rtl8192eu-linux-driver/hal/hal_com.c

1649 lines
46 KiB
C
Raw Permalink Normal View History

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _HAL_COM_C_
#include <drv_types.h>
#include "../hal/OUTSRC/odm_precomp.h"
void dump_chip_info(HAL_VERSION ChipVersion)
{
int cnt = 0;
u8 buf[128];
if(IS_81XXC(ChipVersion)){
cnt += sprintf((buf+cnt), "Chip Version Info: %s_", IS_92C_SERIAL(ChipVersion)?"CHIP_8192C":"CHIP_8188C");
}
else if(IS_92D(ChipVersion)){
cnt += sprintf((buf+cnt), "Chip Version Info: CHIP_8192D_");
}
else if(IS_8723_SERIES(ChipVersion)){
cnt += sprintf((buf+cnt), "Chip Version Info: CHIP_8723A_");
}
else if(IS_8188E(ChipVersion)){
cnt += sprintf((buf+cnt), "Chip Version Info: CHIP_8188E_");
}
else if(IS_8812_SERIES(ChipVersion)){
cnt += sprintf((buf+cnt), "Chip Version Info: CHIP_8812_");
}
else if(IS_8192E(ChipVersion)){
cnt += sprintf((buf+cnt), "Chip Version Info: CHIP_8192E_");
}
else if(IS_8821_SERIES(ChipVersion)){
cnt += sprintf((buf+cnt), "Chip Version Info: CHIP_8821_");
}
else if(IS_8723B_SERIES(ChipVersion)){
cnt += sprintf((buf+cnt), "Chip Version Info: CHIP_8723B_");
}
cnt += sprintf((buf+cnt), "%s_", IS_NORMAL_CHIP(ChipVersion)?"Normal_Chip":"Test_Chip");
if(IS_CHIP_VENDOR_TSMC(ChipVersion))
cnt += sprintf((buf+cnt), "%s_","TSMC");
else if(IS_CHIP_VENDOR_UMC(ChipVersion))
cnt += sprintf((buf+cnt), "%s_","UMC");
else if(IS_CHIP_VENDOR_SMIC(ChipVersion))
cnt += sprintf((buf+cnt), "%s_","SMIC");
if(IS_A_CUT(ChipVersion)) cnt += sprintf((buf+cnt), "A_CUT_");
else if(IS_B_CUT(ChipVersion)) cnt += sprintf((buf+cnt), "B_CUT_");
else if(IS_C_CUT(ChipVersion)) cnt += sprintf((buf+cnt), "C_CUT_");
else if(IS_D_CUT(ChipVersion)) cnt += sprintf((buf+cnt), "D_CUT_");
else if(IS_E_CUT(ChipVersion)) cnt += sprintf((buf+cnt), "E_CUT_");
else if(IS_I_CUT(ChipVersion)) cnt += sprintf((buf+cnt), "I_CUT_");
else if(IS_J_CUT(ChipVersion)) cnt += sprintf((buf+cnt), "J_CUT_");
else if(IS_K_CUT(ChipVersion)) cnt += sprintf((buf+cnt), "K_CUT_");
else cnt += sprintf((buf+cnt), "UNKNOWN_CUT(%d)_", ChipVersion.CUTVersion);
if(IS_1T1R(ChipVersion)) cnt += sprintf((buf+cnt), "1T1R_");
else if(IS_1T2R(ChipVersion)) cnt += sprintf((buf+cnt), "1T2R_");
else if(IS_2T2R(ChipVersion)) cnt += sprintf((buf+cnt), "2T2R_");
else cnt += sprintf((buf+cnt), "UNKNOWN_RFTYPE(%d)_", ChipVersion.RFType);
cnt += sprintf((buf+cnt), "RomVer(%d)\n", ChipVersion.ROMVer);
DBG_871X("%s", buf);
}
#define EEPROM_CHANNEL_PLAN_BY_HW_MASK 0x80
/*
* Description:
* Use hardware(efuse), driver parameter(registry) and default channel plan
* to decide which one should be used.
*
* Parameters:
* padapter pointer of adapter
* hw_channel_plan channel plan from HW (efuse/eeprom)
* BIT[7] software configure mode; 0:Enable, 1:disable
* BIT[6:0] Channel Plan
* sw_channel_plan channel plan from SW (registry/module param)
* def_channel_plan channel plan used when HW/SW both invalid
* AutoLoadFail efuse autoload fail or not
*
* Return:
* Final channel plan decision
*
*/
u8
hal_com_config_channel_plan(
IN PADAPTER padapter,
IN u8 hw_channel_plan,
IN u8 sw_channel_plan,
IN u8 def_channel_plan,
IN BOOLEAN AutoLoadFail
)
{
PHAL_DATA_TYPE pHalData;
u8 hwConfig;
u8 chnlPlan;
pHalData = GET_HAL_DATA(padapter);
pHalData->bDisableSWChannelPlan = _FALSE;
chnlPlan = def_channel_plan;
if (0xFF == hw_channel_plan)
AutoLoadFail = _TRUE;
if (_FALSE == AutoLoadFail)
{
u8 hw_chnlPlan;
hw_chnlPlan = hw_channel_plan & (~EEPROM_CHANNEL_PLAN_BY_HW_MASK);
if (rtw_is_channel_plan_valid(hw_chnlPlan))
{
#ifndef CONFIG_SW_CHANNEL_PLAN
if (hw_channel_plan & EEPROM_CHANNEL_PLAN_BY_HW_MASK)
pHalData->bDisableSWChannelPlan = _TRUE;
#endif // !CONFIG_SW_CHANNEL_PLAN
chnlPlan = hw_chnlPlan;
}
}
if ((_FALSE == pHalData->bDisableSWChannelPlan)
&& rtw_is_channel_plan_valid(sw_channel_plan))
{
chnlPlan = sw_channel_plan;
}
return chnlPlan;
}
BOOLEAN
HAL_IsLegalChannel(
IN PADAPTER Adapter,
IN u32 Channel
)
{
BOOLEAN bLegalChannel = _TRUE;
if (Channel > 14) {
if(IsSupported5G(Adapter->registrypriv.wireless_mode) == _FALSE) {
bLegalChannel = _FALSE;
DBG_871X("Channel > 14 but wireless_mode do not support 5G\n");
}
} else if ((Channel <= 14) && (Channel >=1)){
if(IsSupported24G(Adapter->registrypriv.wireless_mode) == _FALSE) {
bLegalChannel = _FALSE;
DBG_871X("(Channel <= 14) && (Channel >=1) but wireless_mode do not support 2.4G\n");
}
} else {
bLegalChannel = _FALSE;
DBG_871X("Channel is Invalid !!!\n");
}
return bLegalChannel;
}
u8 MRateToHwRate(u8 rate)
{
u8 ret = DESC_RATE1M;
switch(rate)
{
case MGN_1M: ret = DESC_RATE1M; break;
case MGN_2M: ret = DESC_RATE2M; break;
case MGN_5_5M: ret = DESC_RATE5_5M; break;
case MGN_11M: ret = DESC_RATE11M; break;
case MGN_6M: ret = DESC_RATE6M; break;
case MGN_9M: ret = DESC_RATE9M; break;
case MGN_12M: ret = DESC_RATE12M; break;
case MGN_18M: ret = DESC_RATE18M; break;
case MGN_24M: ret = DESC_RATE24M; break;
case MGN_36M: ret = DESC_RATE36M; break;
case MGN_48M: ret = DESC_RATE48M; break;
case MGN_54M: ret = DESC_RATE54M; break;
case MGN_MCS0: ret = DESC_RATEMCS0; break;
case MGN_MCS1: ret = DESC_RATEMCS1; break;
case MGN_MCS2: ret = DESC_RATEMCS2; break;
case MGN_MCS3: ret = DESC_RATEMCS3; break;
case MGN_MCS4: ret = DESC_RATEMCS4; break;
case MGN_MCS5: ret = DESC_RATEMCS5; break;
case MGN_MCS6: ret = DESC_RATEMCS6; break;
case MGN_MCS7: ret = DESC_RATEMCS7; break;
case MGN_MCS8: ret = DESC_RATEMCS8; break;
case MGN_MCS9: ret = DESC_RATEMCS9; break;
case MGN_MCS10: ret = DESC_RATEMCS10; break;
case MGN_MCS11: ret = DESC_RATEMCS11; break;
case MGN_MCS12: ret = DESC_RATEMCS12; break;
case MGN_MCS13: ret = DESC_RATEMCS13; break;
case MGN_MCS14: ret = DESC_RATEMCS14; break;
case MGN_MCS15: ret = DESC_RATEMCS15; break;
case MGN_MCS16: ret = DESC_RATEMCS16; break;
case MGN_MCS17: ret = DESC_RATEMCS17; break;
case MGN_MCS18: ret = DESC_RATEMCS18; break;
case MGN_MCS19: ret = DESC_RATEMCS19; break;
case MGN_MCS20: ret = DESC_RATEMCS20; break;
case MGN_MCS21: ret = DESC_RATEMCS21; break;
case MGN_MCS22: ret = DESC_RATEMCS22; break;
case MGN_MCS23: ret = DESC_RATEMCS23; break;
case MGN_MCS24: ret = DESC_RATEMCS24; break;
case MGN_MCS25: ret = DESC_RATEMCS25; break;
case MGN_MCS26: ret = DESC_RATEMCS26; break;
case MGN_MCS27: ret = DESC_RATEMCS27; break;
case MGN_MCS28: ret = DESC_RATEMCS28; break;
case MGN_MCS29: ret = DESC_RATEMCS29; break;
case MGN_MCS30: ret = DESC_RATEMCS30; break;
case MGN_MCS31: ret = DESC_RATEMCS31; break;
case MGN_VHT1SS_MCS0: ret = DESC_RATEVHTSS1MCS0; break;
case MGN_VHT1SS_MCS1: ret = DESC_RATEVHTSS1MCS1; break;
case MGN_VHT1SS_MCS2: ret = DESC_RATEVHTSS1MCS2; break;
case MGN_VHT1SS_MCS3: ret = DESC_RATEVHTSS1MCS3; break;
case MGN_VHT1SS_MCS4: ret = DESC_RATEVHTSS1MCS4; break;
case MGN_VHT1SS_MCS5: ret = DESC_RATEVHTSS1MCS5; break;
case MGN_VHT1SS_MCS6: ret = DESC_RATEVHTSS1MCS6; break;
case MGN_VHT1SS_MCS7: ret = DESC_RATEVHTSS1MCS7; break;
case MGN_VHT1SS_MCS8: ret = DESC_RATEVHTSS1MCS8; break;
case MGN_VHT1SS_MCS9: ret = DESC_RATEVHTSS1MCS9; break;
case MGN_VHT2SS_MCS0: ret = DESC_RATEVHTSS2MCS0; break;
case MGN_VHT2SS_MCS1: ret = DESC_RATEVHTSS2MCS1; break;
case MGN_VHT2SS_MCS2: ret = DESC_RATEVHTSS2MCS2; break;
case MGN_VHT2SS_MCS3: ret = DESC_RATEVHTSS2MCS3; break;
case MGN_VHT2SS_MCS4: ret = DESC_RATEVHTSS2MCS4; break;
case MGN_VHT2SS_MCS5: ret = DESC_RATEVHTSS2MCS5; break;
case MGN_VHT2SS_MCS6: ret = DESC_RATEVHTSS2MCS6; break;
case MGN_VHT2SS_MCS7: ret = DESC_RATEVHTSS2MCS7; break;
case MGN_VHT2SS_MCS8: ret = DESC_RATEVHTSS2MCS8; break;
case MGN_VHT2SS_MCS9: ret = DESC_RATEVHTSS2MCS9; break;
case MGN_VHT3SS_MCS0: ret = DESC_RATEVHTSS3MCS0; break;
case MGN_VHT3SS_MCS1: ret = DESC_RATEVHTSS3MCS1; break;
case MGN_VHT3SS_MCS2: ret = DESC_RATEVHTSS3MCS2; break;
case MGN_VHT3SS_MCS3: ret = DESC_RATEVHTSS3MCS3; break;
case MGN_VHT3SS_MCS4: ret = DESC_RATEVHTSS3MCS4; break;
case MGN_VHT3SS_MCS5: ret = DESC_RATEVHTSS3MCS5; break;
case MGN_VHT3SS_MCS6: ret = DESC_RATEVHTSS3MCS6; break;
case MGN_VHT3SS_MCS7: ret = DESC_RATEVHTSS3MCS7; break;
case MGN_VHT3SS_MCS8: ret = DESC_RATEVHTSS3MCS8; break;
case MGN_VHT3SS_MCS9: ret = DESC_RATEVHTSS3MCS9; break;
case MGN_VHT4SS_MCS0: ret = DESC_RATEVHTSS4MCS0; break;
case MGN_VHT4SS_MCS1: ret = DESC_RATEVHTSS4MCS1; break;
case MGN_VHT4SS_MCS2: ret = DESC_RATEVHTSS4MCS2; break;
case MGN_VHT4SS_MCS3: ret = DESC_RATEVHTSS4MCS3; break;
case MGN_VHT4SS_MCS4: ret = DESC_RATEVHTSS4MCS4; break;
case MGN_VHT4SS_MCS5: ret = DESC_RATEVHTSS4MCS5; break;
case MGN_VHT4SS_MCS6: ret = DESC_RATEVHTSS4MCS6; break;
case MGN_VHT4SS_MCS7: ret = DESC_RATEVHTSS4MCS7; break;
case MGN_VHT4SS_MCS8: ret = DESC_RATEVHTSS4MCS8; break;
case MGN_VHT4SS_MCS9: ret = DESC_RATEVHTSS4MCS9; break;
default: break;
}
return ret;
}
u8 HwRateToMRate(u8 rate)
{
u8 ret_rate = MGN_1M;
switch(rate)
{
case DESC_RATE1M: ret_rate = MGN_1M; break;
case DESC_RATE2M: ret_rate = MGN_2M; break;
case DESC_RATE5_5M: ret_rate = MGN_5_5M; break;
case DESC_RATE11M: ret_rate = MGN_11M; break;
case DESC_RATE6M: ret_rate = MGN_6M; break;
case DESC_RATE9M: ret_rate = MGN_9M; break;
case DESC_RATE12M: ret_rate = MGN_12M; break;
case DESC_RATE18M: ret_rate = MGN_18M; break;
case DESC_RATE24M: ret_rate = MGN_24M; break;
case DESC_RATE36M: ret_rate = MGN_36M; break;
case DESC_RATE48M: ret_rate = MGN_48M; break;
case DESC_RATE54M: ret_rate = MGN_54M; break;
case DESC_RATEMCS0: ret_rate = MGN_MCS0; break;
case DESC_RATEMCS1: ret_rate = MGN_MCS1; break;
case DESC_RATEMCS2: ret_rate = MGN_MCS2; break;
case DESC_RATEMCS3: ret_rate = MGN_MCS3; break;
case DESC_RATEMCS4: ret_rate = MGN_MCS4; break;
case DESC_RATEMCS5: ret_rate = MGN_MCS5; break;
case DESC_RATEMCS6: ret_rate = MGN_MCS6; break;
case DESC_RATEMCS7: ret_rate = MGN_MCS7; break;
case DESC_RATEMCS8: ret_rate = MGN_MCS8; break;
case DESC_RATEMCS9: ret_rate = MGN_MCS9; break;
case DESC_RATEMCS10: ret_rate = MGN_MCS10; break;
case DESC_RATEMCS11: ret_rate = MGN_MCS11; break;
case DESC_RATEMCS12: ret_rate = MGN_MCS12; break;
case DESC_RATEMCS13: ret_rate = MGN_MCS13; break;
case DESC_RATEMCS14: ret_rate = MGN_MCS14; break;
case DESC_RATEMCS15: ret_rate = MGN_MCS15; break;
case DESC_RATEMCS16: ret_rate = MGN_MCS16; break;
case DESC_RATEMCS17: ret_rate = MGN_MCS17; break;
case DESC_RATEMCS18: ret_rate = MGN_MCS18; break;
case DESC_RATEMCS19: ret_rate = MGN_MCS19; break;
case DESC_RATEMCS20: ret_rate = MGN_MCS20; break;
case DESC_RATEMCS21: ret_rate = MGN_MCS21; break;
case DESC_RATEMCS22: ret_rate = MGN_MCS22; break;
case DESC_RATEMCS23: ret_rate = MGN_MCS23; break;
case DESC_RATEMCS24: ret_rate = MGN_MCS24; break;
case DESC_RATEMCS25: ret_rate = MGN_MCS25; break;
case DESC_RATEMCS26: ret_rate = MGN_MCS26; break;
case DESC_RATEMCS27: ret_rate = MGN_MCS27; break;
case DESC_RATEMCS28: ret_rate = MGN_MCS28; break;
case DESC_RATEMCS29: ret_rate = MGN_MCS29; break;
case DESC_RATEMCS30: ret_rate = MGN_MCS30; break;
case DESC_RATEMCS31: ret_rate = MGN_MCS31; break;
case DESC_RATEVHTSS1MCS0: ret_rate = MGN_VHT1SS_MCS0; break;
case DESC_RATEVHTSS1MCS1: ret_rate = MGN_VHT1SS_MCS1; break;
case DESC_RATEVHTSS1MCS2: ret_rate = MGN_VHT1SS_MCS2; break;
case DESC_RATEVHTSS1MCS3: ret_rate = MGN_VHT1SS_MCS3; break;
case DESC_RATEVHTSS1MCS4: ret_rate = MGN_VHT1SS_MCS4; break;
case DESC_RATEVHTSS1MCS5: ret_rate = MGN_VHT1SS_MCS5; break;
case DESC_RATEVHTSS1MCS6: ret_rate = MGN_VHT1SS_MCS6; break;
case DESC_RATEVHTSS1MCS7: ret_rate = MGN_VHT1SS_MCS7; break;
case DESC_RATEVHTSS1MCS8: ret_rate = MGN_VHT1SS_MCS8; break;
case DESC_RATEVHTSS1MCS9: ret_rate = MGN_VHT1SS_MCS9; break;
case DESC_RATEVHTSS2MCS0: ret_rate = MGN_VHT2SS_MCS0; break;
case DESC_RATEVHTSS2MCS1: ret_rate = MGN_VHT2SS_MCS1; break;
case DESC_RATEVHTSS2MCS2: ret_rate = MGN_VHT2SS_MCS2; break;
case DESC_RATEVHTSS2MCS3: ret_rate = MGN_VHT2SS_MCS3; break;
case DESC_RATEVHTSS2MCS4: ret_rate = MGN_VHT2SS_MCS4; break;
case DESC_RATEVHTSS2MCS5: ret_rate = MGN_VHT2SS_MCS5; break;
case DESC_RATEVHTSS2MCS6: ret_rate = MGN_VHT2SS_MCS6; break;
case DESC_RATEVHTSS2MCS7: ret_rate = MGN_VHT2SS_MCS7; break;
case DESC_RATEVHTSS2MCS8: ret_rate = MGN_VHT2SS_MCS8; break;
case DESC_RATEVHTSS2MCS9: ret_rate = MGN_VHT2SS_MCS9; break;
case DESC_RATEVHTSS3MCS0: ret_rate = MGN_VHT3SS_MCS0; break;
case DESC_RATEVHTSS3MCS1: ret_rate = MGN_VHT3SS_MCS1; break;
case DESC_RATEVHTSS3MCS2: ret_rate = MGN_VHT3SS_MCS2; break;
case DESC_RATEVHTSS3MCS3: ret_rate = MGN_VHT3SS_MCS3; break;
case DESC_RATEVHTSS3MCS4: ret_rate = MGN_VHT3SS_MCS4; break;
case DESC_RATEVHTSS3MCS5: ret_rate = MGN_VHT3SS_MCS5; break;
case DESC_RATEVHTSS3MCS6: ret_rate = MGN_VHT3SS_MCS6; break;
case DESC_RATEVHTSS3MCS7: ret_rate = MGN_VHT3SS_MCS7; break;
case DESC_RATEVHTSS3MCS8: ret_rate = MGN_VHT3SS_MCS8; break;
case DESC_RATEVHTSS3MCS9: ret_rate = MGN_VHT3SS_MCS9; break;
case DESC_RATEVHTSS4MCS0: ret_rate = MGN_VHT4SS_MCS0; break;
case DESC_RATEVHTSS4MCS1: ret_rate = MGN_VHT4SS_MCS1; break;
case DESC_RATEVHTSS4MCS2: ret_rate = MGN_VHT4SS_MCS2; break;
case DESC_RATEVHTSS4MCS3: ret_rate = MGN_VHT4SS_MCS3; break;
case DESC_RATEVHTSS4MCS4: ret_rate = MGN_VHT4SS_MCS4; break;
case DESC_RATEVHTSS4MCS5: ret_rate = MGN_VHT4SS_MCS5; break;
case DESC_RATEVHTSS4MCS6: ret_rate = MGN_VHT4SS_MCS6; break;
case DESC_RATEVHTSS4MCS7: ret_rate = MGN_VHT4SS_MCS7; break;
case DESC_RATEVHTSS4MCS8: ret_rate = MGN_VHT4SS_MCS8; break;
case DESC_RATEVHTSS4MCS9: ret_rate = MGN_VHT4SS_MCS9; break;
default:
DBG_871X("HwRateToMRate(): Non supported Rate [%x]!!!\n",rate );
break;
}
return ret_rate;
}
void HalSetBrateCfg(
IN PADAPTER Adapter,
IN u8 *mBratesOS,
OUT u16 *pBrateCfg)
{
u8 i, is_brate, brate;
for(i=0;i<NDIS_802_11_LENGTH_RATES_EX;i++)
{
is_brate = mBratesOS[i] & IEEE80211_BASIC_RATE_MASK;
brate = mBratesOS[i] & 0x7f;
if( is_brate )
{
switch(brate)
{
case IEEE80211_CCK_RATE_1MB: *pBrateCfg |= RATE_1M; break;
case IEEE80211_CCK_RATE_2MB: *pBrateCfg |= RATE_2M; break;
case IEEE80211_CCK_RATE_5MB: *pBrateCfg |= RATE_5_5M;break;
case IEEE80211_CCK_RATE_11MB: *pBrateCfg |= RATE_11M; break;
case IEEE80211_OFDM_RATE_6MB: *pBrateCfg |= RATE_6M; break;
case IEEE80211_OFDM_RATE_9MB: *pBrateCfg |= RATE_9M; break;
case IEEE80211_OFDM_RATE_12MB: *pBrateCfg |= RATE_12M; break;
case IEEE80211_OFDM_RATE_18MB: *pBrateCfg |= RATE_18M; break;
case IEEE80211_OFDM_RATE_24MB: *pBrateCfg |= RATE_24M; break;
case IEEE80211_OFDM_RATE_36MB: *pBrateCfg |= RATE_36M; break;
case IEEE80211_OFDM_RATE_48MB: *pBrateCfg |= RATE_48M; break;
case IEEE80211_OFDM_RATE_54MB: *pBrateCfg |= RATE_54M; break;
}
}
}
}
static VOID
_OneOutPipeMapping(
IN PADAPTER pAdapter
)
{
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(pAdapter);
pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0];//VO
pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[0];//VI
pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[0];//BE
pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[0];//BK
pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];//BCN
pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];//MGT
pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0];//HIGH
pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];//TXCMD
}
static VOID
_TwoOutPipeMapping(
IN PADAPTER pAdapter,
IN BOOLEAN bWIFICfg
)
{
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(pAdapter);
if(bWIFICfg){ //WMM
// BK, BE, VI, VO, BCN, CMD,MGT,HIGH,HCCA
//{ 0, 1, 0, 1, 0, 0, 0, 0, 0 };
//0:H, 1:N
pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[1];//VO
pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[0];//VI
pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[1];//BE
pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[0];//BK
pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];//BCN
pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];//MGT
pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0];//HIGH
pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];//TXCMD
}
else{//typical setting
//BK, BE, VI, VO, BCN, CMD,MGT,HIGH,HCCA
//{ 1, 1, 0, 0, 0, 0, 0, 0, 0 };
//0:H, 1:N
pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0];//VO
pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[0];//VI
pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[1];//BE
pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[1];//BK
pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];//BCN
pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];//MGT
pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0];//HIGH
pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];//TXCMD
}
}
static VOID _ThreeOutPipeMapping(
IN PADAPTER pAdapter,
IN BOOLEAN bWIFICfg
)
{
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(pAdapter);
if(bWIFICfg){//for WMM
// BK, BE, VI, VO, BCN, CMD,MGT,HIGH,HCCA
//{ 1, 2, 1, 0, 0, 0, 0, 0, 0 };
//0:H, 1:N, 2:L
pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0];//VO
pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[1];//VI
pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[2];//BE
pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[1];//BK
pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];//BCN
pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];//MGT
pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0];//HIGH
pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];//TXCMD
}
else{//typical setting
// BK, BE, VI, VO, BCN, CMD,MGT,HIGH,HCCA
//{ 2, 2, 1, 0, 0, 0, 0, 0, 0 };
//0:H, 1:N, 2:L
pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0];//VO
pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[1];//VI
pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[2];//BE
pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[2];//BK
pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];//BCN
pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];//MGT
pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0];//HIGH
pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];//TXCMD
}
}
static VOID _FourOutPipeMapping(
IN PADAPTER pAdapter,
IN BOOLEAN bWIFICfg
)
{
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(pAdapter);
if(bWIFICfg){//for WMM
// BK, BE, VI, VO, BCN, CMD,MGT,HIGH,HCCA
//{ 1, 2, 1, 0, 0, 0, 0, 0, 0 };
//0:H, 1:N, 2:L ,3:E
pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0];//VO
pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[1];//VI
pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[2];//BE
pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[1];//BK
pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];//BCN
pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];//MGT
pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[3];//HIGH
pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];//TXCMD
}
else{//typical setting
// BK, BE, VI, VO, BCN, CMD,MGT,HIGH,HCCA
//{ 2, 2, 1, 0, 0, 0, 0, 0, 0 };
//0:H, 1:N, 2:L
pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0];//VO
pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[1];//VI
pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[2];//BE
pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[2];//BK
pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];//BCN
pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];//MGT
pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[3];//HIGH
pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];//TXCMD
}
}
BOOLEAN
Hal_MappingOutPipe(
IN PADAPTER pAdapter,
IN u8 NumOutPipe
)
{
struct registry_priv *pregistrypriv = &pAdapter->registrypriv;
BOOLEAN bWIFICfg = (pregistrypriv->wifi_spec) ?_TRUE:_FALSE;
BOOLEAN result = _TRUE;
switch(NumOutPipe)
{
case 2:
_TwoOutPipeMapping(pAdapter, bWIFICfg);
break;
case 3:
case 4:
_ThreeOutPipeMapping(pAdapter, bWIFICfg);
break;
case 1:
_OneOutPipeMapping(pAdapter);
break;
default:
result = _FALSE;
break;
}
return result;
}
void hal_init_macaddr(_adapter *adapter)
{
rtw_hal_set_hwreg(adapter, HW_VAR_MAC_ADDR, adapter->eeprompriv.mac_addr);
#ifdef CONFIG_CONCURRENT_MODE
if (adapter->pbuddy_adapter)
rtw_hal_set_hwreg(adapter->pbuddy_adapter, HW_VAR_MAC_ADDR, adapter->pbuddy_adapter->eeprompriv.mac_addr);
#endif
}
void rtw_init_hal_com_default_value(PADAPTER Adapter)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
pHalData->AntDetection = 1;
}
/*
* C2H event format:
* Field TRIGGER CONTENT CMD_SEQ CMD_LEN CMD_ID
* BITS [127:120] [119:16] [15:8] [7:4] [3:0]
*/
void c2h_evt_clear(_adapter *adapter)
{
rtw_write8(adapter, REG_C2HEVT_CLEAR, C2H_EVT_HOST_CLOSE);
}
s32 c2h_evt_read(_adapter *adapter, u8 *buf)
{
s32 ret = _FAIL;
struct c2h_evt_hdr *c2h_evt;
int i;
u8 trigger;
if (buf == NULL)
goto exit;
#if defined(CONFIG_RTL8192C) || defined(CONFIG_RTL8192D) || defined(CONFIG_RTL8723A) || defined (CONFIG_RTL8188E)
trigger = rtw_read8(adapter, REG_C2HEVT_CLEAR);
if (trigger == C2H_EVT_HOST_CLOSE) {
goto exit; /* Not ready */
} else if (trigger != C2H_EVT_FW_CLOSE) {
goto clear_evt; /* Not a valid value */
}
c2h_evt = (struct c2h_evt_hdr *)buf;
_rtw_memset(c2h_evt, 0, 16);
*buf = rtw_read8(adapter, REG_C2HEVT_MSG_NORMAL);
*(buf+1) = rtw_read8(adapter, REG_C2HEVT_MSG_NORMAL + 1);
RT_PRINT_DATA(_module_hal_init_c_, _drv_info_, "c2h_evt_read(): ",
&c2h_evt , sizeof(c2h_evt));
if (0) {
DBG_871X("%s id:%u, len:%u, seq:%u, trigger:0x%02x\n", __func__
, c2h_evt->id, c2h_evt->plen, c2h_evt->seq, trigger);
}
/* Read the content */
for (i = 0; i < c2h_evt->plen; i++)
c2h_evt->payload[i] = rtw_read8(adapter, REG_C2HEVT_MSG_NORMAL + sizeof(*c2h_evt) + i);
RT_PRINT_DATA(_module_hal_init_c_, _drv_info_, "c2h_evt_read(): Command Content:\n",
c2h_evt->payload, c2h_evt->plen);
ret = _SUCCESS;
clear_evt:
/*
* Clear event to notify FW we have read the command.
* If this field isn't clear, the FW won't update the next command message.
*/
c2h_evt_clear(adapter);
#endif
exit:
return ret;
}
/*
* C2H event format:
* Field TRIGGER CMD_LEN CONTENT CMD_SEQ CMD_ID
* BITS [127:120] [119:112] [111:16] [15:8] [7:0]
*/
s32 c2h_evt_read_88xx(_adapter *adapter, u8 *buf)
{
s32 ret = _FAIL;
struct c2h_evt_hdr_88xx *c2h_evt;
int i;
u8 trigger;
if (buf == NULL)
goto exit;
#if defined(CONFIG_RTL8812A) || defined(CONFIG_RTL8821A) || defined(CONFIG_RTL8192E) || defined(CONFIG_RTL8723B)
trigger = rtw_read8(adapter, REG_C2HEVT_CLEAR);
if (trigger == C2H_EVT_HOST_CLOSE) {
goto exit; /* Not ready */
} else if (trigger != C2H_EVT_FW_CLOSE) {
goto clear_evt; /* Not a valid value */
}
c2h_evt = (struct c2h_evt_hdr_88xx *)buf;
_rtw_memset(c2h_evt, 0, 16);
c2h_evt->id = rtw_read8(adapter, REG_C2HEVT_MSG_NORMAL);
c2h_evt->seq = rtw_read8(adapter, REG_C2HEVT_CMD_SEQ_88XX);
c2h_evt->plen = rtw_read8(adapter, REG_C2HEVT_CMD_LEN_88XX);
RT_PRINT_DATA(_module_hal_init_c_, _drv_info_, "c2h_evt_read(): ",
&c2h_evt , sizeof(c2h_evt));
if (0) {
DBG_871X("%s id:%u, len:%u, seq:%u, trigger:0x%02x\n", __func__
, c2h_evt->id, c2h_evt->plen, c2h_evt->seq, trigger);
}
/* Read the content */
for (i = 0; i < c2h_evt->plen; i++)
c2h_evt->payload[i] = rtw_read8(adapter, REG_C2HEVT_MSG_NORMAL + 2 + i);
RT_PRINT_DATA(_module_hal_init_c_, _drv_info_, "c2h_evt_read(): Command Content:\n",
c2h_evt->payload, c2h_evt->plen);
ret = _SUCCESS;
clear_evt:
/*
* Clear event to notify FW we have read the command.
* If this field isn't clear, the FW won't update the next command message.
*/
c2h_evt_clear(adapter);
#endif
exit:
return ret;
}
u8 rtw_hal_networktype_to_raid(_adapter *adapter, struct sta_info *psta)
{
if(IS_NEW_GENERATION_IC(adapter)){
return networktype_to_raid_ex(adapter,psta);
}
else{
return networktype_to_raid(adapter,psta);
}
}
u8 rtw_get_mgntframe_raid(_adapter *adapter,unsigned char network_type)
{
u8 raid;
if(IS_NEW_GENERATION_IC(adapter)){
raid = (network_type & WIRELESS_11B) ?RATEID_IDX_B
:RATEID_IDX_G;
}
else{
raid = (network_type & WIRELESS_11B) ?RATR_INX_WIRELESS_B
:RATR_INX_WIRELESS_G;
}
return raid;
}
void rtw_hal_update_sta_rate_mask(PADAPTER padapter, struct sta_info *psta)
{
u8 i, rf_type, limit;
u32 tx_ra_bitmap;
if(psta == NULL)
{
return;
}
tx_ra_bitmap = 0;
//b/g mode ra_bitmap
for (i=0; i<sizeof(psta->bssrateset); i++)
{
if (psta->bssrateset[i])
tx_ra_bitmap |= rtw_get_bit_value_from_ieee_value(psta->bssrateset[i]&0x7f);
}
#ifdef CONFIG_80211N_HT
#ifdef CONFIG_80211AC_VHT
//AC mode ra_bitmap
if(psta->vhtpriv.vht_option)
{
tx_ra_bitmap |= (rtw_vht_rate_to_bitmap(psta->vhtpriv.vht_mcs_map) << 12);
}
else
#endif //CONFIG_80211AC_VHT
{
//n mode ra_bitmap
if(psta->htpriv.ht_option)
{
rtw_hal_get_hwreg(padapter, HW_VAR_RF_TYPE, (u8 *)(&rf_type));
if(rf_type == RF_2T2R)
limit=16;// 2R
else
limit=8;// 1R
for (i=0; i<limit; i++) {
if (psta->htpriv.ht_cap.supp_mcs_set[i/8] & BIT(i%8))
tx_ra_bitmap |= BIT(i+12);
}
}
}
#endif //CONFIG_80211N_HT
psta->ra_mask = tx_ra_bitmap;
psta->init_rate = get_highest_rate_idx(tx_ra_bitmap)&0x3f;
}
void hw_var_port_switch(_adapter *adapter)
{
#ifdef CONFIG_CONCURRENT_MODE
#ifdef CONFIG_RUNTIME_PORT_SWITCH
/*
0x102: MSR
0x550: REG_BCN_CTRL
0x551: REG_BCN_CTRL_1
0x55A: REG_ATIMWND
0x560: REG_TSFTR
0x568: REG_TSFTR1
0x570: REG_ATIMWND_1
0x610: REG_MACID
0x618: REG_BSSID
0x700: REG_MACID1
0x708: REG_BSSID1
*/
int i;
u8 msr;
u8 bcn_ctrl;
u8 bcn_ctrl_1;
u8 atimwnd[2];
u8 atimwnd_1[2];
u8 tsftr[8];
u8 tsftr_1[8];
u8 macid[6];
u8 bssid[6];
u8 macid_1[6];
u8 bssid_1[6];
u8 iface_type;
msr = rtw_read8(adapter, MSR);
bcn_ctrl = rtw_read8(adapter, REG_BCN_CTRL);
bcn_ctrl_1 = rtw_read8(adapter, REG_BCN_CTRL_1);
for (i=0; i<2; i++)
atimwnd[i] = rtw_read8(adapter, REG_ATIMWND+i);
for (i=0; i<2; i++)
atimwnd_1[i] = rtw_read8(adapter, REG_ATIMWND_1+i);
for (i=0; i<8; i++)
tsftr[i] = rtw_read8(adapter, REG_TSFTR+i);
for (i=0; i<8; i++)
tsftr_1[i] = rtw_read8(adapter, REG_TSFTR1+i);
for (i=0; i<6; i++)
macid[i] = rtw_read8(adapter, REG_MACID+i);
for (i=0; i<6; i++)
bssid[i] = rtw_read8(adapter, REG_BSSID+i);
for (i=0; i<6; i++)
macid_1[i] = rtw_read8(adapter, REG_MACID1+i);
for (i=0; i<6; i++)
bssid_1[i] = rtw_read8(adapter, REG_BSSID1+i);
#ifdef DBG_RUNTIME_PORT_SWITCH
DBG_871X(FUNC_ADPT_FMT" before switch\n"
"msr:0x%02x\n"
"bcn_ctrl:0x%02x\n"
"bcn_ctrl_1:0x%02x\n"
"atimwnd:0x%04x\n"
"atimwnd_1:0x%04x\n"
"tsftr:%llu\n"
"tsftr1:%llu\n"
"macid:"MAC_FMT"\n"
"bssid:"MAC_FMT"\n"
"macid_1:"MAC_FMT"\n"
"bssid_1:"MAC_FMT"\n"
, FUNC_ADPT_ARG(adapter)
, msr
, bcn_ctrl
, bcn_ctrl_1
, *((u16*)atimwnd)
, *((u16*)atimwnd_1)
, *((u64*)tsftr)
, *((u64*)tsftr_1)
, MAC_ARG(macid)
, MAC_ARG(bssid)
, MAC_ARG(macid_1)
, MAC_ARG(bssid_1)
);
#endif /* DBG_RUNTIME_PORT_SWITCH */
/* disable bcn function, disable update TSF */
rtw_write8(adapter, REG_BCN_CTRL, (bcn_ctrl & (~EN_BCN_FUNCTION)) | DIS_TSF_UDT);
rtw_write8(adapter, REG_BCN_CTRL_1, (bcn_ctrl_1 & (~EN_BCN_FUNCTION)) | DIS_TSF_UDT);
/* switch msr */
msr = (msr&0xf0) |((msr&0x03) << 2) | ((msr&0x0c) >> 2);
rtw_write8(adapter, MSR, msr);
/* write port0 */
rtw_write8(adapter, REG_BCN_CTRL, bcn_ctrl_1 & ~EN_BCN_FUNCTION);
for (i=0; i<2; i++)
rtw_write8(adapter, REG_ATIMWND+i, atimwnd_1[i]);
for (i=0; i<8; i++)
rtw_write8(adapter, REG_TSFTR+i, tsftr_1[i]);
for (i=0; i<6; i++)
rtw_write8(adapter, REG_MACID+i, macid_1[i]);
for (i=0; i<6; i++)
rtw_write8(adapter, REG_BSSID+i, bssid_1[i]);
/* write port1 */
rtw_write8(adapter, REG_BCN_CTRL_1, bcn_ctrl & ~EN_BCN_FUNCTION);
for (i=0; i<2; i++)
rtw_write8(adapter, REG_ATIMWND_1+1, atimwnd[i]);
for (i=0; i<8; i++)
rtw_write8(adapter, REG_TSFTR1+i, tsftr[i]);
for (i=0; i<6; i++)
rtw_write8(adapter, REG_MACID1+i, macid[i]);
for (i=0; i<6; i++)
rtw_write8(adapter, REG_BSSID1+i, bssid[i]);
/* write bcn ctl */
#ifdef CONFIG_BT_COEXIST
#if defined(CONFIG_RTL8723A) || defined(CONFIG_RTL8723B)
// always enable port0 beacon function for PSTDMA
bcn_ctrl_1 |= EN_BCN_FUNCTION;
// always disable port1 beacon function for PSTDMA
bcn_ctrl &= ~EN_BCN_FUNCTION;
#endif
#endif
rtw_write8(adapter, REG_BCN_CTRL, bcn_ctrl_1);
rtw_write8(adapter, REG_BCN_CTRL_1, bcn_ctrl);
if (adapter->iface_type == IFACE_PORT0) {
adapter->iface_type = IFACE_PORT1;
adapter->pbuddy_adapter->iface_type = IFACE_PORT0;
DBG_871X_LEVEL(_drv_always_, "port switch - port0("ADPT_FMT"), port1("ADPT_FMT")\n",
ADPT_ARG(adapter->pbuddy_adapter), ADPT_ARG(adapter));
} else {
adapter->iface_type = IFACE_PORT0;
adapter->pbuddy_adapter->iface_type = IFACE_PORT1;
DBG_871X_LEVEL(_drv_always_, "port switch - port0("ADPT_FMT"), port1("ADPT_FMT")\n",
ADPT_ARG(adapter), ADPT_ARG(adapter->pbuddy_adapter));
}
#ifdef DBG_RUNTIME_PORT_SWITCH
msr = rtw_read8(adapter, MSR);
bcn_ctrl = rtw_read8(adapter, REG_BCN_CTRL);
bcn_ctrl_1 = rtw_read8(adapter, REG_BCN_CTRL_1);
for (i=0; i<2; i++)
atimwnd[i] = rtw_read8(adapter, REG_ATIMWND+i);
for (i=0; i<2; i++)
atimwnd_1[i] = rtw_read8(adapter, REG_ATIMWND_1+i);
for (i=0; i<8; i++)
tsftr[i] = rtw_read8(adapter, REG_TSFTR+i);
for (i=0; i<8; i++)
tsftr_1[i] = rtw_read8(adapter, REG_TSFTR1+i);
for (i=0; i<6; i++)
macid[i] = rtw_read8(adapter, REG_MACID+i);
for (i=0; i<6; i++)
bssid[i] = rtw_read8(adapter, REG_BSSID+i);
for (i=0; i<6; i++)
macid_1[i] = rtw_read8(adapter, REG_MACID1+i);
for (i=0; i<6; i++)
bssid_1[i] = rtw_read8(adapter, REG_BSSID1+i);
DBG_871X(FUNC_ADPT_FMT" after switch\n"
"msr:0x%02x\n"
"bcn_ctrl:0x%02x\n"
"bcn_ctrl_1:0x%02x\n"
"atimwnd:%u\n"
"atimwnd_1:%u\n"
"tsftr:%llu\n"
"tsftr1:%llu\n"
"macid:"MAC_FMT"\n"
"bssid:"MAC_FMT"\n"
"macid_1:"MAC_FMT"\n"
"bssid_1:"MAC_FMT"\n"
, FUNC_ADPT_ARG(adapter)
, msr
, bcn_ctrl
, bcn_ctrl_1
, *((u16*)atimwnd)
, *((u16*)atimwnd_1)
, *((u64*)tsftr)
, *((u64*)tsftr_1)
, MAC_ARG(macid)
, MAC_ARG(bssid)
, MAC_ARG(macid_1)
, MAC_ARG(bssid_1)
);
#endif /* DBG_RUNTIME_PORT_SWITCH */
#endif /* CONFIG_RUNTIME_PORT_SWITCH */
#endif /* CONFIG_CONCURRENT_MODE */
}
void SetHwReg(_adapter *adapter, u8 variable, u8 *val)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
DM_ODM_T *odm = &(hal_data->odmpriv);
_func_enter_;
switch (variable) {
case HW_VAR_PORT_SWITCH:
hw_var_port_switch(adapter);
break;
case HW_VAR_DM_FLAG:
odm->SupportAbility = *((u32*)val);
break;
case HW_VAR_DM_FUNC_OP:
if (*((u8*)val) == _TRUE) {
/* save dm flag */
odm->BK_SupportAbility = odm->SupportAbility;
} else {
/* restore dm flag */
odm->SupportAbility = odm->BK_SupportAbility;
}
break;
case HW_VAR_DM_FUNC_SET:
if(*((u32*)val) == DYNAMIC_ALL_FUNC_ENABLE){
struct dm_priv *dm = &hal_data->dmpriv;
dm->DMFlag = dm->InitDMFlag;
odm->SupportAbility = dm->InitODMFlag;
} else {
odm->SupportAbility |= *((u32 *)val);
}
break;
case HW_VAR_DM_FUNC_CLR:
/*
* input is already a mask to clear function
* don't invert it again! George,Lucas@20130513
*/
odm->SupportAbility &= *((u32 *)val);
break;
default:
if (0)
DBG_871X_LEVEL(_drv_always_, FUNC_ADPT_FMT" variable(%d) not defined!\n",
FUNC_ADPT_ARG(adapter), variable);
break;
}
_func_exit_;
}
void GetHwReg(_adapter *adapter, u8 variable, u8 *val)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
DM_ODM_T *odm = &(hal_data->odmpriv);
_func_enter_;
switch (variable) {
case HW_VAR_BASIC_RATE:
*((u16*)val) = hal_data->BasicRateSet;
break;
case HW_VAR_DM_FLAG:
*((u32*)val) = odm->SupportAbility;
break;
case HW_VAR_RF_TYPE:
*((u8*)val) = hal_data->rf_type;
break;
default:
if (0)
DBG_871X_LEVEL(_drv_always_, FUNC_ADPT_FMT" variable(%d) not defined!\n",
FUNC_ADPT_ARG(adapter), variable);
break;
}
_func_exit_;
}
u8
SetHalDefVar(_adapter *adapter, HAL_DEF_VARIABLE variable, void *value)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
DM_ODM_T *odm = &(hal_data->odmpriv);
u8 bResult = _SUCCESS;
switch(variable) {
case HW_DEF_FA_CNT_DUMP:
//ODM_COMP_COMMON
if(*((u8*)value))
odm->DebugComponents |= (ODM_COMP_DIG |ODM_COMP_FA_CNT);
else
odm->DebugComponents &= ~(ODM_COMP_DIG |ODM_COMP_FA_CNT);
break;
case HAL_DEF_DBG_RX_INFO_DUMP:
{
PFALSE_ALARM_STATISTICS FalseAlmCnt = &(odm->FalseAlmCnt);
pDIG_T pDM_DigTable = &odm->DM_DigTable;
DBG_871X("============ Rx Info dump ===================\n");
DBG_871X("bLinked = %d, RSSI_Min = %d(%%), CurrentIGI = 0x%x \n",
odm->bLinked, odm->RSSI_Min, pDM_DigTable->CurIGValue);
DBG_871X("Cnt_Cck_fail = %d, Cnt_Ofdm_fail = %d, Total False Alarm = %d\n",
FalseAlmCnt->Cnt_Cck_fail, FalseAlmCnt->Cnt_Ofdm_fail, FalseAlmCnt->Cnt_all);
if(odm->bLinked){
DBG_871X("RxRate = %s, RSSI_A = %d(%%), RSSI_B = %d(%%)\n",
HDATA_RATE(odm->RxRate), odm->RSSI_A, odm->RSSI_B);
#ifdef DBG_RX_SIGNAL_DISPLAY_RAW_DATA
rtw_dump_raw_rssi_info(adapter);
#endif
}
}
break;
case HW_DEF_ODM_DBG_FLAG:
ODM_CmnInfoUpdate(odm, ODM_CMNINFO_DBG_COMP, *((u8Byte*)value));
break;
case HW_DEF_ODM_DBG_LEVEL:
ODM_CmnInfoUpdate(odm, ODM_CMNINFO_DBG_LEVEL, *((u4Byte*)value));
break;
case HAL_DEF_DBG_DM_FUNC:
{
u8 dm_func = *((u8*)value);
struct dm_priv *dm = &hal_data->dmpriv;
if(dm_func == 0){ //disable all dynamic func
odm->SupportAbility = DYNAMIC_FUNC_DISABLE;
DBG_8192C("==> Disable all dynamic function...\n");
}
else if(dm_func == 1){//disable DIG
odm->SupportAbility &= (~DYNAMIC_BB_DIG);
DBG_8192C("==> Disable DIG...\n");
}
else if(dm_func == 2){//disable High power
odm->SupportAbility &= (~DYNAMIC_BB_DYNAMIC_TXPWR);
}
else if(dm_func == 3){//disable tx power tracking
odm->SupportAbility &= (~DYNAMIC_RF_CALIBRATION);
DBG_8192C("==> Disable tx power tracking...\n");
}
else if(dm_func == 4){//disable BT coexistence
dm->DMFlag &= (~DYNAMIC_FUNC_BT);
}
else if(dm_func == 5){//disable antenna diversity
odm->SupportAbility &= (~DYNAMIC_BB_ANT_DIV);
}
else if(dm_func == 6){//turn on all dynamic func
if(!(odm->SupportAbility & DYNAMIC_BB_DIG)) {
DIG_T *pDigTable = &odm->DM_DigTable;
pDigTable->CurIGValue= rtw_read8(adapter, 0xc50);
}
dm->DMFlag |= DYNAMIC_FUNC_BT;
odm->SupportAbility = DYNAMIC_ALL_FUNC_ENABLE;
DBG_8192C("==> Turn on all dynamic function...\n");
}
}
break;
case HAL_DEF_DBG_DUMP_RXPKT:
hal_data->bDumpRxPkt = *((u8*)value);
break;
case HAL_DEF_DBG_DUMP_TXPKT:
hal_data->bDumpTxPkt = *((u8*)value);
break;
case HAL_DEF_ANT_DETECT:
hal_data->AntDetection = *((u8 *)value);
break;
default:
DBG_871X_LEVEL(_drv_always_, "%s: [WARNING] HAL_DEF_VARIABLE(%d) not defined!\n", __FUNCTION__, variable);
bResult = _FAIL;
break;
}
return bResult;
}
u8
GetHalDefVar(_adapter *adapter, HAL_DEF_VARIABLE variable, void *value)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
DM_ODM_T *odm = &(hal_data->odmpriv);
u8 bResult = _SUCCESS;
switch(variable) {
case HAL_DEF_UNDERCORATEDSMOOTHEDPWDB:
{
struct mlme_priv *pmlmepriv;
struct sta_priv *pstapriv;
struct sta_info *psta;
pmlmepriv = &adapter->mlmepriv;
pstapriv = &adapter->stapriv;
psta = rtw_get_stainfo(pstapriv, pmlmepriv->cur_network.network.MacAddress);
if (psta)
{
*((int*)value) = psta->rssi_stat.UndecoratedSmoothedPWDB;
}
}
break;
case HW_DEF_ODM_DBG_FLAG:
*((u8Byte*)value) = odm->DebugComponents;
break;
case HW_DEF_ODM_DBG_LEVEL:
*((u4Byte*)value) = odm->DebugLevel;
break;
case HAL_DEF_DBG_DM_FUNC:
*(( u32*)value) =hal_data->odmpriv.SupportAbility;
break;
case HAL_DEF_DBG_DUMP_RXPKT:
*((u8*)value) = hal_data->bDumpRxPkt;
break;
case HAL_DEF_DBG_DUMP_TXPKT:
*((u8*)value) = hal_data->bDumpTxPkt;
break;
case HAL_DEF_ANT_DETECT:
*((u8 *)value) = hal_data->AntDetection;
break;
case HAL_DEF_MACID_SLEEP:
*(u8*)value = _FALSE;
break;
case HAL_DEF_TX_PAGE_SIZE:
*(( u32*)value) = PAGE_SIZE_128;
break;
default:
DBG_871X_LEVEL(_drv_always_, "%s: [WARNING] HAL_DEF_VARIABLE(%d) not defined!\n", __FUNCTION__, variable);
bResult = _FAIL;
break;
}
return bResult;
}
BOOLEAN
eqNByte(
u8* str1,
u8* str2,
u32 num
)
{
if(num==0)
return _FALSE;
while(num>0)
{
num--;
if(str1[num]!=str2[num])
return _FALSE;
}
return _TRUE;
}
//
// Description:
// Return TRUE if chTmp is represent for hex digit and
// FALSE otherwise.
//
//
BOOLEAN
IsHexDigit(
IN char chTmp
)
{
if( (chTmp >= '0' && chTmp <= '9') ||
(chTmp >= 'a' && chTmp <= 'f') ||
(chTmp >= 'A' && chTmp <= 'F') )
{
return _TRUE;
}
else
{
return _FALSE;
}
}
//
// Description:
// Translate a character to hex digit.
//
u32
MapCharToHexDigit(
IN char chTmp
)
{
if(chTmp >= '0' && chTmp <= '9')
return (chTmp - '0');
else if(chTmp >= 'a' && chTmp <= 'f')
return (10 + (chTmp - 'a'));
else if(chTmp >= 'A' && chTmp <= 'F')
return (10 + (chTmp - 'A'));
else
return 0;
}
//
// Description:
// Parse hex number from the string pucStr.
//
BOOLEAN
GetHexValueFromString(
IN char* szStr,
IN OUT u32* pu4bVal,
IN OUT u32* pu4bMove
)
{
char* szScan = szStr;
// Check input parameter.
if(szStr == NULL || pu4bVal == NULL || pu4bMove == NULL)
{
DBG_871X("GetHexValueFromString(): Invalid inpur argumetns! szStr: %p, pu4bVal: %p, pu4bMove: %p\n", szStr, pu4bVal, pu4bMove);
return _FALSE;
}
// Initialize output.
*pu4bMove = 0;
*pu4bVal = 0;
// Skip leading space.
while( *szScan != '\0' &&
(*szScan == ' ' || *szScan == '\t') )
{
szScan++;
(*pu4bMove)++;
}
// Skip leading '0x' or '0X'.
if(*szScan == '0' && (*(szScan+1) == 'x' || *(szScan+1) == 'X'))
{
szScan += 2;
(*pu4bMove) += 2;
}
// Check if szScan is now pointer to a character for hex digit,
// if not, it means this is not a valid hex number.
if(!IsHexDigit(*szScan))
{
return _FALSE;
}
// Parse each digit.
do
{
(*pu4bVal) <<= 4;
*pu4bVal += MapCharToHexDigit(*szScan);
szScan++;
(*pu4bMove)++;
} while(IsHexDigit(*szScan));
return _TRUE;
}
BOOLEAN
GetFractionValueFromString(
IN char* szStr,
IN OUT u8* pInteger,
IN OUT u8* pFraction,
IN OUT u32* pu4bMove
)
{
char *szScan = szStr;
// Initialize output.
*pu4bMove = 0;
*pInteger = 0;
*pFraction = 0;
// Skip leading space.
while ( *szScan != '\0' && (*szScan == ' ' || *szScan == '\t') ) {
++szScan;
++(*pu4bMove);
}
// Parse each digit.
do {
(*pInteger) *= 10;
*pInteger += ( *szScan - '0' );
++szScan;
++(*pu4bMove);
if ( *szScan == '.' )
{
++szScan;
++(*pu4bMove);
if ( *szScan < '0' || *szScan > '9' )
return _FALSE;
else {
*pFraction = *szScan - '0';
++szScan;
++(*pu4bMove);
return _TRUE;
}
}
} while(*szScan >= '0' && *szScan <= '9');
return _TRUE;
}
//
// Description:
// Return TRUE if szStr is comment out with leading "//".
//
BOOLEAN
IsCommentString(
IN char *szStr
)
{
if(*szStr == '/' && *(szStr+1) == '/')
{
return _TRUE;
}
else
{
return _FALSE;
}
}
BOOLEAN
GetU1ByteIntegerFromStringInDecimal(
IN char* Str,
IN OUT u8* pInt
)
{
u16 i = 0;
*pInt = 0;
while ( Str[i] != '\0' )
{
if ( Str[i] >= '0' && Str[i] <= '9' )
{
*pInt *= 10;
*pInt += ( Str[i] - '0' );
}
else
{
return _FALSE;
}
++i;
}
return _TRUE;
}
// <20121004, Kordan> For example,
// ParseQualifiedString(inString, 0, outString, '[', ']') gets "Kordan" from a string "Hello [Kordan]".
// If RightQualifier does not exist, it will hang on in the while loop
BOOLEAN
ParseQualifiedString(
IN char* In,
IN OUT u32* Start,
OUT char* Out,
IN char LeftQualifier,
IN char RightQualifier
)
{
u32 i = 0, j = 0;
char c = In[(*Start)++];
if (c != LeftQualifier)
return _FALSE;
i = (*Start);
while ((c = In[(*Start)++]) != RightQualifier)
; // find ']'
j = (*Start) - 2;
strncpy((char *)Out, (const char*)(In+i), j-i+1);
return _TRUE;
}
BOOLEAN
isAllSpaceOrTab(
u8* data,
u8 size
)
{
u8 cnt = 0, NumOfSpaceAndTab = 0;
while( size > cnt )
{
if ( data[cnt] == ' ' || data[cnt] == '\t' || data[cnt] == '\0' )
++NumOfSpaceAndTab;
++cnt;
}
return size == NumOfSpaceAndTab;
}
void rtw_hal_check_rxfifo_full(_adapter *adapter)
{
struct dvobj_priv *psdpriv = adapter->dvobj;
struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(adapter);
int save_cnt=_FALSE;
//switch counter to RX fifo
if(IS_81XXC(pHalData->VersionID) || IS_92D(pHalData->VersionID)
|| IS_8188E(pHalData->VersionID) || IS_8723_SERIES(pHalData->VersionID)
|| IS_8812_SERIES(pHalData->VersionID) || IS_8821_SERIES(pHalData->VersionID))
{
rtw_write8(adapter, REG_RXERR_RPT+3, rtw_read8(adapter, REG_RXERR_RPT+3)|0xa0);
save_cnt = _TRUE;
}
else if(IS_8723B_SERIES(pHalData->VersionID) || IS_8192E(pHalData->VersionID))
{
//printk("8723b or 8192e , MAC_667 set 0xf0\n");
rtw_write8(adapter, REG_RXERR_RPT+3, rtw_read8(adapter, REG_RXERR_RPT+3)|0xf0);
save_cnt = _TRUE;
}
//todo: other chips
if(save_cnt)
{
//rtw_write8(adapter, REG_RXERR_RPT+3, rtw_read8(adapter, REG_RXERR_RPT+3)|0xa0);
pdbgpriv->dbg_rx_fifo_last_overflow = pdbgpriv->dbg_rx_fifo_curr_overflow;
pdbgpriv->dbg_rx_fifo_curr_overflow = rtw_read16(adapter, REG_RXERR_RPT);
pdbgpriv->dbg_rx_fifo_diff_overflow = pdbgpriv->dbg_rx_fifo_curr_overflow-pdbgpriv->dbg_rx_fifo_last_overflow;
}
}
void linked_info_dump(_adapter *padapter,u8 benable)
{
struct pwrctrl_priv *pwrctrlpriv = adapter_to_pwrctl(padapter);
if(padapter->bLinkInfoDump == benable)
return;
DBG_871X("%s %s \n",__FUNCTION__,(benable)?"enable":"disable");
if(benable){
#ifdef CONFIG_LPS
pwrctrlpriv->org_power_mgnt = pwrctrlpriv->power_mgnt;//keep org value
rtw_pm_set_lps(padapter,PS_MODE_ACTIVE);
#endif
#ifdef CONFIG_IPS
pwrctrlpriv->ips_org_mode = pwrctrlpriv->ips_mode;//keep org value
rtw_pm_set_ips(padapter,IPS_NONE);
#endif
}
else{
#ifdef CONFIG_IPS
rtw_pm_set_ips(padapter, pwrctrlpriv->ips_org_mode);
#endif // CONFIG_IPS
#ifdef CONFIG_LPS
rtw_pm_set_lps(padapter, pwrctrlpriv->ips_org_mode);
#endif // CONFIG_LPS
}
padapter->bLinkInfoDump = benable ;
}
#ifdef DBG_RX_SIGNAL_DISPLAY_RAW_DATA
void rtw_get_raw_rssi_info(void *sel, _adapter *padapter)
{
u8 isCCKrate,rf_path;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
struct rx_raw_rssi *psample_pkt_rssi = &padapter->recvpriv.raw_rssi_info;
DBG_871X_SEL_NL(sel,"RxRate = %s, PWDBALL = %d(%%), rx_pwr_all = %d(dBm)\n",
HDATA_RATE(psample_pkt_rssi->data_rate), psample_pkt_rssi->pwdball, psample_pkt_rssi->pwr_all);
isCCKrate = (psample_pkt_rssi->data_rate <= DESC_RATE11M)?TRUE :FALSE;
if(isCCKrate)
psample_pkt_rssi->mimo_singal_strength[0] = psample_pkt_rssi->pwdball;
for(rf_path = 0;rf_path<pHalData->NumTotalRFPath;rf_path++)
{
DBG_871X_SEL_NL(sel,"RF_PATH_%d=>singal_strength:%d(%%),singal_quality:%d(%%)\n"
,rf_path,psample_pkt_rssi->mimo_singal_strength[rf_path],psample_pkt_rssi->mimo_singal_quality[rf_path]);
if(!isCCKrate){
DBG_871X_SEL_NL(sel,"\trx_ofdm_pwr:%d(dBm),rx_ofdm_snr:%d(dB)\n",
psample_pkt_rssi->ofdm_pwr[rf_path],psample_pkt_rssi->ofdm_snr[rf_path]);
}
}
}
void rtw_dump_raw_rssi_info(_adapter *padapter)
{
u8 isCCKrate,rf_path;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
struct rx_raw_rssi *psample_pkt_rssi = &padapter->recvpriv.raw_rssi_info;
DBG_871X("============ RAW Rx Info dump ===================\n");
DBG_871X("RxRate = %s, PWDBALL = %d(%%), rx_pwr_all = %d(dBm)\n",
HDATA_RATE(psample_pkt_rssi->data_rate), psample_pkt_rssi->pwdball, psample_pkt_rssi->pwr_all);
isCCKrate = (psample_pkt_rssi->data_rate <= DESC_RATE11M)?TRUE :FALSE;
if(isCCKrate)
psample_pkt_rssi->mimo_singal_strength[0] = psample_pkt_rssi->pwdball;
for(rf_path = 0;rf_path<pHalData->NumTotalRFPath;rf_path++)
{
DBG_871X("RF_PATH_%d=>singal_strength:%d(%%),singal_quality:%d(%%)"
,rf_path,psample_pkt_rssi->mimo_singal_strength[rf_path],psample_pkt_rssi->mimo_singal_quality[rf_path]);
if(!isCCKrate){
printk(",rx_ofdm_pwr:%d(dBm),rx_ofdm_snr:%d(dB)\n",
psample_pkt_rssi->ofdm_pwr[rf_path],psample_pkt_rssi->ofdm_snr[rf_path]);
}else{
printk("\n");
}
}
}
void rtw_store_phy_info(_adapter *padapter, union recv_frame *prframe)
{
u8 isCCKrate,rf_path;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
struct rx_pkt_attrib *pattrib = &prframe->u.hdr.attrib;
PODM_PHY_INFO_T pPhyInfo = (PODM_PHY_INFO_T)(&pattrib->phy_info);
struct rx_raw_rssi *psample_pkt_rssi = &padapter->recvpriv.raw_rssi_info;
psample_pkt_rssi->data_rate = pattrib->data_rate;
isCCKrate = (pattrib->data_rate <= DESC_RATE11M)?TRUE :FALSE;
psample_pkt_rssi->pwdball = pPhyInfo->RxPWDBAll;
psample_pkt_rssi->pwr_all = pPhyInfo->RecvSignalPower;
for(rf_path = 0;rf_path<pHalData->NumTotalRFPath;rf_path++)
{
psample_pkt_rssi->mimo_singal_strength[rf_path] = pPhyInfo->RxMIMOSignalStrength[rf_path];
psample_pkt_rssi->mimo_singal_quality[rf_path] = pPhyInfo->RxMIMOSignalQuality[rf_path];
if(!isCCKrate){
psample_pkt_rssi->ofdm_pwr[rf_path] = pPhyInfo->RxPwr[rf_path];
psample_pkt_rssi->ofdm_snr[rf_path] = pPhyInfo->RxSNR[rf_path];
}
}
}
#endif