s: initialize already completed!\n", __FUNCTION__);
goto error;
}
err = init_priv(&d->hmpriv);
if (err)
goto error;
#ifdef CONFIG_SDIO_HCI
intf = HALMAC_INTERFACE_SDIO;
#elif defined(CONFIG_USB_HCI)
intf = HALMAC_INTERFACE_USB;
#elif defined(CONFIG_PCI_HCI)
intf = HALMAC_INTERFACE_PCIE;
#else
#warning "INTERFACE(CONFIG_XXX_HCI) not be defined!!"
intf = HALMAC_INTERFACE_UNDEFINE;
#endif
status = halmac_init_adapter(d, pf_api, intf, &halmac, &api);
if (HALMAC_RET_SUCCESS != status) {
RTW_ERR("%s: halmac_init_adapter fail!(status=%d)\n", __FUNCTION__, status);
err = -1;
if (halmac)
goto deinit;
goto free;
}
dvobj_set_halmac(d, halmac);
status = api->halmac_interface_integration_tuning(halmac);
if (status != HALMAC_RET_SUCCESS) {
RTW_ERR("%s: halmac_interface_integration_tuning fail!(status=%d)\n", __FUNCTION__, status);
err = -1;
goto deinit;
}
status = api->halmac_phy_cfg(halmac, HALMAC_INTF_PHY_PLATFORM_ALL);
if (status != HALMAC_RET_SUCCESS) {
RTW_ERR("%s: halmac_phy_cfg fail!(status=%d)\n", __FUNCTION__, status);
err = -1;
goto deinit;
}
init_write_rsvd_page_size(d);
#ifdef CONFIG_SDIO_HCI
memset(&info, 0, sizeof(info));
2019-11-09 10:12:08 +00:00
info.spec_ver = _sdio_ver_drv2halmac(d);
/* Convert clock speed unit to MHz from Hz */
info.clock_speed = RTW_DIV_ROUND_UP(rtw_sdio_get_clock(d), 1000000);
info.block_size = rtw_sdio_get_block_size(d);
RTW_DBG("%s: SDIO ver=%u clock=%uMHz blk_size=%u bytes\n",
__FUNCTION__, info.spec_ver+2, info.clock_speed,
info.block_size);
status = api->halmac_sdio_hw_info(halmac, &info);
if (status != HALMAC_RET_SUCCESS) {
RTW_ERR("%s: halmac_sdio_hw_info fail!(status=%d)\n",
__FUNCTION__, status);
err = -1;
goto deinit;
}
#endif /* CONFIG_SDIO_HCI */
return 0;
deinit:
status = halmac_deinit_adapter(halmac);
dvobj_set_halmac(d, NULL);
if (status != HALMAC_RET_SUCCESS)
RTW_ERR("%s: halmac_deinit_adapter fail!(status=%d)\n",
__FUNCTION__, status);
free:
deinit_priv(&d->hmpriv);
error:
return err;
}
int rtw_halmac_deinit_adapter(struct dvobj_priv *d)
{
struct halmac_adapter *halmac;
enum halmac_ret_status status;
int err = 0;
halmac = dvobj_to_halmac(d);
if (halmac) {
status = halmac_deinit_adapter(halmac);
dvobj_set_halmac(d, NULL);
if (status != HALMAC_RET_SUCCESS)
err = -1;
}
deinit_priv(&d->hmpriv);
return err;
}
static inline enum halmac_portid _hw_port_drv2halmac(enum _hw_port hwport)
{
enum halmac_portid port = HALMAC_PORTID_NUM;
switch (hwport) {
case HW_PORT0:
port = HALMAC_PORTID0;
break;
case HW_PORT1:
port = HALMAC_PORTID1;
break;
case HW_PORT2:
port = HALMAC_PORTID2;
break;
case HW_PORT3:
port = HALMAC_PORTID3;
break;
case HW_PORT4:
port = HALMAC_PORTID4;
break;
default:
break;
}
return port;
}
static enum halmac_network_type_select _network_type_drv2halmac(u8 type)
{
enum halmac_network_type_select network = HALMAC_NETWORK_UNDEFINE;
switch (type) {
case _HW_STATE_NOLINK_:
case _HW_STATE_MONITOR_:
network = HALMAC_NETWORK_NO_LINK;
break;
case _HW_STATE_ADHOC_:
network = HALMAC_NETWORK_ADHOC;
break;
case _HW_STATE_STATION_:
network = HALMAC_NETWORK_INFRASTRUCTURE;
break;
case _HW_STATE_AP_:
network = HALMAC_NETWORK_AP;
break;
}
return network;
}
static u8 _network_type_halmac2drv(enum halmac_network_type_select network)
{
u8 type = _HW_STATE_NOLINK_;
switch (network) {
case HALMAC_NETWORK_NO_LINK:
case HALMAC_NETWORK_UNDEFINE:
type = _HW_STATE_NOLINK_;
break;
case HALMAC_NETWORK_ADHOC:
type = _HW_STATE_ADHOC_;
break;
case HALMAC_NETWORK_INFRASTRUCTURE:
type = _HW_STATE_STATION_;
break;
case HALMAC_NETWORK_AP:
type = _HW_STATE_AP_;
break;
}
return type;
}
static void _beacon_ctrl_halmac2drv(struct halmac_bcn_ctrl *ctrl,
struct rtw_halmac_bcn_ctrl *drv_ctrl)
{
drv_ctrl->rx_bssid_fit = ctrl->dis_rx_bssid_fit ? 0 : 1;
drv_ctrl->txbcn_rpt = ctrl->en_txbcn_rpt ? 1 : 0;
drv_ctrl->tsf_update = ctrl->dis_tsf_udt ? 0 : 1;
drv_ctrl->enable_bcn = ctrl->en_bcn ? 1 : 0;
drv_ctrl->rxbcn_rpt = ctrl->en_rxbcn_rpt ? 1 : 0;
drv_ctrl->p2p_ctwin = ctrl->en_p2p_ctwin ? 1 : 0;
drv_ctrl->p2p_bcn_area = ctrl->en_p2p_bcn_area ? 1 : 0;
}
static void _beacon_ctrl_drv2halmac(struct rtw_halmac_bcn_ctrl *drv_ctrl,
struct halmac_bcn_ctrl *ctrl)
{
ctrl->dis_rx_bssid_fit = drv_ctrl->rx_bssid_fit ? 0 : 1;
ctrl->en_txbcn_rpt = drv_ctrl->txbcn_rpt ? 1 : 0;
ctrl->dis_tsf_udt = drv_ctrl->tsf_update ? 0 : 1;
ctrl->en_bcn = drv_ctrl->enable_bcn ? 1 : 0;
ctrl->en_rxbcn_rpt = drv_ctrl->rxbcn_rpt ? 1 : 0;
ctrl->en_p2p_ctwin = drv_ctrl->p2p_ctwin ? 1 : 0;
ctrl->en_p2p_bcn_area = drv_ctrl->p2p_bcn_area ? 1 : 0;
}
int rtw_halmac_get_hw_value(struct dvobj_priv *d, enum halmac_hw_id hw_id, void *pvalue)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
status = api->halmac_get_hw_value(mac, hw_id, pvalue);
if (HALMAC_RET_SUCCESS != status)
return -1;
return 0;
}
/**
* rtw_halmac_get_tx_fifo_size() - TX FIFO size
* @d: struct dvobj_priv*
* @size: TX FIFO size, unit is byte.
*
* Get TX FIFO size(byte) from HALMAC.
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_get_tx_fifo_size(struct dvobj_priv *d, u32 *size)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_ret_status status;
u32 val = 0;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
status = api->halmac_get_hw_value(halmac, HALMAC_HW_TXFIFO_SIZE, &val);
if (status != HALMAC_RET_SUCCESS)
return -1;
*size = val;
return 0;
}
/**
* rtw_halmac_get_rx_fifo_size() - RX FIFO size
* @d: struct dvobj_priv*
* @size: RX FIFO size, unit is byte
*
* Get RX FIFO size(byte) from HALMAC.
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_get_rx_fifo_size(struct dvobj_priv *d, u32 *size)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_ret_status status;
u32 val = 0;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
status = api->halmac_get_hw_value(halmac, HALMAC_HW_RXFIFO_SIZE, &val);
if (status != HALMAC_RET_SUCCESS)
return -1;
*size = val;
return 0;
}
/**
* rtw_halmac_get_rsvd_drv_pg_bndy() - Reserve page boundary of driver
* @d: struct dvobj_priv*
* @size: Page size, unit is byte
*
* Get reserve page boundary of driver from HALMAC.
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_get_rsvd_drv_pg_bndy(struct dvobj_priv *d, u16 *bndy)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_ret_status status;
u16 val = 0;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
status = api->halmac_get_hw_value(halmac, HALMAC_HW_RSVD_PG_BNDY, &val);
if (status != HALMAC_RET_SUCCESS)
return -1;
*bndy = val;
return 0;
}
/**
* rtw_halmac_get_page_size() - Page size
* @d: struct dvobj_priv*
* @size: Page size, unit is byte
*
* Get TX/RX page size(byte) from HALMAC.
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_get_page_size(struct dvobj_priv *d, u32 *size)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_ret_status status;
u32 val = 0;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
status = api->halmac_get_hw_value(halmac, HALMAC_HW_PAGE_SIZE, &val);
if (status != HALMAC_RET_SUCCESS)
return -1;
*size = val;
return 0;
}
/**
* rtw_halmac_get_tx_agg_align_size() - TX aggregation align size
* @d: struct dvobj_priv*
* @size: TX aggregation align size, unit is byte
*
* Get TX aggregation align size(byte) from HALMAC.
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_get_tx_agg_align_size(struct dvobj_priv *d, u16 *size)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_ret_status status;
u16 val = 0;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
status = api->halmac_get_hw_value(halmac, HALMAC_HW_TX_AGG_ALIGN_SIZE, &val);
if (status != HALMAC_RET_SUCCESS)
return -1;
*size = val;
return 0;
}
/**
* rtw_halmac_get_rx_agg_align_size() - RX aggregation align size
* @d: struct dvobj_priv*
* @size: RX aggregation align size, unit is byte
*
* Get RX aggregation align size(byte) from HALMAC.
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_get_rx_agg_align_size(struct dvobj_priv *d, u8 *size)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_ret_status status;
u8 val = 0;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
status = api->halmac_get_hw_value(halmac, HALMAC_HW_RX_AGG_ALIGN_SIZE, &val);
if (status != HALMAC_RET_SUCCESS)
return -1;
*size = val;
return 0;
}
/*
* Description:
* Get RX driver info size. RX driver info is a small memory space between
* scriptor and RX payload.
*
* +-------------------------+
* | RX descriptor |
* | usually 24 bytes |
* +-------------------------+
* | RX driver info |
* | depends on driver cfg |
* +-------------------------+
* | RX paylad |
* | |
* +-------------------------+
*
* Parameter:
* d pointer to struct dvobj_priv of driver
* sz rx driver info size in bytes.
*
* Rteurn:
* 0 Success
* other Fail
*/
int rtw_halmac_get_rx_drv_info_sz(struct dvobj_priv *d, u8 *sz)
{
enum halmac_ret_status status;
struct halmac_adapter *halmac = dvobj_to_halmac(d);
struct halmac_api *api = HALMAC_GET_API(halmac);
u8 dw = 0;
status = api->halmac_get_hw_value(halmac, HALMAC_HW_DRV_INFO_SIZE, &dw);
if (status != HALMAC_RET_SUCCESS)
return -1;
*sz = dw * 8;
return 0;
}
/**
* rtw_halmac_get_tx_desc_size() - TX descriptor size
* @d: struct dvobj_priv*
* @size: TX descriptor size, unit is byte.
*
* Get TX descriptor size(byte) from HALMAC.
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_get_tx_desc_size(struct dvobj_priv *d, u32 *size)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_ret_status status;
u32 val = 0;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
status = api->halmac_get_hw_value(halmac, HALMAC_HW_TX_DESC_SIZE, &val);
if (status != HALMAC_RET_SUCCESS)
return -1;
*size = val;
return 0;
}
/**
* rtw_halmac_get_rx_desc_size() - RX descriptor size
* @d: struct dvobj_priv*
* @size: RX descriptor size, unit is byte.
*
* Get RX descriptor size(byte) from HALMAC.
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_get_rx_desc_size(struct dvobj_priv *d, u32 *size)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_ret_status status;
u32 val = 0;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
status = api->halmac_get_hw_value(halmac, HALMAC_HW_RX_DESC_SIZE, &val);
if (status != HALMAC_RET_SUCCESS)
return -1;
*size = val;
return 0;
}
/**
* rtw_halmac_get_fw_max_size() - Firmware MAX size
* @d: struct dvobj_priv*
* @size: MAX Firmware size, unit is byte.
*
* Get Firmware MAX size(byte) from HALMAC.
*
* Rteurn 0 for OK, otherwise fail.
*/
static int rtw_halmac_get_fw_max_size(struct dvobj_priv *d, u32 *size)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_ret_status status;
u32 val = 0;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
status = api->halmac_get_hw_value(halmac, HALMAC_HW_FW_MAX_SIZE, &val);
if (status != HALMAC_RET_SUCCESS)
return -1;
*size = val;
return 0;
}
/**
* rtw_halmac_get_ori_h2c_size() - Original H2C MAX size
* @d: struct dvobj_priv*
* @size: H2C MAX size, unit is byte.
*
* Get original H2C MAX size(byte) from HALMAC.
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_get_ori_h2c_size(struct dvobj_priv *d, u32 *size)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_ret_status status;
u32 val = 0;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
status = api->halmac_get_hw_value(halmac, HALMAC_HW_ORI_H2C_SIZE, &val);
if (status != HALMAC_RET_SUCCESS)
return -1;
*size = val;
return 0;
}
int rtw_halmac_get_oqt_size(struct dvobj_priv *d, u8 *size)
{
enum halmac_ret_status status;
struct halmac_adapter *halmac;
struct halmac_api *api;
u8 val;
if (!size)
return -1;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
status = api->halmac_get_hw_value(halmac, HALMAC_HW_AC_OQT_SIZE, &val);
if (status != HALMAC_RET_SUCCESS)
return -1;
*size = val;
return 0;
}
int rtw_halmac_get_ac_queue_number(struct dvobj_priv *d, u8 *num)
{
enum halmac_ret_status status;
struct halmac_adapter *halmac;
struct halmac_api *api;
u8 val;
if (!num)
return -1;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
status = api->halmac_get_hw_value(halmac, HALMAC_HW_AC_QUEUE_NUM, &val);
if (status != HALMAC_RET_SUCCESS)
return -1;
*num = val;
return 0;
}
/**
* rtw_halmac_get_mac_address() - Get MAC address of specific port
* @d: struct dvobj_priv*
* @hwport: port
* @addr: buffer for storing MAC address
*
* Get MAC address of specific port from HALMAC.
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_get_mac_address(struct dvobj_priv *d, enum _hw_port hwport, u8 *addr)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_portid port;
union halmac_wlan_addr hwa;
enum halmac_ret_status status;
int err = -1;
if (!addr)
goto out;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
port = _hw_port_drv2halmac(hwport);
memset(&hwa, 0, sizeof(hwa));
2019-11-09 10:12:08 +00:00
status = api->halmac_get_mac_addr(halmac, port, &hwa);
if (status != HALMAC_RET_SUCCESS)
goto out;
_rtw_memcpy(addr, hwa.addr, 6);
err = 0;
out:
return err;
}
/**
* rtw_halmac_get_network_type() - Get network type of specific port
* @d: struct dvobj_priv*
* @hwport: port
* @type: buffer to put network type (_HW_STATE_*)
*
* Get network type of specific port from HALMAC.
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_get_network_type(struct dvobj_priv *d, enum _hw_port hwport, u8 *type)
{
#if 0
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_portid port;
enum halmac_network_type_select network;
enum halmac_ret_status status;
int err = -1;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
port = _hw_port_drv2halmac(hwport);
network = HALMAC_NETWORK_UNDEFINE;
status = api->halmac_get_net_type(halmac, port, &network);
if (status != HALMAC_RET_SUCCESS)
goto out;
*type = _network_type_halmac2drv(network);
err = 0;
out:
return err;
#else
struct _ADAPTER *a;
enum halmac_portid port;
enum halmac_network_type_select network;
u32 val;
int err = -1;
a = dvobj_get_primary_adapter(d);
port = _hw_port_drv2halmac(hwport);
network = HALMAC_NETWORK_UNDEFINE;
switch (port) {
case HALMAC_PORTID0:
val = rtw_read32(a, REG_CR);
network = BIT_GET_NETYPE0(val);
break;
case HALMAC_PORTID1:
val = rtw_read32(a, REG_CR);
network = BIT_GET_NETYPE1(val);
break;
case HALMAC_PORTID2:
val = rtw_read32(a, REG_CR_EXT);
network = BIT_GET_NETYPE2(val);
break;
case HALMAC_PORTID3:
val = rtw_read32(a, REG_CR_EXT);
network = BIT_GET_NETYPE3(val);
break;
case HALMAC_PORTID4:
val = rtw_read32(a, REG_CR_EXT);
network = BIT_GET_NETYPE4(val);
break;
default:
goto out;
}
*type = _network_type_halmac2drv(network);
err = 0;
out:
return err;
#endif
}
/**
* rtw_halmac_get_bcn_ctrl() - Get beacon control setting of specific port
* @d: struct dvobj_priv*
* @hwport: port
* @bcn_ctrl: setting of beacon control
*
* Get beacon control setting of specific port from HALMAC.
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_get_bcn_ctrl(struct dvobj_priv *d, enum _hw_port hwport,
struct rtw_halmac_bcn_ctrl *bcn_ctrl)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_portid port;
struct halmac_bcn_ctrl ctrl;
enum halmac_ret_status status;
int err = -1;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
port = _hw_port_drv2halmac(hwport);
memset(&ctrl, 0, sizeof(ctrl));
2019-11-09 10:12:08 +00:00
status = api->halmac_rw_bcn_ctrl(halmac, port, 0, &ctrl);
if (status != HALMAC_RET_SUCCESS)
goto out;
_beacon_ctrl_halmac2drv(&ctrl, bcn_ctrl);
err = 0;
out:
return err;
}
/*
* Note:
* When this function return, the register REG_RCR may be changed.
*/
int rtw_halmac_config_rx_info(struct dvobj_priv *d, enum halmac_drv_info info)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_ret_status status;
int err = -1;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
status = api->halmac_cfg_drv_info(halmac, info);
if (status != HALMAC_RET_SUCCESS)
goto out;
err = 0;
out:
return err;
}
/**
* rtw_halmac_set_max_dl_fw_size() - Set the MAX download firmware size
* @d: struct dvobj_priv*
* @size: the max download firmware size in one I/O
*
* Set the max download firmware size in one I/O.
* Please also consider the max size of the callback function "SEND_RSVD_PAGE"
* could accept, because download firmware would call "SEND_RSVD_PAGE" to send
* firmware to IC.
*
* If the value of "size" is not even, it would be rounded down to nearest
* even, and 0 and 1 are both invalid value.
*
* Return 0 for setting OK, otherwise fail.
*/
int rtw_halmac_set_max_dl_fw_size(struct dvobj_priv *d, u32 size)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
if (!size || (size == 1))
return -1;
mac = dvobj_to_halmac(d);
if (!mac) {
RTW_ERR("%s: HALMAC is not ready!!\n", __FUNCTION__);
return -1;
}
api = HALMAC_GET_API(mac);
size &= ~1; /* round down to even */
status = api->halmac_cfg_max_dl_size(mac, size);
if (status != HALMAC_RET_SUCCESS) {
RTW_WARN("%s: Fail to cfg_max_dl_size(%d), err=%d!!\n",
__FUNCTION__, size, status);
return -1;
}
return 0;
}
/**
* rtw_halmac_set_mac_address() - Set mac address of specific port
* @d: struct dvobj_priv*
* @hwport: port
* @addr: mac address
*
* Set self mac address of specific port to HALMAC.
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_set_mac_address(struct dvobj_priv *d, enum _hw_port hwport, u8 *addr)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_portid port;
union halmac_wlan_addr hwa;
enum halmac_ret_status status;
int err = -1;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
port = _hw_port_drv2halmac(hwport);
memset(&hwa, 0, sizeof(hwa));
2019-11-09 10:12:08 +00:00
_rtw_memcpy(hwa.addr, addr, 6);
status = api->halmac_cfg_mac_addr(halmac, port, &hwa);
if (status != HALMAC_RET_SUCCESS)
goto out;
err = 0;
out:
return err;
}
/**
* rtw_halmac_set_bssid() - Set BSSID of specific port
* @d: struct dvobj_priv*
* @hwport: port
* @addr: BSSID, mac address of AP
*
* Set BSSID of specific port to HALMAC.
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_set_bssid(struct dvobj_priv *d, enum _hw_port hwport, u8 *addr)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_portid port;
union halmac_wlan_addr hwa;
enum halmac_ret_status status;
int err = -1;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
port = _hw_port_drv2halmac(hwport);
memset(&hwa, 0, sizeof(hwa));
2019-11-09 10:12:08 +00:00
_rtw_memcpy(hwa.addr, addr, 6);
status = api->halmac_cfg_bssid(halmac, port, &hwa);
if (status != HALMAC_RET_SUCCESS)
goto out;
err = 0;
out:
return err;
}
/**
* rtw_halmac_set_tx_address() - Set transmitter address of specific port
* @d: struct dvobj_priv*
* @hwport: port
* @addr: transmitter address
*
* Set transmitter address of specific port to HALMAC.
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_set_tx_address(struct dvobj_priv *d, enum _hw_port hwport, u8 *addr)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_portid port;
union halmac_wlan_addr hwa;
enum halmac_ret_status status;
int err = -1;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
port = _hw_port_drv2halmac(hwport);
memset(&hwa, 0, sizeof(hwa));
2019-11-09 10:12:08 +00:00
_rtw_memcpy(hwa.addr, addr, 6);
status = api->halmac_cfg_transmitter_addr(halmac, port, &hwa);
if (status != HALMAC_RET_SUCCESS)
goto out;
err = 0;
out:
return err;
}
/**
* rtw_halmac_set_network_type() - Set network type of specific port
* @d: struct dvobj_priv*
* @hwport: port
* @type: network type (_HW_STATE_*)
*
* Set network type of specific port to HALMAC.
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_set_network_type(struct dvobj_priv *d, enum _hw_port hwport, u8 type)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_portid port;
enum halmac_network_type_select network;
enum halmac_ret_status status;
int err = -1;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
port = _hw_port_drv2halmac(hwport);
network = _network_type_drv2halmac(type);
status = api->halmac_cfg_net_type(halmac, port, network);
if (status != HALMAC_RET_SUCCESS)
goto out;
err = 0;
out:
return err;
}
/**
* rtw_halmac_reset_tsf() - Reset TSF timer of specific port
* @d: struct dvobj_priv*
* @hwport: port
*
* Notice HALMAC to reset timing synchronization function(TSF) timer of
* specific port.
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_reset_tsf(struct dvobj_priv *d, enum _hw_port hwport)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_portid port;
enum halmac_ret_status status;
int err = -1;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
port = _hw_port_drv2halmac(hwport);
status = api->halmac_cfg_tsf_rst(halmac, port);
if (status != HALMAC_RET_SUCCESS)
goto out;
err = 0;
out:
return err;
}
/**
* rtw_halmac_set_bcn_interval() - Set beacon interval of each port
* @d: struct dvobj_priv*
* @hwport: port
* @space: beacon interval, unit is ms
*
* Set beacon interval of specific port to HALMAC.
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_set_bcn_interval(struct dvobj_priv *d, enum _hw_port hwport,
u32 interval)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_portid port;
enum halmac_ret_status status;
int err = -1;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
port = _hw_port_drv2halmac(hwport);
status = api->halmac_cfg_bcn_space(halmac, port, interval);
if (status != HALMAC_RET_SUCCESS)
goto out;
err = 0;
out:
return err;
}
/**
* rtw_halmac_set_bcn_ctrl() - Set beacon control setting of each port
* @d: struct dvobj_priv*
* @hwport: port
* @bcn_ctrl: setting of beacon control
*
* Set beacon control setting of specific port to HALMAC.
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_set_bcn_ctrl(struct dvobj_priv *d, enum _hw_port hwport,
struct rtw_halmac_bcn_ctrl *bcn_ctrl)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_portid port;
struct halmac_bcn_ctrl ctrl;
enum halmac_ret_status status;
int err = -1;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
port = _hw_port_drv2halmac(hwport);
memset(&ctrl, 0, sizeof(ctrl));
2019-11-09 10:12:08 +00:00
_beacon_ctrl_drv2halmac(bcn_ctrl, &ctrl);
status = api->halmac_rw_bcn_ctrl(halmac, port, 1, &ctrl);
if (status != HALMAC_RET_SUCCESS)
goto out;
err = 0;
out:
return err;
}
/**
* rtw_halmac_set_aid() - Set association identifier(AID) of specific port
* @d: struct dvobj_priv*
* @hwport: port
* @aid: Association identifier
*
* Set association identifier(AID) of specific port to HALMAC.
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_set_aid(struct dvobj_priv *d, enum _hw_port hwport, u16 aid)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_portid port;
enum halmac_ret_status status;
int err = -1;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
port = _hw_port_drv2halmac(hwport);
#if 0
status = api->halmac_cfg_aid(halmac, port, aid);
if (status != HALMAC_RET_SUCCESS)
goto out;
#else
{
struct _ADAPTER *a;
u32 addr;
u16 val;
a = dvobj_get_primary_adapter(d);
switch (port) {
case 0:
addr = REG_BCN_PSR_RPT;
val = rtw_read16(a, addr);
val = BIT_SET_PS_AID_0(val, aid);
rtw_write16(a, addr, val);
break;
case 1:
addr = REG_BCN_PSR_RPT1;
val = rtw_read16(a, addr);
val = BIT_SET_PS_AID_1(val, aid);
rtw_write16(a, addr, val);
break;
case 2:
addr = REG_BCN_PSR_RPT2;
val = rtw_read16(a, addr);
val = BIT_SET_PS_AID_2(val, aid);
rtw_write16(a, addr, val);
break;
case 3:
addr = REG_BCN_PSR_RPT3;
val = rtw_read16(a, addr);
val = BIT_SET_PS_AID_3(val, aid);
rtw_write16(a, addr, val);
break;
case 4:
addr = REG_BCN_PSR_RPT4;
val = rtw_read16(a, addr);
val = BIT_SET_PS_AID_4(val, aid);
rtw_write16(a, addr, val);
break;
default:
goto out;
}
}
#endif
err = 0;
out:
return err;
}
int rtw_halmac_set_bandwidth(struct dvobj_priv *d, u8 channel, u8 pri_ch_idx, u8 bw)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
status = api->halmac_cfg_ch_bw(mac, channel, pri_ch_idx, bw);
if (HALMAC_RET_SUCCESS != status)
return -1;
return 0;
}
/**
* rtw_halmac_set_edca() - config edca parameter
* @d: struct dvobj_priv*
* @queue: XMIT_[VO/VI/BE/BK]_QUEUE
* @aifs: Arbitration inter-frame space(AIFS)
* @cw: Contention window(CW)
* @txop: MAX Transmit Opportunity(TXOP)
*
* Return: 0 if process OK, otherwise -1.
*/
int rtw_halmac_set_edca(struct dvobj_priv *d, u8 queue, u8 aifs, u8 cw, u16 txop)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_acq_id ac;
struct halmac_edca_para edca;
enum halmac_ret_status status;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
switch (queue) {
case XMIT_VO_QUEUE:
ac = HALMAC_ACQ_ID_VO;
break;
case XMIT_VI_QUEUE:
ac = HALMAC_ACQ_ID_VI;
break;
case XMIT_BE_QUEUE:
ac = HALMAC_ACQ_ID_BE;
break;
case XMIT_BK_QUEUE:
ac = HALMAC_ACQ_ID_BK;
break;
default:
return -1;
}
edca.aifs = aifs;
edca.cw = cw;
edca.txop_limit = txop;
status = api->halmac_cfg_edca_para(mac, ac, &edca);
if (status != HALMAC_RET_SUCCESS)
return -1;
return 0;
}
/**
* rtw_halmac_set_rts_full_bw() - Send RTS to all covered channels
* @d: struct dvobj_priv*
* @enable: _TRUE(enable), _FALSE(disable)
*
* Hradware will duplicate RTS packet to all channels which are covered in used
* bandwidth.
*
* Return 0 if process OK, otherwise -1.
*/
int rtw_halmac_set_rts_full_bw(struct dvobj_priv *d, u8 enable)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
u8 full;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
full = (enable == _TRUE) ? 1 : 0;
status = api->halmac_set_hw_value(mac, HALMAC_HW_RTS_FULL_BW, &full);
if (HALMAC_RET_SUCCESS != status)
return -1;
return 0;
}
#ifdef RTW_HALMAC_DBG_POWER_SWITCH
static void _dump_mac_reg(struct dvobj_priv *d, u32 start, u32 end)
{
struct _ADAPTER *adapter;
int i, j = 1;
adapter = dvobj_get_primary_adapter(d);
for (i = start; i < end; i += 4) {
if (j % 4 == 1)
RTW_PRINT("0x%04x", i);
_RTW_PRINT(" 0x%08x ", rtw_read32(adapter, i));
if ((j++) % 4 == 0)
_RTW_PRINT("\n");
}
}
void dump_dbg_val(struct _ADAPTER *a, u32 reg)
{
u32 v32;
rtw_write8(a, 0x3A, reg);
v32 = rtw_read32(a, 0xC0);
RTW_PRINT("0x3A = %02x, 0xC0 = 0x%08x\n",reg, v32);
}
#ifdef CONFIG_PCI_HCI
static void _dump_pcie_cfg_space(struct dvobj_priv *d)
{
struct _ADAPTER *padapter = dvobj_get_primary_adapter(d);
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(padapter);
struct pci_dev *pdev = pdvobjpriv->ppcidev;
struct pci_dev *bridge_pdev = pdev->bus->self;
u32 tmp[4] = { 0 };
u32 i, j;
RTW_PRINT("\n***** PCI Device Configuration Space *****\n\n");
for(i = 0; i < 0x100; i += 0x10)
{
for (j = 0 ; j < 4 ; j++)
pci_read_config_dword(pdev, i + j * 4, tmp+j);
RTW_PRINT("%03x: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
i, tmp[0] & 0xFF, (tmp[0] >> 8) & 0xFF, (tmp[0] >> 16) & 0xFF, (tmp[0] >> 24) & 0xFF,
tmp[1] & 0xFF, (tmp[1] >> 8) & 0xFF, (tmp[1] >> 16) & 0xFF, (tmp[1] >> 24) & 0xFF,
tmp[2] & 0xFF, (tmp[2] >> 8) & 0xFF, (tmp[2] >> 16) & 0xFF, (tmp[2] >> 24) & 0xFF,
tmp[3] & 0xFF, (tmp[3] >> 8) & 0xFF, (tmp[3] >> 16) & 0xFF, (tmp[3] >> 24) & 0xFF);
}
RTW_PRINT("\n***** PCI Host Device Configuration Space*****\n\n");
for(i = 0; i < 0x100; i += 0x10)
{
for (j = 0 ; j < 4 ; j++)
pci_read_config_dword(bridge_pdev, i + j * 4, tmp+j);
RTW_PRINT("%03x: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
i, tmp[0] & 0xFF, (tmp[0] >> 8) & 0xFF, (tmp[0] >> 16) & 0xFF, (tmp[0] >> 24) & 0xFF,
tmp[1] & 0xFF, (tmp[1] >> 8) & 0xFF, (tmp[1] >> 16) & 0xFF, (tmp[1] >> 24) & 0xFF,
tmp[2] & 0xFF, (tmp[2] >> 8) & 0xFF, (tmp[2] >> 16) & 0xFF, (tmp[2] >> 24) & 0xFF,
tmp[3] & 0xFF, (tmp[3] >> 8) & 0xFF, (tmp[3] >> 16) & 0xFF, (tmp[3] >> 24) & 0xFF);
}
}
#endif
static void _dump_mac_reg_for_power_switch(struct dvobj_priv *d,
const char* caller, char* desc)
{
struct _ADAPTER *a;
u8 v8;
RTW_PRINT("%s: %s\n", caller, desc);
RTW_PRINT("======= MAC REG =======\n");
/* page 0/1 */
_dump_mac_reg(d, 0x0, 0x200);
_dump_mac_reg(d, 0x300, 0x400); /* also dump page 3 */
/* dump debug register */
a = dvobj_get_primary_adapter(d);
#ifdef CONFIG_PCI_HCI
_dump_pcie_cfg_space(d);
v8 = rtw_read8(a, 0xF6) | 0x01;
rtw_write8(a, 0xF6, v8);
RTW_PRINT("0xF6 = %02x\n", v8);
dump_dbg_val(a, 0x63);
dump_dbg_val(a, 0x64);
dump_dbg_val(a, 0x68);
dump_dbg_val(a, 0x69);
dump_dbg_val(a, 0x6a);
dump_dbg_val(a, 0x6b);
dump_dbg_val(a, 0x71);
dump_dbg_val(a, 0x72);
#endif
}
static enum halmac_ret_status _power_switch(struct halmac_adapter *halmac,
struct halmac_api *api,
enum halmac_mac_power pwr)
{
enum halmac_ret_status status;
char desc[80] = {0};
rtw_sprintf(desc, 80, "before calling power %s",
(pwr==HALMAC_MAC_POWER_ON)?"on":"off");
_dump_mac_reg_for_power_switch((struct dvobj_priv *)halmac->drv_adapter,
__FUNCTION__, desc);
status = api->halmac_mac_power_switch(halmac, pwr);
RTW_PRINT("%s: status=%d\n", __FUNCTION__, status);
rtw_sprintf(desc, 80, "after calling power %s",
(pwr==HALMAC_MAC_POWER_ON)?"on":"off");
_dump_mac_reg_for_power_switch((struct dvobj_priv *)halmac->drv_adapter,
__FUNCTION__, desc);
return status;
}
#else /* !RTW_HALMAC_DBG_POWER_SWITCH */
#define _power_switch(mac, api, pwr) (api)->halmac_mac_power_switch(mac, pwr)
#endif /* !RTW_HALMAC_DBG_POWER_SWITCH */
/*
* Description:
* Power on device hardware.
* [Notice!] If device's power state is on before,
* it would be power off first and turn on power again.
*
* Return:
* 0 power on success
* -1 power on fail
* -2 power state unchange
*/
int rtw_halmac_poweron(struct dvobj_priv *d)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_ret_status status;
int err = -1;
#if defined(CONFIG_PCI_HCI) && defined(CONFIG_RTL8822B)
struct _ADAPTER *a;
u8 v8;
u32 addr;
a = dvobj_get_primary_adapter(d);
#endif
halmac = dvobj_to_halmac(d);
if (!halmac)
goto out;
api = HALMAC_GET_API(halmac);
status = api->halmac_pre_init_system_cfg(halmac);
if (status != HALMAC_RET_SUCCESS)
goto out;
#ifdef CONFIG_SDIO_HCI
status = api->halmac_sdio_cmd53_4byte(halmac, HALMAC_SDIO_CMD53_4BYTE_MODE_RW);
if (status != HALMAC_RET_SUCCESS)
goto out;
#endif /* CONFIG_SDIO_HCI */
#if defined(CONFIG_PCI_HCI) && defined(CONFIG_RTL8822B)
addr = 0x3F3;
v8 = rtw_read8(a, addr);
RTW_PRINT("%s: 0x%X = 0x%02x\n", __FUNCTION__, addr, v8);
/* are we in pcie debug mode? */
if (!(v8 & BIT(2))) {
RTW_PRINT("%s: Enable pcie debug mode\n", __FUNCTION__);
v8 |= BIT(2);
v8 = rtw_write8(a, addr, v8);
}
#endif
status = _power_switch(halmac, api, HALMAC_MAC_POWER_ON);
if (HALMAC_RET_PWR_UNCHANGE == status) {
#if defined(CONFIG_PCI_HCI) && defined(CONFIG_RTL8822B)
addr = 0x3F3;
v8 = rtw_read8(a, addr);
RTW_PRINT("%s: 0x%X = 0x%02x\n", __FUNCTION__, addr, v8);
/* are we in pcie debug mode? */
if (!(v8 & BIT(2))) {
RTW_PRINT("%s: Enable pcie debug mode\n", __FUNCTION__);
v8 |= BIT(2);
v8 = rtw_write8(a, addr, v8);
} else if (v8 & BIT(0)) {
/* DMA stuck */
addr = 0x1350;
v8 = rtw_read8(a, addr);
RTW_PRINT("%s: 0x%X = 0x%02x\n", __FUNCTION__, addr, v8);
RTW_PRINT("%s: recover DMA stuck\n", __FUNCTION__);
v8 |= BIT(6);
v8 = rtw_write8(a, addr, v8);
RTW_PRINT("%s: 0x%X = 0x%02x\n", __FUNCTION__, addr, v8);
}
#endif
/*
* Work around for warm reboot but device not power off,
* but it would also fall into this case when auto power on is enabled.
*/
_power_switch(halmac, api, HALMAC_MAC_POWER_OFF);
status = _power_switch(halmac, api, HALMAC_MAC_POWER_ON);
RTW_WARN("%s: Power state abnormal, try to recover...%s\n",
__FUNCTION__, (HALMAC_RET_SUCCESS == status)?"OK":"FAIL!");
}
if (HALMAC_RET_SUCCESS != status) {
if (HALMAC_RET_PWR_UNCHANGE == status)
err = -2;
goto out;
}
status = api->halmac_init_system_cfg(halmac);
if (status != HALMAC_RET_SUCCESS)
goto out;
err = 0;
out:
return err;
}
/*
* Description:
* Power off device hardware.
*
* Return:
* 0 Power off success
* -1 Power off fail
*/
int rtw_halmac_poweroff(struct dvobj_priv *d)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_ret_status status;
int err = -1;
halmac = dvobj_to_halmac(d);
if (!halmac)
goto out;
api = HALMAC_GET_API(halmac);
status = _power_switch(halmac, api, HALMAC_MAC_POWER_OFF);
if ((HALMAC_RET_SUCCESS != status)
&& (HALMAC_RET_PWR_UNCHANGE != status))
goto out;
err = 0;
out:
return err;
}
#ifdef CONFIG_SUPPORT_TRX_SHARED
static inline enum halmac_rx_fifo_expanding_mode _trx_share_mode_drv2halmac(u8 trx_share_mode)
{
if (0 == trx_share_mode)
return HALMAC_RX_FIFO_EXPANDING_MODE_DISABLE;
else if (1 == trx_share_mode)
return HALMAC_RX_FIFO_EXPANDING_MODE_1_BLOCK;
else if (2 == trx_share_mode)
return HALMAC_RX_FIFO_EXPANDING_MODE_2_BLOCK;
else if (3 == trx_share_mode)
return HALMAC_RX_FIFO_EXPANDING_MODE_3_BLOCK;
else
return HALMAC_RX_FIFO_EXPANDING_MODE_DISABLE;
}
static enum halmac_rx_fifo_expanding_mode _rtw_get_trx_share_mode(struct _ADAPTER *adapter)
{
struct registry_priv *registry_par = &adapter->registrypriv;
return _trx_share_mode_drv2halmac(registry_par->trx_share_mode);
}
void dump_trx_share_mode(void *sel, struct _ADAPTER *adapter)
{
struct registry_priv *registry_par = &adapter->registrypriv;
u8 mode = _trx_share_mode_drv2halmac(registry_par->trx_share_mode);
if (HALMAC_RX_FIFO_EXPANDING_MODE_1_BLOCK == mode)
RTW_PRINT_SEL(sel, "TRx share mode : %s\n", "RX_FIFO_EXPANDING_MODE_1");
else if (HALMAC_RX_FIFO_EXPANDING_MODE_2_BLOCK == mode)
RTW_PRINT_SEL(sel, "TRx share mode : %s\n", "RX_FIFO_EXPANDING_MODE_2");
else if (HALMAC_RX_FIFO_EXPANDING_MODE_3_BLOCK == mode)
RTW_PRINT_SEL(sel, "TRx share mode : %s\n", "RX_FIFO_EXPANDING_MODE_3");
else
RTW_PRINT_SEL(sel, "TRx share mode : %s\n", "DISABLE");
}
#endif
static enum halmac_drv_rsvd_pg_num _rsvd_page_num_drv2halmac(u16 num)
{
if (num <= 8)
return HALMAC_RSVD_PG_NUM8;
if (num <= 16)
return HALMAC_RSVD_PG_NUM16;
if (num <= 24)
return HALMAC_RSVD_PG_NUM24;
if (num <= 32)
return HALMAC_RSVD_PG_NUM32;
if (num <= 64)
return HALMAC_RSVD_PG_NUM64;
if (num <= 128)
return HALMAC_RSVD_PG_NUM128;
if (num > 256)
RTW_WARN("%s: Fail to allocate RSVD page(%d)!!"
" The MAX RSVD page number is 256...\n",
__FUNCTION__, num);
return HALMAC_RSVD_PG_NUM256;
}
static u16 _rsvd_page_num_halmac2drv(enum halmac_drv_rsvd_pg_num rsvd_page_number)
{
u16 num = 0;
switch (rsvd_page_number) {
case HALMAC_RSVD_PG_NUM8:
num = 8;
break;
case HALMAC_RSVD_PG_NUM16:
num = 16;
break;
case HALMAC_RSVD_PG_NUM24:
num = 24;
break;
case HALMAC_RSVD_PG_NUM32:
num = 32;
break;
case HALMAC_RSVD_PG_NUM64:
num = 64;
break;
case HALMAC_RSVD_PG_NUM128:
num = 128;
break;
case HALMAC_RSVD_PG_NUM256:
num = 256;
break;
}
return num;
}
static enum halmac_trx_mode _choose_trx_mode(struct dvobj_priv *d)
{
PADAPTER p;
p = dvobj_get_primary_adapter(d);
if (p->registrypriv.wifi_spec)
return HALMAC_TRX_MODE_WMM;
#ifdef CONFIG_SUPPORT_TRX_SHARED
if (_rtw_get_trx_share_mode(p))
return HALMAC_TRX_MODE_TRXSHARE;
#endif
return HALMAC_TRX_MODE_NORMAL;
}
static inline enum halmac_rf_type _rf_type_drv2halmac(enum rf_type rf_drv)
{
enum halmac_rf_type rf_mac;
switch (rf_drv) {
case RF_1T1R:
rf_mac = HALMAC_RF_1T1R;
break;
case RF_1T2R:
rf_mac = HALMAC_RF_1T2R;
break;
case RF_2T2R:
rf_mac = HALMAC_RF_2T2R;
break;
case RF_2T3R:
rf_mac = HALMAC_RF_2T3R;
break;
case RF_2T4R:
rf_mac = HALMAC_RF_2T4R;
break;
case RF_3T3R:
rf_mac = HALMAC_RF_3T3R;
break;
case RF_3T4R:
rf_mac = HALMAC_RF_3T4R;
break;
case RF_4T4R:
rf_mac = HALMAC_RF_4T4R;
break;
default:
rf_mac = HALMAC_RF_MAX_TYPE;
RTW_ERR("%s: Invalid RF type(0x%x)!\n", __FUNCTION__, rf_drv);
break;
}
return rf_mac;
}
static inline enum rf_type _rf_type_halmac2drv(enum halmac_rf_type rf_mac)
{
enum rf_type rf_drv;
switch (rf_mac) {
case HALMAC_RF_1T2R:
rf_drv = RF_1T2R;
break;
case HALMAC_RF_2T4R:
rf_drv = RF_2T4R;
break;
case HALMAC_RF_2T2R:
case HALMAC_RF_2T2R_GREEN:
rf_drv = RF_2T2R;
break;
case HALMAC_RF_2T3R:
rf_drv = RF_2T3R;
break;
case HALMAC_RF_1T1R:
rf_drv = RF_1T1R;
break;
case HALMAC_RF_3T3R:
rf_drv = RF_3T3R;
break;
case HALMAC_RF_3T4R:
rf_drv = RF_3T4R;
break;
case HALMAC_RF_4T4R:
rf_drv = RF_4T4R;
break;
default:
rf_drv = RF_TYPE_MAX;
RTW_ERR("%s: Invalid RF type(0x%x)!\n", __FUNCTION__, rf_mac);
break;
}
return rf_drv;
}
static enum odm_cut_version _cut_version_drv2phydm(
enum tag_HAL_Cut_Version_Definition cut_drv)
{
enum odm_cut_version cut_phydm = ODM_CUT_A;
u32 diff;
if (cut_drv > K_CUT_VERSION)
RTW_WARN("%s: unknown cut_ver=%d !!\n", __FUNCTION__, cut_drv);
diff = cut_drv - A_CUT_VERSION;
cut_phydm += diff;
return cut_phydm;
}
static int _send_general_info_by_reg(struct dvobj_priv *d,
struct halmac_general_info *info)
{
struct _ADAPTER *a;
struct hal_com_data *hal;
enum tag_HAL_Cut_Version_Definition cut_drv;
enum rf_type rftype;
enum odm_cut_version cut_phydm;
u8 h2c[RTW_HALMAC_H2C_MAX_SIZE] = {0};
a = dvobj_get_primary_adapter(d);
hal = GET_HAL_DATA(a);
rftype = _rf_type_halmac2drv(info->rf_type);
cut_drv = GET_CVID_CUT_VERSION(hal->version_id);
cut_phydm = _cut_version_drv2phydm(cut_drv);
#define CLASS_GENERAL_INFO_REG 0x02
#define CMD_ID_GENERAL_INFO_REG 0x0C
#define GENERAL_INFO_REG_SET_CMD_ID(buf, v) SET_BITS_TO_LE_4BYTE(buf, 0, 5, v)
#define GENERAL_INFO_REG_SET_CLASS(buf, v) SET_BITS_TO_LE_4BYTE(buf, 5, 3, v)
#define GENERAL_INFO_REG_SET_RFE_TYPE(buf, v) SET_BITS_TO_LE_4BYTE(buf, 8, 8, v)
#define GENERAL_INFO_REG_SET_RF_TYPE(buf, v) SET_BITS_TO_LE_4BYTE(buf, 16, 8, v)
#define GENERAL_INFO_REG_SET_CUT_VERSION(buf, v) SET_BITS_TO_LE_4BYTE(buf, 24, 8, v)
#define GENERAL_INFO_REG_SET_RX_ANT_STATUS(buf, v) SET_BITS_TO_LE_1BYTE(buf+4, 0, 4, v)
#define GENERAL_INFO_REG_SET_TX_ANT_STATUS(buf, v) SET_BITS_TO_LE_1BYTE(buf+4, 4, 4, v)
GENERAL_INFO_REG_SET_CMD_ID(h2c, CMD_ID_GENERAL_INFO_REG);
GENERAL_INFO_REG_SET_CLASS(h2c, CLASS_GENERAL_INFO_REG);
GENERAL_INFO_REG_SET_RFE_TYPE(h2c, info->rfe_type);
GENERAL_INFO_REG_SET_RF_TYPE(h2c, rftype);
GENERAL_INFO_REG_SET_CUT_VERSION(h2c, cut_phydm);
GENERAL_INFO_REG_SET_RX_ANT_STATUS(h2c, info->rx_ant_status);
GENERAL_INFO_REG_SET_TX_ANT_STATUS(h2c, info->tx_ant_status);
return rtw_halmac_send_h2c(d, h2c);
}
static int _send_general_info(struct dvobj_priv *d)
{
struct _ADAPTER *adapter;
struct hal_com_data *hal;
struct halmac_adapter *halmac;
struct halmac_api *api;
struct halmac_general_info info;
enum halmac_ret_status status;
enum rf_type rf = RF_1T1R;
enum bb_path txpath = BB_PATH_A;
enum bb_path rxpath = BB_PATH_A;
int err;
adapter = dvobj_get_primary_adapter(d);
hal = GET_HAL_DATA(adapter);
halmac = dvobj_to_halmac(d);
if (!halmac)
return -1;
api = HALMAC_GET_API(halmac);
memset(&info, 0, sizeof(info));
2019-11-09 10:12:08 +00:00
info.rfe_type = (u8)hal->rfe_type;
rtw_hal_get_rf_path(d, &rf, &txpath, &rxpath);
info.rf_type = _rf_type_drv2halmac(rf);
info.tx_ant_status = (u8)txpath;
info.rx_ant_status = (u8)rxpath;
status = api->halmac_send_general_info(halmac, &info);
switch (status) {
case HALMAC_RET_SUCCESS:
break;
case HALMAC_RET_NO_DLFW:
RTW_WARN("%s: halmac_send_general_info() fail because fw not dl!\n",
__FUNCTION__);
/* go through */
default:
return -1;
}
err = _send_general_info_by_reg(d, &info);
if (err) {
RTW_ERR("%s: Fail to send general info by register!\n",
__FUNCTION__);
return -1;
}
return 0;
}
static int _cfg_drv_rsvd_pg_num(struct dvobj_priv *d)
{
struct _ADAPTER *a;
struct hal_com_data *hal;
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_drv_rsvd_pg_num rsvd_page_number;
enum halmac_ret_status status;
u16 drv_rsvd_num;
a = dvobj_get_primary_adapter(d);
hal = GET_HAL_DATA(a);
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
drv_rsvd_num = rtw_hal_get_rsvd_page_num(a);
rsvd_page_number = _rsvd_page_num_drv2halmac(drv_rsvd_num);
status = api->halmac_cfg_drv_rsvd_pg_num(halmac, rsvd_page_number);
if (status != HALMAC_RET_SUCCESS)
return -1;
hal->drv_rsvd_page_number = _rsvd_page_num_halmac2drv(rsvd_page_number);
if (drv_rsvd_num != hal->drv_rsvd_page_number)
RTW_INFO("%s: request %d pages, but allocate %d pages\n",
__FUNCTION__, drv_rsvd_num, hal->drv_rsvd_page_number);
return 0;
}
static void _debug_dlfw_fail(struct dvobj_priv *d)
{
struct _ADAPTER *a;
u32 addr;
u32 v32, i, n;
u8 data[0x100] = {0};
a = dvobj_get_primary_adapter(d);
/* read 0x80[15:0], 0x10F8[31:0] once */
addr = 0x80;
v32 = rtw_read16(a, addr);
RTW_PRINT("%s: 0x%X = 0x%04x\n", __FUNCTION__, addr, v32);
addr = 0x10F8;
v32 = rtw_read32(a, addr);
RTW_PRINT("%s: 0x%X = 0x%08x\n", __FUNCTION__, addr, v32);
/* read 0x10FC[31:0], 5 times */
addr = 0x10FC;
n = 5;
for (i = 0; i < n; i++) {
v32 = rtw_read32(a, addr);
RTW_PRINT("%s: 0x%X = 0x%08x (%u/%u)\n",
__FUNCTION__, addr, v32, i, n);
}
/*
* write 0x3A[7:0]=0x28 and 0xF6[7:0]=0x01
* and then read 0xC0[31:0] 5 times
*/
addr = 0x3A;
v32 = 0x28;
rtw_write8(a, addr, (u8)v32);
v32 = rtw_read8(a, addr);
RTW_PRINT("%s: 0x%X = 0x%02x\n", __FUNCTION__, addr, v32);
addr = 0xF6;
v32 = 0x1;
rtw_write8(a, addr, (u8)v32);
v32 = rtw_read8(a, addr);
RTW_PRINT("%s: 0x%X = 0x%02x\n", __FUNCTION__, addr, v32);
addr = 0xC0;
n = 5;
for (i = 0; i < n; i++) {
v32 = rtw_read32(a, addr);
RTW_PRINT("%s: 0x%X = 0x%08x (%u/%u)\n",
__FUNCTION__, addr, v32, i, n);
}
/* 0x00~0xFF, 0x1000~0x10FF */
addr = 0;
n = 0x100;
for (i = 0; i < n; i+=4)
*(u32*)&data[i] = cpu_to_le32(rtw_read32(a, addr+i));
for (i = 0; i < n; i++) {
if (i % 16 == 0)
RTW_PRINT("0x%04x\t", addr+i);
_RTW_PRINT("0x%02x", data[i]);
if (i % 16 == 15)
_RTW_PRINT("\n");
else
_RTW_PRINT(" ");
}
addr = 0x1000;
n = 0x100;
for (i = 0; i < n; i+=4)
*(u32*)&data[i] = cpu_to_le32(rtw_read32(a, addr+i));
for (i = 0; i < n; i++) {
if (i % 16 == 0)
RTW_PRINT("0x%04x\t", addr+i);
_RTW_PRINT("0x%02x", data[i]);
if (i % 16 == 15)
_RTW_PRINT("\n");
else
_RTW_PRINT(" ");
}
/* read 0x80 after 10 secs */
msleep(10000);
2019-11-09 10:12:08 +00:00
addr = 0x80;
v32 = rtw_read16(a, addr);
RTW_PRINT("%s: 0x%X = 0x%04x (after 10 secs)\n",
__FUNCTION__, addr, v32);
}
static enum halmac_ret_status _enter_cpu_sleep_mode(struct dvobj_priv *d)
{
struct hal_com_data *hal;
struct halmac_adapter *mac;
struct halmac_api *api;
hal = GET_HAL_DATA(dvobj_get_primary_adapter(d));
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
#ifdef CONFIG_RTL8822B
/* Support after firmware version 21 */
if (hal->firmware_version < 21)
return HALMAC_RET_NOT_SUPPORT;
#elif defined(CONFIG_RTL8821C)
/* Support after firmware version 13.6 or 16 */
if (hal->firmware_version == 13) {
if (hal->firmware_sub_version < 6)
return HALMAC_RET_NOT_SUPPORT;
} else if (hal->firmware_version < 16) {
return HALMAC_RET_NOT_SUPPORT;
}
#endif
return api->halmac_enter_cpu_sleep_mode(mac);
}
/*
* _cpu_sleep() - Let IC CPU enter sleep mode
* @d: struct dvobj_priv*
* @timeout: time limit of wait, unit is ms
* 0 for no limit
*
* Rteurn 0 for CPU in sleep mode, otherwise fail to enter sleep mode.
* Error codes definition are as follow:
* -1 HALMAC enter sleep return fail
* -2 HALMAC get CPU mode return fail
* -110 timeout
*/
static int _cpu_sleep(struct dvobj_priv *d, u32 timeout)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
enum halmac_wlcpu_mode mode = HALMAC_WLCPU_UNDEFINE;
systime start_t;
s32 period = 0;
u32 cnt = 0;
int err = 0;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
start_t = rtw_get_current_time();
status = _enter_cpu_sleep_mode(d);
if (status != HALMAC_RET_SUCCESS) {
if (status != HALMAC_RET_NOT_SUPPORT)
err = -1;
goto exit;
}
do {
cnt++;
mode = HALMAC_WLCPU_UNDEFINE;
status = api->halmac_get_cpu_mode(mac, &mode);
period = rtw_get_passing_time_ms(start_t);
if (status != HALMAC_RET_SUCCESS) {
err = -2;
break;
}
if (mode == HALMAC_WLCPU_SLEEP)
break;
if (period > timeout) {
err = -110;
break;
}
msleep(1);
2019-11-09 10:12:08 +00:00
} while (1);
exit:
if (err)
RTW_ERR("%s: Fail to enter sleep mode! (%d, %d)\n",
__FUNCTION__, status, mode);
RTW_INFO("%s: Cost %dms to polling %u times. (err=%d)\n",
__FUNCTION__, period, cnt, err);
return err;
}
static void _init_trx_cfg_drv(struct dvobj_priv *d)
{
#ifdef CONFIG_PCI_HCI
rtw_hal_irp_reset(dvobj_get_primary_adapter(d));
#endif
}
/*
* Description:
* Downlaod Firmware Flow
*
* Parameters:
* d pointer of struct dvobj_priv
* fw firmware array
* fwsize firmware size
* re_dl re-download firmware or not
* 0: run in init hal flow, not re-download
* 1: it is a stand alone operation, not in init hal flow
*
* Return:
* 0 Success
* others Fail
*/
static int download_fw(struct dvobj_priv *d, u8 *fw, u32 fwsize, u8 re_dl)
{
PHAL_DATA_TYPE hal;
struct halmac_adapter *mac;
struct halmac_api *api;
struct halmac_fw_version fw_vesion;
enum halmac_ret_status status;
int err = 0;
hal = GET_HAL_DATA(dvobj_get_primary_adapter(d));
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
if ((!fw) || (!fwsize))
return -1;
/* 1. Driver Stop Tx */
/* ToDo */
/* 2. Driver Check Tx FIFO is empty */
err = rtw_halmac_txfifo_wait_empty(d, 2000); /* wait 2s */
if (err) {
err = -1;
goto resume_tx;
}
/* 3. Config MAX download size */
/*
* Already done in rtw_halmac_init_adapter() or
* somewhere calling rtw_halmac_set_max_dl_fw_size().
*/
if (re_dl) {
/* 4. Enter IC CPU sleep mode */
err = _cpu_sleep(d, 2000);
if (err) {
RTW_ERR("%s: IC CPU fail to enter sleep mode!(%d)\n",
__FUNCTION__, err);
/* skip this error */
err = 0;
}
}
/* 5. Download Firmware */
status = api->halmac_download_firmware(mac, fw, fwsize);
if (status != HALMAC_RET_SUCCESS) {
RTW_ERR("%s: download firmware FAIL! status=0x%02x\n",
__FUNCTION__, status);
_debug_dlfw_fail(d);
err = -1;
goto resume_tx;
}
/* 5.1. (Driver) Reset driver variables if needed */
hal->LastHMEBoxNum = 0;
/* 5.2. (Driver) Get FW version */
status = api->halmac_get_fw_version(mac, &fw_vesion);
if (status == HALMAC_RET_SUCCESS) {
hal->firmware_version = fw_vesion.version;
hal->firmware_sub_version = fw_vesion.sub_version;
hal->firmware_size = fwsize;
}
resume_tx:
/* 6. Driver resume TX if needed */
/* ToDo */
if (err)
goto exit;
if (re_dl) {
enum halmac_trx_mode mode;
/* 7. Change reserved page size */
err = _cfg_drv_rsvd_pg_num(d);
if (err)
return -1;
/* 8. Init TRX Configuration */
mode = _choose_trx_mode(d);
status = api->halmac_init_trx_cfg(mac, mode);
if (HALMAC_RET_SUCCESS != status)
return -1;
_init_trx_cfg_drv(d);
/* 9. Config RX Aggregation */
err = rtw_halmac_rx_agg_switch(d, _TRUE);
if (err)
return -1;
/* 10. Send General Info */
err = _send_general_info(d);
if (err)
return -1;
}
exit:
return err;
}
static int init_mac_flow(struct dvobj_priv *d)
{
PADAPTER p;
struct hal_com_data *hal;
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_drv_rsvd_pg_num rsvd_page_number;
union halmac_wlan_addr hwa;
enum halmac_trx_mode trx_mode;
enum halmac_ret_status status;
u8 drv_rsvd_num;
u8 nettype;
int err, err_ret = -1;
p = dvobj_get_primary_adapter(d);
hal = GET_HAL_DATA(p);
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
#ifdef CONFIG_SUPPORT_TRX_SHARED
status = api->halmac_cfg_rxff_expand_mode(halmac,
_rtw_get_trx_share_mode(p));
if (status != HALMAC_RET_SUCCESS)
goto out;
#endif
#if 0 /* It is not necessary to call this in normal driver */
status = api->halmac_cfg_la_mode(halmac, HALMAC_LA_MODE_DISABLE);
if (status != HALMAC_RET_SUCCESS)
goto out;
#endif
err = _cfg_drv_rsvd_pg_num(d);
if (err)
goto out;
#ifdef CONFIG_USB_HCI
status = api->halmac_set_bulkout_num(halmac, d->RtNumOutPipes);
if (status != HALMAC_RET_SUCCESS)
goto out;
#endif /* CONFIG_USB_HCI */
trx_mode = _choose_trx_mode(d);
status = api->halmac_init_mac_cfg(halmac, trx_mode);
if (status != HALMAC_RET_SUCCESS)
goto out;
_init_trx_cfg_drv(d);
err = rtw_halmac_rx_agg_switch(d, _TRUE);
if (err)
goto out;
nettype = dvobj_to_regsty(d)->wireless_mode;
if (is_supported_vht(nettype) == _TRUE)
status = api->halmac_cfg_operation_mode(halmac, HALMAC_WIRELESS_MODE_AC);
else if (is_supported_ht(nettype) == _TRUE)
status = api->halmac_cfg_operation_mode(halmac, HALMAC_WIRELESS_MODE_N);
else if (IsSupportedTxOFDM(nettype) == _TRUE)
status = api->halmac_cfg_operation_mode(halmac, HALMAC_WIRELESS_MODE_G);
else
status = api->halmac_cfg_operation_mode(halmac, HALMAC_WIRELESS_MODE_B);
if (status != HALMAC_RET_SUCCESS)
goto out;
err_ret = 0;
out:
return err_ret;
}
static int _drv_enable_trx(struct dvobj_priv *d)
{
struct _ADAPTER *adapter;
u32 status;
adapter = dvobj_get_primary_adapter(d);
if (adapter->bup == _FALSE) {
#ifdef CONFIG_NEW_NETDEV_HDL
status = rtw_mi_start_drv_threads(adapter);
#else
status = rtw_start_drv_threads(adapter);
#endif
if (status == _FAIL) {
RTW_ERR("%s: Start threads Failed!\n", __FUNCTION__);
return -1;
}
}
rtw_intf_start(adapter);
return 0;
}
/*
* Notices:
* Make sure
* 1. rtw_hal_get_hwreg(HW_VAR_RF_TYPE)
* 2. HAL_DATA_TYPE.rfe_type
* already ready for use before calling this function.
*/
static int _halmac_init_hal(struct dvobj_priv *d, u8 *fw, u32 fwsize)
{
PADAPTER adapter;
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_ret_status status;
u32 ok;
u8 fw_ok = _FALSE;
int err, err_ret = -1;
adapter = dvobj_get_primary_adapter(d);
halmac = dvobj_to_halmac(d);
if (!halmac)
goto out;
api = HALMAC_GET_API(halmac);
/* StatePowerOff */
/* SKIP: halmac_init_adapter (Already done before) */
/* halmac_pre_Init_system_cfg */
/* halmac_mac_power_switch(on) */
/* halmac_Init_system_cfg */
ok = rtw_hal_power_on(adapter);
if (_FAIL == ok)
goto out;
/* StatePowerOn */
/* DownloadFW */
if (fw && fwsize) {
err = download_fw(d, fw, fwsize, 0);
if (err)
goto out;
fw_ok = _TRUE;
}
/* InitMACFlow */
err = init_mac_flow(d);
if (err)
goto out;
/* Driver insert flow: Enable TR/RX */
err = _drv_enable_trx(d);
if (err)
goto out;
/* halmac_send_general_info */
if (_TRUE == fw_ok) {
err = _send_general_info(d);
if (err)
goto out;
}
/* Init Phy parameter-MAC */
ok = rtw_hal_init_mac_register(adapter);
if (_FALSE == ok)
goto out;
/* StateMacInitialized */
/* halmac_cfg_drv_info */
err = rtw_halmac_config_rx_info(d, HALMAC_DRV_INFO_PHY_STATUS);
if (err)
goto out;
/* halmac_set_hw_value(HALMAC_HW_EN_BB_RF) */
/* Init BB, RF */
ok = rtw_hal_init_phy(adapter);
if (_FALSE == ok)
goto out;
status = api->halmac_init_interface_cfg(halmac);
if (status != HALMAC_RET_SUCCESS)
goto out;
/* SKIP: halmac_verify_platform_api */
/* SKIP: halmac_h2c_lb */
/* StateRxIdle */
err_ret = 0;
out:
return err_ret;
}
int rtw_halmac_init_hal(struct dvobj_priv *d)
{
return _halmac_init_hal(d, NULL, 0);
}
/*
* Notices:
* Make sure
* 1. rtw_hal_get_hwreg(HW_VAR_RF_TYPE)
* 2. HAL_DATA_TYPE.rfe_type
* already ready for use before calling this function.
*/
int rtw_halmac_init_hal_fw(struct dvobj_priv *d, u8 *fw, u32 fwsize)
{
return _halmac_init_hal(d, fw, fwsize);
}
/*
* Notices:
* Make sure
* 1. rtw_hal_get_hwreg(HW_VAR_RF_TYPE)
* 2. HAL_DATA_TYPE.rfe_type
* already ready for use before calling this function.
*/
int rtw_halmac_init_hal_fw_file(struct dvobj_priv *d, u8 *fwpath)
{
u8 *fw = NULL;
u32 fwmaxsize = 0, size = 0;
int err = 0;
err = rtw_halmac_get_fw_max_size(d, &fwmaxsize);
if (err) {
RTW_ERR("%s: Fail to get Firmware MAX size(err=%d)\n", __FUNCTION__, err);
return -1;
}
fw = rtw_zmalloc(fwmaxsize);
if (!fw)
return -1;
size = rtw_retrieve_from_file(fwpath, fw, fwmaxsize);
if (!size) {
err = -1;
goto exit;
}
err = _halmac_init_hal(d, fw, size);
exit:
rtw_mfree(fw, fwmaxsize);
/*fw = NULL;*/
return err;
}
int rtw_halmac_deinit_hal(struct dvobj_priv *d)
{
PADAPTER adapter;
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_ret_status status;
int err = -1;
adapter = dvobj_get_primary_adapter(d);
halmac = dvobj_to_halmac(d);
if (!halmac)
goto out;
api = HALMAC_GET_API(halmac);
status = api->halmac_deinit_interface_cfg(halmac);
if (status != HALMAC_RET_SUCCESS)
goto out;
rtw_hal_power_off(adapter);
err = 0;
out:
return err;
}
int rtw_halmac_self_verify(struct dvobj_priv *d)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
int err = -1;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
status = api->halmac_verify_platform_api(mac);
if (status != HALMAC_RET_SUCCESS)
goto out;
status = api->halmac_h2c_lb(mac);
if (status != HALMAC_RET_SUCCESS)
goto out;
err = 0;
out:
return err;
}
static u8 rtw_halmac_txfifo_is_empty(struct dvobj_priv *d)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
u32 chk_num = 10;
u8 rst = _FALSE;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
status = api->halmac_txfifo_is_empty(mac, chk_num);
if (status == HALMAC_RET_SUCCESS)
rst = _TRUE;
return rst;
}
/**
* rtw_halmac_txfifo_wait_empty() - Wait TX FIFO to be emtpy
* @d: struct dvobj_priv*
* @timeout: time limit of wait, unit is ms
* 0 for no limit
*
* Wait TX FIFO to be emtpy.
*
* Rteurn 0 for TX FIFO is empty, otherwise not empty.
*/
int rtw_halmac_txfifo_wait_empty(struct dvobj_priv *d, u32 timeout)
{
struct _ADAPTER *a;
u8 empty = _FALSE;
u32 cnt = 0;
systime start_time = 0;
u32 pass_time; /* ms */
a = dvobj_get_primary_adapter(d);
start_time = rtw_get_current_time();
do {
cnt++;
empty = rtw_halmac_txfifo_is_empty(d);
if (empty == _TRUE)
break;
if (timeout) {
pass_time = rtw_get_passing_time_ms(start_time);
if (pass_time > timeout)
break;
}
if (RTW_CANNOT_IO(a)) {
RTW_WARN("%s: Interrupted by I/O forbiden!\n", __FUNCTION__);
break;
}
msleep(2);
2019-11-09 10:12:08 +00:00
} while (1);
if (empty == _FALSE) {
#ifdef CONFIG_RTW_DEBUG
u16 dbg_reg[] = {0x210, 0x230, 0x234, 0x238, 0x23C, 0x240,
0x418, 0x10FC, 0x10F8, 0x11F4, 0x11F8};
u8 i;
u32 val;
if (!RTW_CANNOT_IO(a)) {
for (i = 0; i < ARRAY_SIZE(dbg_reg); i++) {
val = rtw_read32(a, dbg_reg[i]);
RTW_ERR("REG_%X:0x%08x\n", dbg_reg[i], val);
}
}
#endif /* CONFIG_RTW_DEBUG */
RTW_ERR("%s: Fail to wait txfifo empty!(cnt=%d)\n",
__FUNCTION__, cnt);
return -1;
}
return 0;
}
static enum halmac_dlfw_mem _fw_mem_drv2halmac(enum fw_mem mem, u8 tx_stop)
{
enum halmac_dlfw_mem mem_halmac = HALMAC_DLFW_MEM_UNDEFINE;
switch (mem) {
case FW_EMEM:
if (tx_stop == _FALSE)
mem_halmac = HALMAC_DLFW_MEM_EMEM_RSVD_PG;
else
mem_halmac = HALMAC_DLFW_MEM_EMEM;
break;
case FW_IMEM:
case FW_DMEM:
mem_halmac = HALMAC_DLFW_MEM_UNDEFINE;
break;
}
return mem_halmac;
}
int rtw_halmac_dlfw_mem(struct dvobj_priv *d, u8 *fw, u32 fwsize, enum fw_mem mem)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
enum halmac_dlfw_mem dlfw_mem;
u8 tx_stop = _FALSE;
u32 chk_timeout = 2000; /* unit: ms */
int err = 0;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
if ((!fw) || (!fwsize))
return -1;
#ifndef RTW_HALMAC_DLFW_MEM_NO_STOP_TX
/* 1. Driver Stop Tx */
/* ToDo */
/* 2. Driver Check Tx FIFO is empty */
err = rtw_halmac_txfifo_wait_empty(d, chk_timeout);
if (err)
tx_stop = _FALSE;
else
tx_stop = _TRUE;
#endif /* !RTW_HALMAC_DLFW_MEM_NO_STOP_TX */
/* 3. Download Firmware MEM */
dlfw_mem = _fw_mem_drv2halmac(mem, tx_stop);
if (dlfw_mem == HALMAC_DLFW_MEM_UNDEFINE) {
err = -1;
goto resume_tx;
}
status = api->halmac_free_download_firmware(mac, dlfw_mem, fw, fwsize);
if (status != HALMAC_RET_SUCCESS) {
RTW_ERR("%s: halmac_free_download_firmware fail(err=0x%x)\n",
__FUNCTION__, status);
err = -1;
goto resume_tx;
}
resume_tx:
#ifndef RTW_HALMAC_DLFW_MEM_NO_STOP_TX
/* 4. Driver resume TX if needed */
/* ToDo */
#endif /* !RTW_HALMAC_DLFW_MEM_NO_STOP_TX */
return err;
}
int rtw_halmac_dlfw_mem_from_file(struct dvobj_priv *d, u8 *fwpath, enum fw_mem mem)
{
u8 *fw = NULL;
u32 fwmaxsize = 0, size = 0;
int err = 0;
err = rtw_halmac_get_fw_max_size(d, &fwmaxsize);
if (err) {
RTW_ERR("%s: Fail to get Firmware MAX size(err=%d)\n", __FUNCTION__, err);
return -1;
}
fw = rtw_zmalloc(fwmaxsize);
if (!fw)
return -1;
size = rtw_retrieve_from_file(fwpath, fw, fwmaxsize);
if (size)
err = rtw_halmac_dlfw_mem(d, fw, size, mem);
else
err = -1;
rtw_mfree(fw, fwmaxsize);
/*fw = NULL;*/
return err;
}
/*
* Return:
* 0 Success
* -22 Invalid arguemnt
*/
int rtw_halmac_dlfw(struct dvobj_priv *d, u8 *fw, u32 fwsize)
{
PADAPTER adapter;
enum halmac_ret_status status;
u32 ok;
int err, err_ret = -1;
if (!fw || !fwsize)
return -22;
adapter = dvobj_get_primary_adapter(d);
/* re-download firmware */
if (rtw_is_hw_init_completed(adapter))
return download_fw(d, fw, fwsize, 1);
/* Download firmware before hal init */
/* Power on, download firmware and init mac */
ok = rtw_hal_power_on(adapter);
if (_FAIL == ok)
goto out;
err = download_fw(d, fw, fwsize, 0);
if (err) {
err_ret = err;
goto out;
}
err = init_mac_flow(d);
if (err)
goto out;
err = _send_general_info(d);
if (err)
goto out;
err_ret = 0;
out:
return err_ret;
}
int rtw_halmac_dlfw_from_file(struct dvobj_priv *d, u8 *fwpath)
{
u8 *fw = NULL;
u32 fwmaxsize = 0, size = 0;
int err = 0;
err = rtw_halmac_get_fw_max_size(d, &fwmaxsize);
if (err) {
RTW_ERR("%s: Fail to get Firmware MAX size(err=%d)\n", __FUNCTION__, err);
return -1;
}
fw = rtw_zmalloc(fwmaxsize);
if (!fw)
return -1;
size = rtw_retrieve_from_file(fwpath, fw, fwmaxsize);
if (size)
err = rtw_halmac_dlfw(d, fw, size);
else
err = -1;
rtw_mfree(fw, fwmaxsize);
/*fw = NULL;*/
return err;
}
/*
* Description:
* Power on/off BB/RF domain.
*
* Parameters:
* enable _TRUE/_FALSE for power on/off
*
* Return:
* 0 Success
* others Fail
*/
int rtw_halmac_phy_power_switch(struct dvobj_priv *d, u8 enable)
{
PADAPTER adapter;
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_ret_status status;
u8 on;
adapter = dvobj_get_primary_adapter(d);
halmac = dvobj_to_halmac(d);
if (!halmac)
return -1;
api = HALMAC_GET_API(halmac);
on = (enable == _TRUE) ? 1 : 0;
status = api->halmac_set_hw_value(halmac, HALMAC_HW_EN_BB_RF, &on);
if (status != HALMAC_RET_SUCCESS)
return -1;
return 0;
}
static u8 _is_fw_read_cmd_down(PADAPTER adapter, u8 msgbox_num)
{
u8 read_down = _FALSE;
int retry_cnts = 100;
u8 valid;
do {
valid = rtw_read8(adapter, REG_HMETFR) & BIT(msgbox_num);
if (0 == valid)
read_down = _TRUE;
else
msleep(1);
2019-11-09 10:12:08 +00:00
} while ((!read_down) && (retry_cnts--));
if (_FALSE == read_down)
RTW_WARN("%s, reg_1cc(%x), msg_box(%d)...\n", __func__, rtw_read8(adapter, REG_HMETFR), msgbox_num);
return read_down;
}
/**
* rtw_halmac_send_h2c() - Send H2C to firmware
* @d: struct dvobj_priv*
* @h2c: H2C data buffer, suppose to be 8 bytes
*
* Send H2C to firmware by message box register(0x1D0~0x1D3 & 0x1F0~0x1F3).
*
* Assume firmware be ready to accept H2C here, please check
* (hal->bFWReady == _TRUE) before call this function or make sure firmware is
* ready.
*
* Return: 0 if process OK, otherwise fail to send this H2C.
*/
int rtw_halmac_send_h2c(struct dvobj_priv *d, u8 *h2c)
{
PADAPTER adapter = dvobj_get_primary_adapter(d);
PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter);
u8 h2c_box_num = 0;
u32 msgbox_addr = 0;
u32 msgbox_ex_addr = 0;
u32 h2c_cmd = 0;
u32 h2c_cmd_ex = 0;
int err = -1;
if (!h2c) {
RTW_WARN("%s: pbuf is NULL\n", __FUNCTION__);
return err;
}
if (rtw_is_surprise_removed(adapter)) {
RTW_WARN("%s: surprise removed\n", __FUNCTION__);
return err;
}
_enter_critical_mutex(&d->h2c_fwcmd_mutex, NULL);
/* pay attention to if race condition happened in H2C cmd setting */
h2c_box_num = hal->LastHMEBoxNum;
if (!_is_fw_read_cmd_down(adapter, h2c_box_num)) {
RTW_WARN(" fw read cmd failed...\n");
#ifdef DBG_CONFIG_ERROR_DETECT
hal->srestpriv.self_dect_fw = _TRUE;
hal->srestpriv.self_dect_fw_cnt++;
#endif /* DBG_CONFIG_ERROR_DETECT */
goto exit;
}
/* Write Ext command (byte 4~7) */
msgbox_ex_addr = REG_HMEBOX_E0 + (h2c_box_num * EX_MESSAGE_BOX_SIZE);
_rtw_memcpy((u8 *)(&h2c_cmd_ex), h2c + 4, EX_MESSAGE_BOX_SIZE);
h2c_cmd_ex = le32_to_cpu(h2c_cmd_ex);
rtw_write32(adapter, msgbox_ex_addr, h2c_cmd_ex);
/* Write command (byte 0~3) */
msgbox_addr = REG_HMEBOX0 + (h2c_box_num * MESSAGE_BOX_SIZE);
_rtw_memcpy((u8 *)(&h2c_cmd), h2c, 4);
h2c_cmd = le32_to_cpu(h2c_cmd);
rtw_write32(adapter, msgbox_addr, h2c_cmd);
/* update last msg box number */
hal->LastHMEBoxNum = (h2c_box_num + 1) % MAX_H2C_BOX_NUMS;
err = 0;
#ifdef DBG_H2C_CONTENT
RTW_INFO_DUMP("[H2C] - ", h2c, RTW_HALMAC_H2C_MAX_SIZE);
#endif
exit:
_exit_critical_mutex(&d->h2c_fwcmd_mutex, NULL);
return err;
}
/**
* rtw_halmac_c2h_handle() - Handle C2H for HALMAC
* @d: struct dvobj_priv*
* @c2h: Full C2H packet, including RX description and payload
* @size: Size(byte) of c2h
*
* Send C2H packet to HALMAC to process C2H packets, and the expected C2H ID is
* 0xFF. This function won't have any I/O, so caller doesn't have to call it in
* I/O safe place(ex. command thread).
*
* Please sure doesn't call this function in the same thread as someone is
* waiting HALMAC C2H ack, otherwise there is a deadlock happen.
*
* Return: 0 if process OK, otherwise no action for this C2H.
*/
int rtw_halmac_c2h_handle(struct dvobj_priv *d, u8 *c2h, u32 size)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
status = api->halmac_get_c2h_info(mac, c2h, size);
if (HALMAC_RET_SUCCESS != status)
return -1;
return 0;
}
int rtw_halmac_get_available_efuse_size(struct dvobj_priv *d, u32 *size)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
u32 val;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
status = api->halmac_get_efuse_available_size(mac, &val);
if (HALMAC_RET_SUCCESS != status)
return -1;
*size = val;
return 0;
}
int rtw_halmac_get_physical_efuse_size(struct dvobj_priv *d, u32 *size)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
u32 val;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
status = api->halmac_get_efuse_size(mac, &val);
if (HALMAC_RET_SUCCESS != status)
return -1;
*size = val;
return 0;
}
int rtw_halmac_read_physical_efuse_map(struct dvobj_priv *d, u8 *map, u32 size)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
enum halmac_feature_id id;
int ret;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
id = HALMAC_FEATURE_DUMP_PHYSICAL_EFUSE;
ret = init_halmac_event(d, id, map, size);
if (ret)
return -1;
status = api->halmac_dump_efuse_map(mac, HALMAC_EFUSE_R_DRV);
if (HALMAC_RET_SUCCESS != status) {
free_halmac_event(d, id);
return -1;
}
ret = wait_halmac_event(d, id);
if (ret)
return -1;
return 0;
}
int rtw_halmac_read_physical_efuse(struct dvobj_priv *d, u32 offset, u32 cnt, u8 *data)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
u8 v;
u32 i;
u8 *efuse = NULL;
u32 size = 0;
int err = 0;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
if (api->halmac_read_efuse) {
for (i = 0; i < cnt; i++) {
status = api->halmac_read_efuse(mac, offset + i, &v);
if (HALMAC_RET_SUCCESS != status)
return -1;
data[i] = v;
}
} else {
err = rtw_halmac_get_physical_efuse_size(d, &size);
if (err)
return -1;
efuse = rtw_zmalloc(size);
if (!efuse)
return -1;
err = rtw_halmac_read_physical_efuse_map(d, efuse, size);
if (err)
err = -1;
else
_rtw_memcpy(data, efuse + offset, cnt);
rtw_mfree(efuse, size);
}
return err;
}
int rtw_halmac_write_physical_efuse(struct dvobj_priv *d, u32 offset, u32 cnt, u8 *data)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
u32 i;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
if (api->halmac_write_efuse == NULL)
return -1;
for (i = 0; i < cnt; i++) {
status = api->halmac_write_efuse(mac, offset + i, data[i]);
if (HALMAC_RET_SUCCESS != status)
return -1;
}
return 0;
}
int rtw_halmac_get_logical_efuse_size(struct dvobj_priv *d, u32 *size)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
u32 val;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
status = api->halmac_get_logical_efuse_size(mac, &val);
if (HALMAC_RET_SUCCESS != status)
return -1;
*size = val;
return 0;
}
int rtw_halmac_read_logical_efuse_map(struct dvobj_priv *d, u8 *map, u32 size, u8 *maskmap, u32 masksize)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
enum halmac_feature_id id;
int ret;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
id = HALMAC_FEATURE_DUMP_LOGICAL_EFUSE;
ret = init_halmac_event(d, id, map, size);
if (ret)
return -1;
status = api->halmac_dump_logical_efuse_map(mac, HALMAC_EFUSE_R_DRV);
if (HALMAC_RET_SUCCESS != status) {
free_halmac_event(d, id);
return -1;
}
ret = wait_halmac_event(d, id);
if (ret)
return -1;
if (maskmap && masksize) {
struct halmac_pg_efuse_info pginfo;
pginfo.efuse_map = map;
pginfo.efuse_map_size = size;
pginfo.efuse_mask = maskmap;
pginfo.efuse_mask_size = masksize;
status = api->halmac_mask_logical_efuse(mac, &pginfo);
if (status != HALMAC_RET_SUCCESS)
RTW_WARN("%s: mask logical efuse FAIL!\n", __FUNCTION__);
}
return 0;
}
int rtw_halmac_write_logical_efuse_map(struct dvobj_priv *d, u8 *map, u32 size, u8 *maskmap, u32 masksize)
{
struct halmac_adapter *mac;
struct halmac_api *api;
struct halmac_pg_efuse_info pginfo;
enum halmac_ret_status status;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
pginfo.efuse_map = map;
pginfo.efuse_map_size = size;
pginfo.efuse_mask = maskmap;
pginfo.efuse_mask_size = masksize;
status = api->halmac_pg_efuse_by_map(mac, &pginfo, HALMAC_EFUSE_R_AUTO);
if (HALMAC_RET_SUCCESS != status)
return -1;
return 0;
}
int rtw_halmac_read_logical_efuse(struct dvobj_priv *d, u32 offset, u32 cnt, u8 *data)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
u8 v;
u32 i;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
for (i = 0; i < cnt; i++) {
status = api->halmac_read_logical_efuse(mac, offset + i, &v);
if (HALMAC_RET_SUCCESS != status)
return -1;
data[i] = v;
}
return 0;
}
int rtw_halmac_write_logical_efuse(struct dvobj_priv *d, u32 offset, u32 cnt, u8 *data)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
u32 i;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
for (i = 0; i < cnt; i++) {
status = api->halmac_write_logical_efuse(mac, offset + i, data[i]);
if (HALMAC_RET_SUCCESS != status)
return -1;
}
return 0;
}
int rtw_halmac_write_bt_physical_efuse(struct dvobj_priv *d, u32 offset, u32 cnt, u8 *data)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
u32 i;
u8 bank = 1;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
for (i = 0; i < cnt; i++) {
status = api->halmac_write_efuse_bt(mac, offset + i, data[i], bank);
if (HALMAC_RET_SUCCESS != status) {
printk("%s: halmac_write_efuse_bt status = %d\n", __FUNCTION__, status);
return -1;
}
}
printk("%s: halmac_write_efuse_bt status = HALMAC_RET_SUCCESS %d\n", __FUNCTION__, status);
return 0;
}
int rtw_halmac_read_bt_physical_efuse_map(struct dvobj_priv *d, u8 *map, u32 size)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
int bank = 1;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
status = api->halmac_dump_efuse_map_bt(mac, bank, size, map);
if (HALMAC_RET_SUCCESS != status) {
printk("%s: halmac_dump_efuse_map_bt fail!\n", __FUNCTION__);
return -1;
}
printk("%s: OK!\n", __FUNCTION__);
return 0;
}
static enum hal_fifo_sel _fifo_sel_drv2halmac(u8 fifo_sel)
{
switch (fifo_sel) {
case 0:
return HAL_FIFO_SEL_TX;
case 1:
return HAL_FIFO_SEL_RX;
case 2:
return HAL_FIFO_SEL_RSVD_PAGE;
case 3:
return HAL_FIFO_SEL_REPORT;
case 4:
return HAL_FIFO_SEL_LLT;
case 5:
return HAL_FIFO_SEL_RXBUF_FW;
}
return HAL_FIFO_SEL_RSVD_PAGE;
}
/*#define CONFIG_HALMAC_FIFO_DUMP*/
int rtw_halmac_dump_fifo(struct dvobj_priv *d, u8 fifo_sel, u32 addr, u32 size, u8 *buffer)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum hal_fifo_sel halmac_fifo_sel;
enum halmac_ret_status status;
u8 *pfifo_map = NULL;
u32 fifo_size = 0;
s8 ret = 0;/* 0:success, -1:error */
u8 mem_created = _FALSE;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
if ((size != 0) && (buffer == NULL))
return -1;
halmac_fifo_sel = _fifo_sel_drv2halmac(fifo_sel);
if ((size) && (buffer)) {
pfifo_map = buffer;
fifo_size = size;
} else {
fifo_size = api->halmac_get_fifo_size(mac, halmac_fifo_sel);
if (fifo_size)
pfifo_map = vzalloc(fifo_size);
2019-11-09 10:12:08 +00:00
if (pfifo_map == NULL)
return -1;
mem_created = _TRUE;
}
status = api->halmac_dump_fifo(mac, halmac_fifo_sel, addr, fifo_size, pfifo_map);
if (HALMAC_RET_SUCCESS != status) {
ret = -1;
goto _exit;
}
#ifdef CONFIG_HALMAC_FIFO_DUMP
{
static const char * const fifo_sel_str[] = {
"TX", "RX", "RSVD_PAGE", "REPORT", "LLT", "RXBUF_FW"
};
RTW_INFO("%s FIFO DUMP [start_addr:0x%04x , size:%d]\n", fifo_sel_str[halmac_fifo_sel], addr, fifo_size);
RTW_INFO_DUMP("\n", pfifo_map, fifo_size);
RTW_INFO(" ==================================================\n");
}
#endif /* CONFIG_HALMAC_FIFO_DUMP */
_exit:
if ((mem_created == _TRUE) && pfifo_map)
vfree(pfifo_map);
2019-11-09 10:12:08 +00:00
return ret;
}
/*
* rtw_halmac_rx_agg_switch() - Switch RX aggregation function and setting
* @d struct dvobj_priv *
* @enable _FALSE/_TRUE for disable/enable RX aggregation function
*
* This function could help to on/off bus RX aggregation function, and is only
* useful for SDIO and USB interface. Although only "enable" flag is brough in,
* some setting would be taken from other places, and they are from:
* [DMA aggregation]
* struct hal_com_data.rxagg_dma_size
* struct hal_com_data.rxagg_dma_timeout
* [USB aggregation] (only use for USB interface)
* struct hal_com_data.rxagg_usb_size
* struct hal_com_data.rxagg_usb_timeout
* If above values of size and timeout are both 0 means driver would not
* control the threshold setting and leave it to HALMAC handle.
*
* From HALMAC V1_04_04, driver force the size threshold be hard limit, and the
* rx size can not exceed the setting.
*
* Return 0 for success, otherwise fail.
*/
int rtw_halmac_rx_agg_switch(struct dvobj_priv *d, u8 enable)
{
struct _ADAPTER *adapter;
struct hal_com_data *hal;
struct halmac_adapter *halmac;
struct halmac_api *api;
struct halmac_rxagg_cfg rxaggcfg;
enum halmac_ret_status status;
adapter = dvobj_get_primary_adapter(d);
hal = GET_HAL_DATA(adapter);
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
memset((void *)&rxaggcfg, 0, sizeof(rxaggcfg));
2019-11-09 10:12:08 +00:00
rxaggcfg.mode = HALMAC_RX_AGG_MODE_NONE;
/*
* Always enable size limit to avoid rx size exceed
* driver defined size.
*/
rxaggcfg.threshold.size_limit_en = 1;
#ifdef RTW_RX_AGGREGATION
if (_TRUE == enable) {
#ifdef CONFIG_SDIO_HCI
rxaggcfg.mode = HALMAC_RX_AGG_MODE_DMA;
rxaggcfg.threshold.drv_define = 0;
if (hal->rxagg_dma_size || hal->rxagg_dma_timeout) {
rxaggcfg.threshold.drv_define = 1;
rxaggcfg.threshold.timeout = hal->rxagg_dma_timeout;
rxaggcfg.threshold.size = hal->rxagg_dma_size;
RTW_INFO("%s: RX aggregation threshold: "
"timeout=%u size=%u\n",
__FUNCTION__,
hal->rxagg_dma_timeout,
hal->rxagg_dma_size);
}
#elif defined(CONFIG_USB_HCI)
switch (hal->rxagg_mode) {
case RX_AGG_DISABLE:
rxaggcfg.mode = HALMAC_RX_AGG_MODE_NONE;
break;
case RX_AGG_DMA:
rxaggcfg.mode = HALMAC_RX_AGG_MODE_DMA;
if (hal->rxagg_dma_size || hal->rxagg_dma_timeout) {
rxaggcfg.threshold.drv_define = 1;
rxaggcfg.threshold.timeout = hal->rxagg_dma_timeout;
rxaggcfg.threshold.size = hal->rxagg_dma_size;
}
break;
case RX_AGG_USB:
case RX_AGG_MIX:
rxaggcfg.mode = HALMAC_RX_AGG_MODE_USB;
if (hal->rxagg_usb_size || hal->rxagg_usb_timeout) {
rxaggcfg.threshold.drv_define = 1;
rxaggcfg.threshold.timeout = hal->rxagg_usb_timeout;
rxaggcfg.threshold.size = hal->rxagg_usb_size;
}
break;
}
#endif /* CONFIG_USB_HCI */
}
#endif /* RTW_RX_AGGREGATION */
status = api->halmac_cfg_rx_aggregation(halmac, &rxaggcfg);
if (status != HALMAC_RET_SUCCESS)
return -1;
return 0;
}
int rtw_halmac_download_rsvd_page(struct dvobj_priv *dvobj, u8 pg_offset, u8 *pbuf, u32 size)
{
enum halmac_ret_status status = HALMAC_RET_SUCCESS;
struct halmac_adapter *halmac = dvobj_to_halmac(dvobj);
struct halmac_api *api = HALMAC_GET_API(halmac);
status = api->halmac_dl_drv_rsvd_page(halmac, pg_offset, pbuf, size);
if (status != HALMAC_RET_SUCCESS)
return -1;
return 0;
}
/*
* Description
* Fill following spec info from HALMAC API:
* sec_cam_ent_num
*
* Return
* 0 Success
* others Fail
*/
int rtw_halmac_fill_hal_spec(struct dvobj_priv *dvobj, struct hal_spec_t *spec)
{
enum halmac_ret_status status;
struct halmac_adapter *halmac;
struct halmac_api *api;
u8 cam = 0; /* Security Cam Entry Number */
halmac = dvobj_to_halmac(dvobj);
api = HALMAC_GET_API(halmac);
/* Prepare data from HALMAC */
status = api->halmac_get_hw_value(halmac, HALMAC_HW_CAM_ENTRY_NUM, &cam);
if (status != HALMAC_RET_SUCCESS)
return -1;
/* Fill data to hal_spec_t */
spec->sec_cam_ent_num = cam;
return 0;
}
int rtw_halmac_p2pps(struct dvobj_priv *dvobj, struct hal_p2p_ps_para *pp2p_ps_para)
{
enum halmac_ret_status status = HALMAC_RET_SUCCESS;
struct halmac_adapter *halmac = dvobj_to_halmac(dvobj);
struct halmac_api *api = HALMAC_GET_API(halmac);
struct halmac_p2pps halmac_p2p_ps;
(&halmac_p2p_ps)->offload_en = pp2p_ps_para->offload_en;
(&halmac_p2p_ps)->role = pp2p_ps_para->role;
(&halmac_p2p_ps)->ctwindow_en = pp2p_ps_para->ctwindow_en;
(&halmac_p2p_ps)->noa_en = pp2p_ps_para->noa_en;
(&halmac_p2p_ps)->noa_sel = pp2p_ps_para->noa_sel;
(&halmac_p2p_ps)->all_sta_sleep = pp2p_ps_para->all_sta_sleep;
(&halmac_p2p_ps)->discovery = pp2p_ps_para->discovery;
(&halmac_p2p_ps)->disable_close_rf = pp2p_ps_para->disable_close_rf;
(&halmac_p2p_ps)->p2p_port_id = _hw_port_drv2halmac(pp2p_ps_para->p2p_port_id);
(&halmac_p2p_ps)->p2p_group = pp2p_ps_para->p2p_group;
(&halmac_p2p_ps)->p2p_macid = pp2p_ps_para->p2p_macid;
(&halmac_p2p_ps)->ctwindow_length = pp2p_ps_para->ctwindow_length;
(&halmac_p2p_ps)->noa_duration_para = pp2p_ps_para->noa_duration_para;
(&halmac_p2p_ps)->noa_interval_para = pp2p_ps_para->noa_interval_para;
(&halmac_p2p_ps)->noa_start_time_para = pp2p_ps_para->noa_start_time_para;
(&halmac_p2p_ps)->noa_count_para = pp2p_ps_para->noa_count_para;
status = api->halmac_p2pps(halmac, (&halmac_p2p_ps));
if (status != HALMAC_RET_SUCCESS)
return -1;
return 0;
}
/**
* rtw_halmac_iqk() - Run IQ Calibration
* @d: struct dvobj_priv*
* @clear: IQK parameters
* @segment: IQK parameters
*
* Process IQ Calibration(IQK).
*
* Rteurn: 0 for OK, otherwise fail.
*/
int rtw_halmac_iqk(struct dvobj_priv *d, u8 clear, u8 segment)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
enum halmac_feature_id id;
struct halmac_iqk_para para;
int ret;
u8 retry = 3;
u8 delay = 1; /* ms */
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
id = HALMAC_FEATURE_IQK;
ret = init_halmac_event(d, id, NULL, 0);
if (ret)
return -1;
para.clear = clear;
para.segment_iqk = segment;
do {
status = api->halmac_start_iqk(mac, &para);
if (status != HALMAC_RET_BUSY_STATE)
break;
RTW_WARN("%s: Fail to start IQK, status is BUSY! retry=%d\n", __FUNCTION__, retry);
if (!retry)
break;
retry--;
msleep(delay);
2019-11-09 10:12:08 +00:00
} while (1);
if (status != HALMAC_RET_SUCCESS) {
free_halmac_event(d, id);
return -1;
}
ret = wait_halmac_event(d, id);
if (ret)
return -1;
return 0;
}
static inline u32 _phy_parameter_val_drv2halmac(u32 val, u8 msk_en, u32 msk)
{
if (!msk_en)
return val;
return (val << bitshift(msk));
}
static int _phy_parameter_drv2halmac(struct rtw_phy_parameter *para, struct halmac_phy_parameter_info *info)
{
if (!para || !info)
return -1;
memset(info, 0, sizeof(*info));
2019-11-09 10:12:08 +00:00
switch (para->cmd) {
case 0:
/* MAC register */
switch (para->data.mac.size) {
case 1:
info->cmd_id = HALMAC_PARAMETER_CMD_MAC_W8;
break;
case 2:
info->cmd_id = HALMAC_PARAMETER_CMD_MAC_W16;
break;
default:
info->cmd_id = HALMAC_PARAMETER_CMD_MAC_W32;
break;
}
info->content.MAC_REG_W.value = _phy_parameter_val_drv2halmac(
para->data.mac.value,
para->data.mac.msk_en,
para->data.mac.msk);
info->content.MAC_REG_W.msk = para->data.mac.msk;
info->content.MAC_REG_W.offset = para->data.mac.offset;
info->content.MAC_REG_W.msk_en = para->data.mac.msk_en;
break;
case 1:
/* BB register */
switch (para->data.bb.size) {
case 1:
info->cmd_id = HALMAC_PARAMETER_CMD_BB_W8;
break;
case 2:
info->cmd_id = HALMAC_PARAMETER_CMD_BB_W16;
break;
default:
info->cmd_id = HALMAC_PARAMETER_CMD_BB_W32;
break;
}
info->content.BB_REG_W.value = _phy_parameter_val_drv2halmac(
para->data.bb.value,
para->data.bb.msk_en,
para->data.bb.msk);
info->content.BB_REG_W.msk = para->data.bb.msk;
info->content.BB_REG_W.offset = para->data.bb.offset;
info->content.BB_REG_W.msk_en = para->data.bb.msk_en;
break;
case 2:
/* RF register */
info->cmd_id = HALMAC_PARAMETER_CMD_RF_W;
info->content.RF_REG_W.value = _phy_parameter_val_drv2halmac(
para->data.rf.value,
para->data.rf.msk_en,
para->data.rf.msk);
info->content.RF_REG_W.msk = para->data.rf.msk;
info->content.RF_REG_W.offset = para->data.rf.offset;
info->content.RF_REG_W.msk_en = para->data.rf.msk_en;
info->content.RF_REG_W.rf_path = para->data.rf.path;
break;
case 3:
/* Delay register */
if (para->data.delay.unit == 0)
info->cmd_id = HALMAC_PARAMETER_CMD_DELAY_US;
else
info->cmd_id = HALMAC_PARAMETER_CMD_DELAY_MS;
info->content.DELAY_TIME.delay_time = para->data.delay.value;
break;
case 0xFF:
/* Latest(End) command */
info->cmd_id = HALMAC_PARAMETER_CMD_END;
break;
default:
return -1;
}
return 0;
}
/**
* rtw_halmac_cfg_phy_para() - Register(Phy parameter) configuration
* @d: struct dvobj_priv*
* @para: phy parameter
*
* Configure registers by firmware using H2C/C2H mechanism.
* The latest command should be para->cmd==0xFF(End command) to finish all
* processes.
*
* Return: 0 for OK, otherwise fail.
*/
int rtw_halmac_cfg_phy_para(struct dvobj_priv *d, struct rtw_phy_parameter *para)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
enum halmac_feature_id id;
struct halmac_phy_parameter_info info;
u8 full_fifo;
int err, ret;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
id = HALMAC_FEATURE_CFG_PARA;
full_fifo = 1; /* ToDo: How to deciede? */
ret = 0;
err = _phy_parameter_drv2halmac(para, &info);
if (err)
return -1;
err = init_halmac_event(d, id, NULL, 0);
if (err)
return -1;
status = api->halmac_cfg_parameter(mac, &info, full_fifo);
if (info.cmd_id == HALMAC_PARAMETER_CMD_END) {
if (status == HALMAC_RET_SUCCESS) {
err = wait_halmac_event(d, id);
if (err)
ret = -1;
} else {
free_halmac_event(d, id);
ret = -1;
RTW_ERR("%s: Fail to send END of cfg parameter, status is 0x%x!\n", __FUNCTION__, status);
}
} else {
if (status == HALMAC_RET_PARA_SENDING) {
err = wait_halmac_event(d, id);
if (err)
ret = -1;
} else {
free_halmac_event(d, id);
if (status != HALMAC_RET_SUCCESS) {
ret = -1;
RTW_ERR("%s: Fail to cfg parameter, status is 0x%x!\n", __FUNCTION__, status);
}
}
}
return ret;
}
static enum halmac_wlled_mode _led_mode_drv2halmac(u8 drv_mode)
{
enum halmac_wlled_mode halmac_mode;
switch (drv_mode) {
case 1:
halmac_mode = HALMAC_WLLED_MODE_TX;
break;
case 2:
halmac_mode = HALMAC_WLLED_MODE_RX;
break;
case 3:
halmac_mode = HALMAC_WLLED_MODE_SW_CTRL;
break;
case 0:
default:
halmac_mode = HALMAC_WLLED_MODE_TRX;
break;
}
return halmac_mode;
}
/**
* rtw_halmac_led_cfg() - Configure Hardware LED Mode
* @d: struct dvobj_priv*
* @enable: enable or disable LED function
* 0: disable
* 1: enable
* @mode: WLan LED mode (valid when enable==1)
* 0: Blink when TX(transmit packet) and RX(receive packet)
* 1: Blink when TX only
* 2: Blink when RX only
* 3: Software control
*
* Configure hardware WLan LED mode.
* If want to change LED mode after enabled, need to disable LED first and
* enable again to set new mode.
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_led_cfg(struct dvobj_priv *d, u8 enable, u8 mode)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_wlled_mode led_mode;
enum halmac_ret_status status;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
if (enable) {
status = api->halmac_pinmux_set_func(halmac,
HALMAC_GPIO_FUNC_WL_LED);
if (status != HALMAC_RET_SUCCESS) {
RTW_ERR("%s: pinmux set fail!(0x%x)\n",
__FUNCTION__, status);
return -1;
}
led_mode = _led_mode_drv2halmac(mode);
status = api->halmac_pinmux_wl_led_mode(halmac, led_mode);
if (status != HALMAC_RET_SUCCESS) {
RTW_ERR("%s: mode set fail!(0x%x)\n",
__FUNCTION__, status);
return -1;
}
} else {
/* Change LED to software control and turn off */
api->halmac_pinmux_wl_led_mode(halmac,
HALMAC_WLLED_MODE_SW_CTRL);
api->halmac_pinmux_wl_led_sw_ctrl(halmac, 0);
status = api->halmac_pinmux_free_func(halmac,
HALMAC_GPIO_FUNC_WL_LED);
if (status != HALMAC_RET_SUCCESS) {
RTW_ERR("%s: pinmux free fail!(0x%x)\n",
__FUNCTION__, status);
return -1;
}
}
return 0;
}
/**
* rtw_halmac_led_switch() - Turn Hardware LED on/off
* @d: struct dvobj_priv*
* @on: LED light or not
* 0: Off
* 1: On(Light)
*
* Turn Hardware WLan LED On/Off.
* Before use this function, user should call rtw_halmac_led_ctrl() to switch
* mode to "software control(3)" first, otherwise control would fail.
* The interval between on and off must be longer than 1 ms, or the LED would
* keep light or dark only.
* Ex. Turn off LED at first, turn on after 0.5ms and turn off again after
* 0.5ms. The LED during this flow will only keep dark, and miss the turn on
* operation between two turn off operations.
*/
void rtw_halmac_led_switch(struct dvobj_priv *d, u8 on)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
api->halmac_pinmux_wl_led_sw_ctrl(halmac, on);
}
/**
* rtw_halmac_bt_wake_cfg() - Configure BT wake host function
* @d: struct dvobj_priv*
* @enable: enable or disable BT wake host function
* 0: disable
* 1: enable
*
* Configure pinmux to allow BT to control BT wake host pin.
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_bt_wake_cfg(struct dvobj_priv *d, u8 enable)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_ret_status status;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
if (enable) {
status = api->halmac_pinmux_set_func(halmac,
HALMAC_GPIO_FUNC_BT_HOST_WAKE1);
if (status != HALMAC_RET_SUCCESS) {
RTW_ERR("%s: pinmux set BT_HOST_WAKE1 fail!(0x%x)\n",
__FUNCTION__, status);
return -1;
}
} else {
status = api->halmac_pinmux_free_func(halmac,
HALMAC_GPIO_FUNC_BT_HOST_WAKE1);
if (status != HALMAC_RET_SUCCESS) {
RTW_ERR("%s: pinmux free BT_HOST_WAKE1 fail!(0x%x)\n",
__FUNCTION__, status);
return -1;
}
}
return 0;
}
#ifdef CONFIG_PNO_SUPPORT
/**
* _halmac_scanoffload() - Switch channel by firmware during scanning
* @d: struct dvobj_priv*
* @enable: 1: enable, 0: disable
* @nlo: 1: nlo mode (no c2h event), 0: normal mode
* @ssid: ssid of probe request
* @ssid_len: ssid length
*
* Switch Channel and Send Porbe Request Offloaded by FW
*
* Rteurn 0 for OK, otherwise fail.
*/
static int _halmac_scanoffload(struct dvobj_priv *d, u32 enable, u8 nlo,
u8 *ssid, u8 ssid_len)
{
struct _ADAPTER *adapter;
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
struct halmac_ch_info ch_info;
struct halmac_ch_switch_option cs_option;
struct mlme_ext_priv *pmlmeext;
enum halmac_feature_id id_update, id_ch_sw;
struct halmac_indicator *indicator, *tbl;
int err = 0;
u8 probereq[64];
u32 len = 0;
int i = 0;
struct pno_ssid pnossid;
struct rf_ctl_t *rfctl = NULL;
struct _RT_CHANNEL_INFO *ch_set;
tbl = d->hmpriv.indicator;
adapter = dvobj_get_primary_adapter(d);
mac = dvobj_to_halmac(d);
if (!mac)
return -1;
api = HALMAC_GET_API(mac);
id_update = HALMAC_FEATURE_UPDATE_PACKET;
id_ch_sw = HALMAC_FEATURE_CHANNEL_SWITCH;
pmlmeext = &(adapter->mlmeextpriv);
rfctl = adapter_to_rfctl(adapter);
ch_set = rfctl->channel_set;
RTW_INFO("%s: %s scanoffload, mode: %s\n",
__FUNCTION__, enable?"Enable":"Disable",
nlo?"PNO/NLO":"Normal");
if (enable) {
memset(probereq, 0, sizeof(probereq));
2019-11-09 10:12:08 +00:00
memset(&pnossid, 0, sizeof(pnossid));
2019-11-09 10:12:08 +00:00
if (ssid) {
if (ssid_len > sizeof(pnossid.SSID)) {
RTW_ERR("%s: SSID length(%d) is too long(>%d)!!\n",
__FUNCTION__, ssid_len, sizeof(pnossid.SSID));
return -1;
}
pnossid.SSID_len = ssid_len;
_rtw_memcpy(pnossid.SSID, ssid, ssid_len);
}
rtw_hal_construct_ProbeReq(adapter, probereq, &len, &pnossid);
if (!nlo) {
err = init_halmac_event(d, id_update, NULL, 0);
if (err)
return -1;
}
status = api->halmac_update_packet(mac, HALMAC_PACKET_PROBE_REQ,
probereq, len);
if (status != HALMAC_RET_SUCCESS) {
if (!nlo)
free_halmac_event(d, id_update);
RTW_ERR("%s: halmac_update_packet FAIL(%d)!!\n",
__FUNCTION__, status);
return -1;
}
if (!nlo) {
err = wait_halmac_event(d, id_update);
if (err)
RTW_ERR("%s: wait update packet FAIL(%d)!!\n",
__FUNCTION__, err);
}
api->halmac_clear_ch_info(mac);
for (i = 0; i < rfctl->max_chan_nums && ch_set[i].ChannelNum != 0; i++) {
memset(&ch_info, 0, sizeof(ch_info));
2019-11-09 10:12:08 +00:00
ch_info.extra_info = 0;
ch_info.channel = ch_set[i].ChannelNum;
ch_info.bw = HALMAC_BW_20;
ch_info.pri_ch_idx = HALMAC_CH_IDX_1;
ch_info.action_id = HALMAC_CS_ACTIVE_SCAN;
ch_info.timeout = 1;
status = api->halmac_add_ch_info(mac, &ch_info);
if (status != HALMAC_RET_SUCCESS) {
RTW_ERR("%s: add_ch_info FAIL(%d)!!\n",
__FUNCTION__, status);
return -1;
}
}
/* set channel switch option */
memset(&cs_option, 0, sizeof(cs_option));
2019-11-09 10:12:08 +00:00
cs_option.dest_bw = HALMAC_BW_20;
cs_option.periodic_option = HALMAC_CS_PERIODIC_2_PHASE;
cs_option.dest_pri_ch_idx = HALMAC_CH_IDX_UNDEFINE;
cs_option.tsf_low = 0;
cs_option.switch_en = 1;
cs_option.dest_ch_en = 1;
cs_option.absolute_time_en = 0;
cs_option.dest_ch = 1;
cs_option.normal_period = 5;
cs_option.normal_period_sel = 0;
cs_option.normal_cycle = 10;
cs_option.phase_2_period = 1;
cs_option.phase_2_period_sel = 1;
/* nlo is for wow fw, 1: no c2h response */
cs_option.nlo_en = nlo;
if (!nlo) {
err = init_halmac_event(d, id_ch_sw, NULL, 0);
if (err)
return -1;
}
status = api->halmac_ctrl_ch_switch(mac, &cs_option);
if (status != HALMAC_RET_SUCCESS) {
if (!nlo)
free_halmac_event(d, id_ch_sw);
RTW_ERR("%s: halmac_ctrl_ch_switch FAIL(%d)!!\n",
__FUNCTION__, status);
return -1;
}
if (!nlo) {
err = wait_halmac_event(d, id_ch_sw);
if (err)
RTW_ERR("%s: wait ctrl_ch_switch FAIL(%d)!!\n",
__FUNCTION__, err);
}
} else {
api->halmac_clear_ch_info(mac);
memset(&cs_option, 0, sizeof(cs_option));
2019-11-09 10:12:08 +00:00
cs_option.switch_en = 0;
if (!nlo) {
err = init_halmac_event(d, id_ch_sw, NULL, 0);
if (err)
return -1;
}
status = api->halmac_ctrl_ch_switch(mac, &cs_option);
if (status != HALMAC_RET_SUCCESS) {
if (!nlo)
free_halmac_event(d, id_ch_sw);
RTW_ERR("%s: halmac_ctrl_ch_switch FAIL(%d)!!\n",
__FUNCTION__, status);
return -1;
}
if (!nlo) {
err = wait_halmac_event(d, id_ch_sw);
if (err)
RTW_ERR("%s: wait ctrl_ch_switch FAIL(%d)!!\n",
__FUNCTION__, err);
}
}
return 0;
}
/**
* rtw_halmac_pno_scanoffload() - Control firmware scan AP function for PNO
* @d: struct dvobj_priv*
* @enable: 1: enable, 0: disable
*
* Switch firmware scan AP function for PNO(prefer network offload) or
* NLO(network list offload).
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_pno_scanoffload(struct dvobj_priv *d, u32 enable)
{
return _halmac_scanoffload(d, enable, 1, NULL, 0);
}
#endif /* CONFIG_PNO_SUPPORT */
#ifdef CONFIG_SDIO_HCI
/*
* Description:
* Update queue allocated page number to driver
*
* Parameter:
* d pointer to struct dvobj_priv of driver
*
* Rteurn:
* 0 Success, "page" is valid.
* others Fail, "page" is invalid.
*/
int rtw_halmac_query_tx_page_num(struct dvobj_priv *d)
{
PADAPTER adapter;
struct halmacpriv *hmpriv;
struct halmac_adapter *halmac;
struct halmac_api *api;
struct halmac_rqpn_map rqpn;
enum halmac_dma_mapping dmaqueue;
struct halmac_txff_allocation fifosize;
enum halmac_ret_status status;
u8 i;
adapter = dvobj_get_primary_adapter(d);
hmpriv = &d->hmpriv;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
memset((void *)&rqpn, 0, sizeof(rqpn));
memset((void *)&fifosize, 0, sizeof(fifosize));
2019-11-09 10:12:08 +00:00
status = api->halmac_get_hw_value(halmac, HALMAC_HW_RQPN_MAPPING, &rqpn);
if (status != HALMAC_RET_SUCCESS)
return -1;
status = api->halmac_get_hw_value(halmac, HALMAC_HW_TXFF_ALLOCATION, &fifosize);
if (status != HALMAC_RET_SUCCESS)
return -1;
for (i = 0; i < HW_QUEUE_ENTRY; i++) {
hmpriv->txpage[i] = 0;
/* Driver index mapping to HALMAC DMA queue */
dmaqueue = HALMAC_DMA_MAPPING_UNDEFINE;
switch (i) {
case VO_QUEUE_INX:
dmaqueue = rqpn.dma_map_vo;
break;
case VI_QUEUE_INX:
dmaqueue = rqpn.dma_map_vi;
break;
case BE_QUEUE_INX:
dmaqueue = rqpn.dma_map_be;
break;
case BK_QUEUE_INX:
dmaqueue = rqpn.dma_map_bk;
break;
case MGT_QUEUE_INX:
dmaqueue = rqpn.dma_map_mg;
break;
case HIGH_QUEUE_INX:
dmaqueue = rqpn.dma_map_hi;
break;
case BCN_QUEUE_INX:
case TXCMD_QUEUE_INX:
/* Unlimited */
hmpriv->txpage[i] = 0xFFFF;
continue;
}
switch (dmaqueue) {
case HALMAC_DMA_MAPPING_EXTRA:
hmpriv->txpage[i] = fifosize.extra_queue_pg_num;
break;
case HALMAC_DMA_MAPPING_LOW:
hmpriv->txpage[i] = fifosize.low_queue_pg_num;
break;
case HALMAC_DMA_MAPPING_NORMAL:
hmpriv->txpage[i] = fifosize.normal_queue_pg_num;
break;
case HALMAC_DMA_MAPPING_HIGH:
hmpriv->txpage[i] = fifosize.high_queue_pg_num;
break;
case HALMAC_DMA_MAPPING_UNDEFINE:
break;
}
hmpriv->txpage[i] += fifosize.pub_queue_pg_num;
}
return 0;
}
/*
* Description:
* Get specific queue allocated page number
*
* Parameter:
* d pointer to struct dvobj_priv of driver
* queue target queue to query, VO/VI/BE/BK/.../TXCMD_QUEUE_INX
* page return allocated page number
*
* Rteurn:
* 0 Success, "page" is valid.
* others Fail, "page" is invalid.
*/
int rtw_halmac_get_tx_queue_page_num(struct dvobj_priv *d, u8 queue, u32 *page)
{
*page = 0;
if (queue < HW_QUEUE_ENTRY)
*page = d->hmpriv.txpage[queue];
return 0;
}
/*
* Return:
* address for SDIO command
*/
u32 rtw_halmac_sdio_get_tx_addr(struct dvobj_priv *d, u8 *desc, u32 size)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
u32 addr;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
status = api->halmac_get_sdio_tx_addr(mac, desc, size, &addr);
if (HALMAC_RET_SUCCESS != status)
return 0;
return addr;
}
int rtw_halmac_sdio_tx_allowed(struct dvobj_priv *d, u8 *buf, u32 size)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
status = api->halmac_tx_allowed_sdio(mac, buf, size);
if (HALMAC_RET_SUCCESS != status)
return -1;
return 0;
}
u32 rtw_halmac_sdio_get_rx_addr(struct dvobj_priv *d, u8 *seq)
{
u8 id;
#define RTW_SDIO_ADDR_RX_RX0FF_PRFIX 0x0E000
#define RTW_SDIO_ADDR_RX_RX0FF_GEN(a) (RTW_SDIO_ADDR_RX_RX0FF_PRFIX|(a&0x3))
id = *seq;
(*seq)++;
return RTW_SDIO_ADDR_RX_RX0FF_GEN(id);
}
#endif /* CONFIG_SDIO_HCI */
#ifdef CONFIG_USB_HCI
u8 rtw_halmac_usb_get_bulkout_id(struct dvobj_priv *d, u8 *buf, u32 size)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
u8 bulkout_id;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
status = api->halmac_get_usb_bulkout_id(mac, buf, size, &bulkout_id);
if (HALMAC_RET_SUCCESS != status)
return 0;
return bulkout_id;
}
/**
* rtw_halmac_usb_get_txagg_desc_num() - MAX descriptor number in one bulk for TX
* @d: struct dvobj_priv*
* @size: TX FIFO size, unit is byte.
*
* Get MAX descriptor number in one bulk out from HALMAC.
*
* Rteurn 0 for OK, otherwise fail.
*/
int rtw_halmac_usb_get_txagg_desc_num(struct dvobj_priv *d, u8 *num)
{
struct halmac_adapter *halmac;
struct halmac_api *api;
enum halmac_ret_status status;
u8 val = 0;
halmac = dvobj_to_halmac(d);
api = HALMAC_GET_API(halmac);
status = api->halmac_get_hw_value(halmac, HALMAC_HW_USB_TXAGG_DESC_NUM, &val);
if (status != HALMAC_RET_SUCCESS)
return -1;
*num = val;
return 0;
}
static inline enum halmac_usb_mode _usb_mode_drv2halmac(enum RTW_USB_SPEED usb_mode)
{
enum halmac_usb_mode halmac_usb_mode = HALMAC_USB_MODE_U2;
switch (usb_mode) {
case RTW_USB_SPEED_2:
halmac_usb_mode = HALMAC_USB_MODE_U2;
break;
case RTW_USB_SPEED_3:
halmac_usb_mode = HALMAC_USB_MODE_U3;
break;
default:
halmac_usb_mode = HALMAC_USB_MODE_U2;
break;
}
return halmac_usb_mode;
}
u8 rtw_halmac_switch_usb_mode(struct dvobj_priv *d, enum RTW_USB_SPEED usb_mode)
{
PADAPTER adapter;
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
enum halmac_usb_mode halmac_usb_mode;
adapter = dvobj_get_primary_adapter(d);
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
halmac_usb_mode = _usb_mode_drv2halmac(usb_mode);
status = api->halmac_set_hw_value(mac, HALMAC_HW_USB_MODE, (void *)&halmac_usb_mode);
if (HALMAC_RET_SUCCESS != status)
return _FAIL;
return _SUCCESS;
}
#endif /* CONFIG_USB_HCI */
#ifdef CONFIG_BEAMFORMING
#ifdef RTW_BEAMFORMING_VERSION_2
int rtw_halmac_bf_add_mu_bfer(struct dvobj_priv *d, u16 paid, u16 csi_para,
u16 my_aid, enum halmac_csi_seg_len sel, u8 *addr)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
struct halmac_mu_bfer_init_para param;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
memset(&param, 0, sizeof(param));
2019-11-09 10:12:08 +00:00
param.paid = paid;
param.csi_para = csi_para;
param.my_aid = my_aid;
param.csi_length_sel = sel;
_rtw_memcpy(param.bfer_address.addr, addr, 6);
status = api->halmac_mu_bfer_entry_init(mac, &param);
if (status != HALMAC_RET_SUCCESS)
return -1;
return 0;
}
int rtw_halmac_bf_del_mu_bfer(struct dvobj_priv *d)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
status = api->halmac_mu_bfer_entry_del(mac);
if (status != HALMAC_RET_SUCCESS)
return -1;
return 0;
}
int rtw_halmac_bf_cfg_sounding(struct dvobj_priv *d,
enum halmac_snd_role role, enum halmac_data_rate rate)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
status = api->halmac_cfg_sounding(mac, role, rate);
if (status != HALMAC_RET_SUCCESS)
return -1;
return 0;
}
int rtw_halmac_bf_del_sounding(struct dvobj_priv *d,
enum halmac_snd_role role)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
status = api->halmac_del_sounding(mac, role);
if (status != HALMAC_RET_SUCCESS)
return -1;
return 0;
}
int rtw_halmac_bf_cfg_csi_rate(struct dvobj_priv *d,
u8 rssi, u8 current_rate, u8 fixrate_en,
u8 *new_rate)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
status = api->halmac_cfg_csi_rate(mac,
rssi, current_rate, fixrate_en, new_rate);
if (status != HALMAC_RET_SUCCESS)
return -1;
return 0;
}
int rtw_halmac_bf_cfg_mu_mimo(struct dvobj_priv *d, enum halmac_snd_role role,
u8 *sounding_sts, u16 grouping_bitmap, u8 mu_tx_en,
u32 *given_gid_tab, u32 *given_user_pos)
{
struct halmac_adapter *mac;
struct halmac_api *api;
enum halmac_ret_status status;
struct halmac_cfg_mumimo_para param;
mac = dvobj_to_halmac(d);
api = HALMAC_GET_API(mac);
memset(&param, 0, sizeof(param));
2019-11-09 10:12:08 +00:00
param.role = role;
param.grouping_bitmap = grouping_bitmap;
param.mu_tx_en = mu_tx_en;
if (sounding_sts)
_rtw_memcpy(param.sounding_sts, sounding_sts, 6);
if (given_gid_tab)
_rtw_memcpy(param.given_gid_tab, given_gid_tab, 8);
if (given_user_pos)
_rtw_memcpy(param.given_user_pos, given_user_pos, 16);
status = api->halmac_cfg_mumimo(mac, &param);
if (status != HALMAC_RET_SUCCESS)
return -1;
return 0;
}
#endif /* RTW_BEAMFORMING_VERSION_2 */
#endif /* CONFIG_BEAMFORMING */